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Abstract The General Video Game Playing Competition (GVGAI) defines a chal-
lenge of creating controllers for general video game playing, a testbed—as it were—
for examining the issue of artificial general intelligence. We develop herein a game
controller that mimics human-learning behavior, focusing on the ability to general-
ize from experience and diminish learning time as new games present themselves.
We use genetic programming to evolve hyper heuristic-based general players, our
results showing the effectiveness of evolution in meeting the generality challenge.
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1 Introduction

Imagine playing a video game for the first time. You probably spend some time
developing an understanding of the effects of your actions, identifying the various
hostile or friendly non-player characters (NPCs), figuring out which items to avoid
and which to collect, and so forth. In other words, you familiarize yourself with
the goals of the game. A game can have many goals, such as collecting artifacts,
killing NPCs, reaching a certain place in the game world, etc. There may be more
complicated goals that are a combination of others, for example, collecting a key
and then reaching the exit portal. Some of these goals lead to victory, some to award
points, and some to both. Ultimately, we want to complete as many of these goals
as possible before attempting the “end” goal that leads to victory and finishing the
game, thus maximizing our score.

As you advance in the game you no longer have to focus on understanding it.
Instead, you can focus on developing more-advanced strategies or predicting the
immediate future of the game and estimating whether or not the strategies you have
in mind are feasible.
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When you move to other levels, games, or both, your previous experience helps
to improve the learning curve. For example, you might not yet recognize the good
and bad resources but you already understand the concept of resources and non-
player characters and the importance of keeping a certain distance from them. You
will have to spend some time learning the specific new elements, or you might have
to completely re-evaluate some insights—perhaps a wall is no longer an object you
can’t get through?—but you can rely on your previous experience to shorten the
learning process.

Our goal in this work is to develop an artificial intelligence game controller (or
player) that mimics this behavior, specifically focusing on the ability to generalize
from experience and diminish learning time as new games present themselves.

The General Video Game Playing Competition (Perez et al (2015)) proposes the
challenge of creating a controller for general video game playing, as a testbed for
examining the issue of artificial general intelligence.

The GVGAI competition provides a framework that comprises a set of games,
which differ in various aspects, including: winning conditions, scoring mechanism,
sprite types, and available actions. The world the agent plays in is fully observable
and a forward model is provided. However, the games are stochastic and no infor-
mation is provided regarding winning conditions or interactions between different
elements in the world. It is up to the agent to either infer such information or other-
wise search in the state space.

Our goal is not to win the GVGAI competition (even though our results turned
out to be excellent), but to use the offered framework as a convenient, extant bench-
mark for our work. This decision stems partly from a technical reason (involving
unsupported multi-threading, as elaborated in Section 3.4) that prevents us from
competing online directly, and also from a desire to emphasize the general part of
AGI, whereupon we wished to avoid specificity as much as possible.

The chapter is organized as follows: In the next section we examine previous and
related work. In Section 3 we describe our method. Finally, we end with concluding
remarks and future work in Section 5.

2 Previous Work

2.1 Automated planning and MDP

Automated planning is a field of research in which generalized problem solvers
(known as planning systems or planners) are constructed and tested across various
benchmark puzzle domains.

An MDP (Markov Decision Process) is a model of an agent interacting syn-
chronously with some given “world”. The agent takes as