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Abstract

Borrowing inspiration from von Neumann'’s dream and
the idea of a true cellular automaton, we describe a mul-
ticeltular universal Turing machine implementation with
self-replication and self-repair capabilities. This imple-
mentation was made possible thanks to a new “multicel-
lular” automaton developed as part of the Embryonics
(embryonic electronics) project. This new automaton,
in which every artificial cell contains a complete copy
of the genome, is endowed with self-replication and self-
repair capabilities. With these properties and by using
a modified version of the W-machine, it was possible
to realize the mapping of the universal Turing machine
onto our multicellular array.

Keywords: self-replication, self-repair, universal Tur-
ing machine, cellular automata, Embryonics.

Introduction

The Embryonics (embryonic electronics) project is in-
spired by the basic processes of molecular biology and
by the embryonic development of living beings. By
adopting three fundamental features of biclogy — mul-
ticellular organization, cellular division, and cellular dif-
ferentiation — and by transposing them onto the two-
dimensional world of integrated circuits in silicon, we
show that properties of the living world, such as self-
replication and self-repair, can also be attained in artifi-
cial objects (integrated circuits).

Our goal in this paper is to present self-replicating
machines exhibiting universal computation, i.e., univer-
sal Turing machines. We demonstrate that the dream of
von Neumann, the self-replication of such a machinc, can
be realized in actual hardware thanks to the Embryonics
architecture.

In the next section we present a brief reminder of spe-
cialized and universal Turing machines. We then survey
classical self-replicating automata and loops. The fol-
lowing secction introduces the Embryonics architecture
based on a multicellular array of cells and describes the
implementation of a self-replicating specialized Turing
machine. We next present the architecture of an ideal
and of an actual universal Turing machine able to self-

replicate. A discussion of our results follows in the final
sectiom.

Turing machines

In the 1930%, before the advent of digital computers,
several mathematicians began to think about what it
means to be able to compute a function. The theory of
Turing machines was the response to this question. It
is important to mention that Alonzo Church and Alan
Turing independently arrived at equivalent conclusions;
their common definition was: A function is computable
if it can be computed by a Turing machine.

Turing machines were conceived by Alan Turing in his
historic paper, “On Computable Numbers, with an Ap-
plication to the Entscheidungsproblem” [22], which was
his response to the Entscheidungsproblem, posed by the
German mathematician David Hilbert. Hilbert asked if
there existed, in principle, any definite method which
could be applied to determine the truth of any mathe-
matical question.

Turing machines are one of the earliest and most intu-
itive ways to render precise the notion of effective com-
putability. This is now the foundation of the modern
theory of computation and computability.

Specialized Turing machines
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Figure 1: A specialized Turing machine.

A specialized Turing machine (Figure 1) is a finite-
state machine (the program) controlling a mobile head,
which operates on a tape (the data). The tape, composed
of a sequence of squares, contains a string of symbols.
The head is situated, at each moment, on some square
of the tape and has to carry out three operations to
complete a step of the computation. These operations
are:




1. reading the square of the tape being scanned;
2. writing on the scanned square;
3. moving the head to an adjacent square.

A Turing machine can be described by three functions

fii fay fa:

@t = 1(Q,95) (1)
St = £(Q,9) (2)
D+ = fS(QaS) (3)

where ¢ and S are, respectively, the current internal
state and the current input symbol, and where Q1, S+,
and D% are, respectively, the next internal state, the
next input symbol, and the direction of the head’s next
move [13].

The universal Turing machine

Turing had the further idea of the universal Turing ma-
chine {(UTM), capable of simulating the operation of any
specialized Turing machine, and gave an exact descrip-
tion of such a UTM in his paper {22].

A universal Turing machine, U, is a Turing machine
with the property of being able to read the description
(on its tape) of any other Turing machine, T, and to
carry out correctly (one step at a time) what T would
have done. The necessary components of the machine U
are a finite-state machine (the program of U) controlling
a mobile head, which operates on a tape; the data on the
tape describe completely the machine T to be simulated
{the data of T and the program of T, i.e., the three
functions @+, ST, and DT describing T).
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Figure 2: Universal Turing machine’s tape, describing
specielized machine T.

Figure 2 shows the organization of I's tape. To the
left is a semi-infinite region, which contains the data of

Ts tape. Somewhere in this region is a marker M in- -

dicating where 7"s head is currently located. The next
region contains the current internal state @ and the cur-
rent input symhbol § of T. The third region is used to
record the description of 7, i.e., the three functions @7,
S*, and Dt for each combination of ¢ and S.

Self-replication: A brief survey
Self-replicating automata

The early history of the theory of self-replicating ma-
chines is basically the history of von Neumann’s think-
ing on the matter [5,18,23]. Von Neumann’s cellular
automaton [23], as well as all the machines described in
this paper, is based on the following general hypotheses:

s the automaton deals exclusively with the flow of infor-
mation; the physical material (usually a silicon sub-
strate) and the energy (power supply) are given a pri-
ori;

e the physical space is two-dimensional and as large as
desired;

e the physical space is homogeneous, that is comprised
of identical molecules, all of which have the same inter-
nal architecture and the same connections with their
neighbors; only the state of a molecule (the combina-
tion of the values in its memories) and its position can
distinguish it from its neighbors;

e replication is. considered as a special case of growth:
this process involves the creation of an identical organ-
ism by duplicating the genetic material of a mother
entity onto a daughter one, thereby creating an exact
clone.

To avoid conflicts with biological definitions, we do not
use the term “cell” to indicate the parts of a cellular au-
tomaton, opting rather for the term “molecule”. (In bio-
logical terms, a “cell” can be defined as the smallest part
of a living being which carries the complete blueprint of
the being, that is the being’s genome.)

The molecule of von Neumann’s automaton is a finite-
state machine with 29 states. The future state of a
molecule depends on the present state of the molecule it~
self and of its four cardinal neighbors (north, east, south,
west). The exhaustive definition of the future state, the
transition table, thus contains 29° = 20, 511, 149 lines.

In his historic work [23], von Neumann showed that a
possible configuration (a set of molecules in a given state)
"of his automaton can implement a universal constructor
(Uconst). endowed with the following three properties:

1. universal construction (Figure 3);

2. self-replication of the universal consiructor (Figure 4);

3. self-replication of a universal computer (Ucomp), i.e.,
a universal Turing machine (Figure 5).

According to the biological definition of a cell, it can be
stated that von Neumann's automaton is a unicellular or-
ganism: its genome is composed of the description of the
universal constructor and computer D(Uconst + Ucomp)
written in the memory M (Figure 5); as each molecule of
this description needs five molecules of the genome [23],
it can be estimated that the genome is composed of ap-
proximately five times the number of molecules of the

D(Ucomp)

M

Figure 3: Unwversal construction of von Neumann’s au-
tomaton: a possible configuration can implement o uni-
versal constructor Uconst. Then, given the description
‘D{Ucomp) of any one machine Ucomp, including a uni-
versal Turing machine, the universal constructor can
build o specimen of this machine (Ucornp’) in the molec-
ular space.

D{Uzonst)

Fipure 4: Self-replication of the universal constructor:
given the description D(Uconst) of the constructor itself,
it is then possible to build a copy of the consiructor in the
molecular space: the constructor interprels first the de-
scription D(Uconst) to build a copy Uconst’ whose mem-
ory M’ is empty (translation process), and then copies
the description D{Uconst) from the original memory M
to the new memory M’ (transcription process).

universal constructor and computer.

In summary:

e the dimensions of von Neumann’s automaton are sub-
stantial (on the order of 200,000 molecules) [6]; it has
thus never been physically implemented and has been
simulated only partially [4,16,17];

e the automaton implements the self-replication of a
universal computer {a universal Turing machine).

Though von Neumann and his successors Burks [3,23],
Thatcher [3], Lee [8], Codd [4], Banks [2], and Nourai
and Kashef [14] demonstrated the theoretical possibility
of realizing self-replicating automata with universal cal-
culation, a practical implementation requires a markedly
different approach. It was finally Langton, in 1984, who
initiated a second stage in self-replication research.

Mother cell

D(Ucansl+Ucomp)

Genome

Figure 5: Self-replication of a universal computer: by at-
taching to the constructor a universal computer Ucomp
(a universal Turing machine), and by placing the de-
scription D{Uconst + Ucomp) in the original memory
M, the untversal constructor produces a copy of itself
(Uconst’) and a copy of the universal computer (Ucomp’)
through the mechanism described in Figure 4 (interpre-
tation and then duplication of the description D).

Self-replicating loops

In order to construct a self-replicating automaton sim-
pler than von Neumann’s, Langton [7] adopted more lib-
eral criteria. He dropped the condition that the self-
replicating unit must be capable of universal construc-
tion and computation. Langton’s mechanism is based
on an extremely simple configuration in Codd’s automa-
ton [4] called the periodic emitter, itself derived from the
periodic pulser organ in von Neumann’s automaton [23].
The molecule of Langton’s automaton is a finite state
machine with only 8 states. The future state, as with von
Neumann’s automaton, depends on the present state of
the molecule itself and its four cardinal neighbors. The
exhaustive definition of the future state, the transition
table, contains only 219 lines, a very small subset of the
theoretically possible 8% = 262,144 lines (thanks to the
use of default rules and symmetry assumptions).

Langton proposed a configuration in the form of a
loop (Figure 6), with a constructing arm (pointing to the
north in the left loop and to the east in the right loop)
and a replication program, or genome, which turns coun-
terclockwise. After 151 clock periods, the left loop (the
mother loop) produces a daughter loop, thus obtaining
the self-replication of Langton’s loop.

Referring again to biological definitions, we observe
that Langton’s self-replicating loop is a unicellular or-
ganism; its genome, defined in Figure 6, comprises 28
molecules and is a subset of the complete loop which
includes 94 molecules.

In summary: '

¢ the sizc of Langton’s loop is perfectly reasonable, since
- it requires 94 molecules, thus allowing complete simu-
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Figure 6: In Langton’s self-replicating loop, the genome,
which turns counterclockwise, is characterized by the se-
quence, read clockwise: 170 170 170 170 170 170 140 140
1111, The signals “1” are ignored, the signals “70” cause
the eztension of the constructing erm by one molecule,
while the signals “407, repeated twice, cause the arm
to turn 90° counterclockwise. After 151 clock periods,
the left loop (the mother loop) produces o daughter loop,
thus obtaining the self-replication of Langton’s loop. The
genome is both interpreted (construction of a copy at the
end of the constructing arm: translation process) and
copied (duplication at the junclion of arm and loop: tran-
scription process).

lation;

e there is no universal construction or calculation: the
loop does nothing but replicate itself; comparing
Figure 4 and Figure 6 reveals that Langton’s self-
replicating loop represents a special case of von Neu-
mann’s self-replication; the loop is a non-universal
constructor, capable of building, on the basis of its
genome, a single type of machine: itself.

Self-replicating loops with computing
capabilities

The loops of the previous section exhibit only rudimen-
tary computing and constructing capabilities, their sole
functicnality being that of self-replication. Lately, new
attempts have been made to redesign Langton’s loop
in order to embed caleulation capabilities. Tempesti’s
loop [19] is a self-replicating automaton which preserves
some of the more interesting features of Langton’s loop
(in particular, it preserves the structure based on a
square loop to dynamically store information, and the
concept of a constructing arm); nevertheless, Tempesti
introduced important modifications to Langton’s design.
Tempesti’s loop attaches an executable program that is
duplicated and executed in each of the copies (Figure 7),
a process demonstrated for a simple program that writes
out (after the loop’s replication} LSL, acronym of the
Logic Systems Laboratory [21].

Self-replicating loops with universal
computing capabilities

Perrier et al.’s self-replicating loop [15] exibits univer-
sal computational capabilities (Figure 8). The system
consists of three parts, loop, program, and data, all of
which are replicated, followed by the program’s execu-
tion on the given data.” In the figure, P and D denote
states belonging to the set of program states and to the
set of data states, respectively.
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Figure 8: Perrier et al.’s self-replicating loop. P denotes
a state belonging to the set of program states. D denotes
a stote belonging to the set of data states. A is a state
which indicates the position in the program.

The universal computational model chosen for this
work was the W-machine, introduced by Hao Wang [24]
and named for him by Lee [9], who explored its relation
with finite automata. A W-machine is like a Turing ma-
chine with two symbols § = 0 and § = 1, save that its
operation at each time step is guided not by the three
functions f1, fa, fs of a state table but by an instruction
from the following list [1]:

PRINT 0, PRINT 1, MOVE DOWN, MOVE UP,
IF 1 THEN (n) ELSE (nezxt), STOP

The complete program for a Turing machine is a fi-
nite ordered list of instructions (a program) equivalent
to the state table. After execution of an instruction of
the first four types, control is automatically transferred
to the next instruction. The conditional jump transfers
control to the n-th instruction if the square under scan
is a 1 symbol, otherwise it transfers control to the next
instruction.

Adding functicnality to Langton’s loop is, in fact, not
possible without major alterations. Perrier et al. devel-
oped a relatively complex automaton, in which a two-
tape Turing machine was appended to Langton’s loop.
This automaton exploits Langton’s loop as a sort of car-
rier: the first function of Perrier’s loop is to allow Lang-
ton’s loop to build a copy of itself. The main function
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Figure T: Tempesti’s self-replicating loop has an attached erecutable program that is duplicated and executed in cach
g

copi.

of the offspring is to determine the location of the copy
of the Turing machine. Once the new loop is ready, a
messenger runs back to the parent loop and starts to du-
plicate the Turing machine, a process completely digjoint
from the operation of the loop. When the copy is fin-
ished, the same messenger activates the Turing machine
in the parent loop (the machine had to be inert during
the replication process in order to obtain a perfect copy).
The process is then repeated in each offspring until the
space is filled [15].

The automaton thus becomes a. self-replicating univer-
sal Turing machine, a powerful construct which is un-
fortunately handicapped by its complexity: in order to
implement a Turing machine, the automaton requires a
very considerable number of additional states (63), as
well as a large number of additional transition rules.
This complexity, while still relatively minor compared
to von Neumann’s universal constructor, is nevertheless
too high to be considered for a hardware application. So
once again, adapting Langton’s loop to fit our require-
ments proved too complex to be efficient [21].

Self-replication of specialized Turing
machines on a multicellular array: The
Embryonics approach

Arbib [1] was the first to suggest a true “cellular” au-
tomaton, in which every cell contains a complete copy
of the genome, and a hierarchical organization, where
each cell is itself decomposed into smaller and regular
parts, the “molecules”; uniike all previous realizations,
this new architecture is a true “multicellular” -artificial
organisin.

This key idea was the basis of the Embryonics (embry-
onic electronics) project, under development by Mange
and his colleagues since 1993, whose ultimate objective
is the construction of large-scale integrated circuits, ex-
hibiting properties such as growth, self-repair (healing),
and self-replication, found up until now only in living
beings [11,12,20].

Embryonics features

Essentially, Embryonics is a modified automata-based
approach in which three biologically inspired principles
are employed: multicellular organization, cellular differ-
entiation, and cellular division. According to the mul-
ticellular organization feature, the artificial organism is
divided into a finite number of cells (Figure 9), where
each cell realizes a unique function, described by a sub-
program called the gene of the cell.
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Figure 9: Multicellular organization of a specialized Tur-
ing machine, a parenthesis checker.

We will confine ourselves to a simple example of a two-
dimensional artificial organism (Figure 9): a specialized
Turing machine, a parenthesis checker [13], implemented
with ten cells and featuring two distinct genes, the tape
gene and the head gene. Each cell is associated with
some initial condition. In our example the head cells are
distinguished by the initial values “0” and “—”, the tape
cells by “A”, “(”, and “)” values.

Let us call genomie the set of all the genes of an artifi-
cial organism, where each gene is a sub-program charac-
terized by a set of instructions, by an initial condition,
and by a position (its coordinates X,Y). Figure 9 then
shows the genome of our Turing machine, with the cor-
responding horizontal (X) and vertical (Y) coordinates.
Let then each cell contain the entire genome (Figure 10):
depending on its position in the array, i.e., its place in
the organism, each cell can interpret the genome and
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Figure 10: Cellular differentiation and cellular division of a specialized Turing machine, the parenthesis checker;

t1...t5: five successive divisions.

extract and execute the gene (with its initial condition)
which configures it. According to the cellular differen-
tiation feature, it can interpret any gene of the genome
(including the initial condition), given the proper coor-
dinates.

At startup, the mother cell or zygote (Figure 10), ar-
bitrarily defined as having the coordinates X, Y = 1,1,
holds the one and only copy of the genome. At time
t1, according to the cellular division feature, the genome
of the mother cell is copied into the two neighboring
(daughter) cells to the north and to the east. The pro-
cess then continues until the two-dimensional space is
completely programmed. In our example, the furthest
cell is programmed at time t5. '

In all living beings, the string of characters which
makes up the DNA is executed sequentially by a chem-
ical processor, the ribosome. Drawing inspiration from
this biological mechanism, we will use a microprogram to
compute first the coordinates of the artificial organism,
then the initial conditions of each cell, the tape gene and
the head gene, and finally the complete genome. The cal-
culation of this microprogram is detailed in [10,12]. Iis
software implementation requires basically two kinds of
instructions: a test instruction (if VAR else LABEL),
and an assignment instruction (do X = DATA).

Each artificial cell (called MICTREE for “micro-
instruction tree”) is implemented as an element of a
new kind of coarse-grained programmable logic net-
work, which is realized on a special field-programmable
gate array (FPGA) circuit. This artificial cell consists
basically of a binary decision machine, executing the
above-mentioned instructions, a random access mem-

_ory, storing the microprogram of the genome, and sev-

eral programmable connections linking the cell to its
four immediate neighbors (to the north, east, south, and
west) [11,12].

Self-repair and self-replication

In order to demonstrate self-repair, we added two spare
cells in each row, to the right of the original Turing ma-

chine, all identified by the same horizontal coordinate
(X = 6 in Figure 11). The spare cells may be used not
only for self-repair, but also for the example of a Turing
machine necessitating growth of the tape of arbitrary,
but finite, length.
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Figure 11: Self-repair of a 10-cell parenthesis checker in
a 14-cell array.

The existence of a fault is detected by a KILL signal
which is calculated in each artificial cell by a built-in self-
test realized at the FPGA level. The state KILL =1
identifies the faulty cell and the entire column to which
the faulty cell belongs is considered faulty, and is deac-
tivated (column X = 3 in Figure 11). All the functions
of the artificial cells to the right of the column X = 2
are shifted by one column to the right. Obviously, this
process requires as many spare columns to the right of
the array as there are faulty columns to repair (there
are two spare columns in the example of Figure 11). It
also implies that the artificial cell has the capability of
bypassing the faulty column and shifting to the right
all or part of the original cellular array. During such
a process, the actual values calculated by the cells are
destroyed and the whole caleulation should be restarted.

The self-replication of an artificial organism rests on
two hypotheses:

¢ there exist a sufficient number of spare cells (unused
cells at the upper side of the array, at least ten for our

Daughter
autornaton

Mother
autormaton

Figure 12: Self-replication of a 10-cell parenthesis
checker in a 20-cell array. ‘

example);
o the calculation of the coordinates produces a cycle at
the cellular level (Y =1 — 2 — 1 in Figure 12).

As the same pattern of coordinates produces the
same pattern of genes (with the initial conditions), self-
replication can be easily accomplished if the micropro-
gram of the genome, associated with the homogeneous
network of cells, produces several occurrences of the ba-
sic pattern of coordinates (¥ = I — 2 in Figure 9). In
our example, repetition of the vertical coordinate pat-
tern, i.e., the production of the pattem ¥ =1 - 2 —
1 — 2 (Figure 12), produces one copy, the daughter au-
tomaton, of the original mother automaton. Given a suf-
ficiently large space, the self-replication process can be
repeated for any number of specimens in the ¥ axis (re-
member that the X axis is reserved for self-repair and/or
for a possible growth of the Turing machine).

With a sufficient number of cells, it is obviously pos-
sible to combine self-repair (or growth) toward the X
direction and self-replication toward the Y direction.

Self-replication of a universal Turing
machine on a multicellular array

The preceding section presented a self-replicating two-
dimensional artificial organism implementing a special-
ized Turing machine, the parenthesis checker, which was
made of ten MICTREE artificial cells. By using the
same type of cells we now show how it is possible to de-
sign and build a universal Turing machine (UTM) with
self-replication capabilities.

Multicellular architecture of a universal
Turing machine

Conventional universal Turing machines [13] consist of a
finite but arbitrarily long tape, and a single read/write
mobile head controlled by a finite-state machine, which

is itself described on the tape (Figure 2). In order to
implement a universal Turing machine in an array of
MICTREE artificial cells, we made three fundamental
architectural choices (Figure 13):

AT (o H v
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Figure 13: Universal Turing machine architecture for the
parenthesis checker ezample.

1. The read/write head is fixed; the tapes are therefore
mobile.

2. The data of the given application (the specialized Tur-
ing machine to be simulated) are placed in a mobile
tape, the data tape; this tape can shift right, shift left,
or not at all.

3. The finite-state machine for the given application is
translated into a very simple program written in a
language called PICOPASCAL?!; each instruction of
this program takes place in a square of a second mobile
tape, the program tape; this tape just needs to shifi
left.

The fixed head, which is in fact an interpreter of the
PICOPASCAL language, has to continuously exccute cy-
cles consisting of four operations:

1. reading and decoding an instruction on the program

tape; :

reading a symbol on the data tape;

3..interpreting the current instruction, and writing a new
symbol on the current square of the data tape;

4. shifting the data tape (left, right, or none) and the
program tape {left).

L

An application: A binary counter

In order to test our UTM implementation, we used, as a
simple but non-trivial example, a binary counter [13], a
machine which writes out the binary numbers 1, 10, 11,
100, etc. The counter’s state table (Figure 14) has two
internal states (@ € {0 —,1 «}) and two input states
(S € {0,1}), Sbeing the value of the current square read

'PICOPASCAL, itself derived from NANOPASCAL [12],
is a minimal subset of PASCAL; the transformation of a
state table into such a program is directly inspired by the W-
machine with the major advantage of avoiding the jumps ne-
cessitated by the IF 1 THEN (n) ELSE (nezt) instructions.




on the data tape. Depending on the present internal
state Q and the present input state S, the specialized
Turing machine will:

1. write a new binary value St(0,1) on the current
square of the data tape;

2. move its tape to the right (@* = 0 =) or to the left
(@* = 1 «), which is equivalent to moving the data
tape to the left or to the right, respectively;

3. go to the next state Q+(0 —, 1 ).

o+S+ | S=0 | S=I

0> | 0>0 | 1< ,1
1« |01 | 1«0

Q

Figure 14: State table of the binary counter.

The PICOPASCAL program equivalent to the state
table (Figure 14) is given in Figure 15.

ADDR DATA PROGRAM

00 5 if {Q)

[+} 8 5 if (S)

02 A do 0 (S)
03 9 do 1<- (Q)
04 4 else

05 B do 1 (8)
06 ] do 0-> (Q)
07 6 endif

08 4 alse

0g 5 if (8)

oA B do 1 (8)
0B 9 do 1<~ (Q)
oc 4 else

oD A do © (5}
(1324 8 do 0-> (Q)
OF 6 endif

10 6 endif

11 2 end

Figure 15: PICOPASCAL program equivalent to the
state table of Figure 14.

An ideal architecture for the universal
Turing machine

A universal Turing machine architecture is ideal in the
sense that it is able to deal with applications of any com-
plexity, characterized by:

1. a finite, but arbitrarily long data tape;

2. a read/write head able to interpret a PICOPASCAL
program of any complexity;

3. a finite, but arbitrarily long program tape.

It must be pointed out that, for any application, the
program tape and the read/write head (the PICOPAS-
CAL interpreter) are always characterized by finite di-
mensions; only the data tape can be as long as desired,
as is the case for the binary counter.

An ideal architecture, embedding the current example,
but compatible with any other application, is as follows
(Figure 16):

1. The data tape, able to shift right, left, or hold, is
folded on itself; the initial state is defined by QL1 :
0,QC, QR0 : 1 = 00100, where QL are the squares to
the left of the central square QQC, and (R are squares
to the right of QC; the data tape is able to grow
to the left of QC(QL2,QL3,...) and to the right of
QC(QR2,QR3,...).

2. The fixed read/write head, which is not detailed here,
is basically composed of a state register @, (storing
the current values of internal and input states @,5,
respectively, with an initial state @,5 = 01) and a
stack ST1 : 3 characterized by a 1-out-of-3 code (one-
hot encoding). At the start of the execution of the
PICOPASCAL program (Figure 15, i.e., in address
ADDR = 00), the stack is in an initial state 571 : 3 =
100; roughly speaking, each if instruction will involve
a PUSH operation, each endif a POP operation, and
cach else a LOAD operation. When S7'1 = 1, the do
instructions are executable. The main characteristic of
the stack is its scalability: for any program exhibiting
n nested if instructions, the stack is organized as a
n+ 1 square shift register. Both the ST'1 : 3 stack and
the @, S register are able to grow to accommodate
more complex applications.

3. The program tape is folded on itself; it is able to grow
to accommadate more complex applications.

QLO=0| QL1=0

e
Data
tape ﬁ £‘
0C=1 | QRO=0|QR1=0

-~
Stack STi=1|8T2=0 ST3=0
Tixed
head
reQ'!sfer 2=0 §=1
¥ i
-
if if v else
Program<
tape i
end endif |+ if
w

Figure 16: UTM’s ideal architeciure.
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Figilre 17: UTM’s actual implementation for the binary counter ezample on a multicellular array of 27 MICTREE

cells.

An actual implementation of the UTM for
the binary counter example

In order to implement the binary counter application
with a limited number of MICTREE artificial cells, we
have somewhat relaxed the characteristics of the ideal
architecture described earlier. Our final architecture is
made up of three rows (¥ = 1,2,3) and nine columns
(X = 1...9) organized as follows (Figure 17):

e The 18 instructions of the PICOPASCAL program
{Figure 15) take place in the program tape, using the
two lower rows (Y = 1,2) of the array.

e The read/write head is composed of a ST1 : 3 stack
and the @,S register (X = 1..5,Y = 3), while the
data tape is implemented thanks to three cells (X =
6..8,Y = 3) displaying 9 bits QL3 : 0,QC, QR0 : 3.

In order to demonstrate self-repair, we added spare
cells in each row, at the right-hand side of the UTM,
all identified by the same horizontal coordinate (X —=
9 in Figure 17). As previously mentioned, more cells
may be used not only for self-repair, but also for a UTM
necessitating a growth of the tape of arbitrary, but finite,
length,

Self-replication rests on two hypotheses:

* there exist a sufficient number of spare cells (unused
cells at the upper side of the array, at least 3 x 9 = 27
for our example); '

® the calculation of the coordinates produces a
cycle at the cellular level (in our example:
Y=152- 35 1)

Given a sufficiently large space, the self-replication
process can be repeated for any number of specimens
in the Y axis. With a sufficient number of cells, it is
obviously possible to combine self-repair (or growth) to-
wards the X direction and self-replication towards the ¥
direction.

Discussion

In this paper we presented a new, true “multicellular”
automnaton, in which every cell contains a complete copy
of the genome; we have shown that such a multicellular
automaton is able to self-replicate and to self-repair.

We then showed that it is possible to embed a uni-
versal Turing machine in such a multicellular array, thus
obtaining a self-replicating and self-repairing universal
Turing machine.

The mapping of the universal Turing machine onto
our multicellular array weds made possible thanks to the
intreduction of a modified version of the W-machine,

i.e., an interpreter of the PICOPASCAL language. We

showed that an ideal architecture was able to deal with
applications of any complexity, i.e., with a semi-infinite
data tape. We also presented an actual implementa-
tion in which we relaxed somewhat the characteristics
of the ideal architecture in order to use a limited num-
ber of MICTREE artificial cells. We slightly simplified
our implementation by presenting the example of the bi-
nary counter in which the data are binary (in general
we might have discrete values) and where the direction
of the head’s moves coincides with the internal state (in
general functions Q% and D* are independent).

The property of universal construction raises issues of
a different nature, since it requires (according to von




Neumann) that a MICTREE cell be able to implement
organisms of any dimension. . This challenge can be met
by decomposing a cell into molecules and tailoring the
structure of cells to the requirements of a given applica-

tion [11].
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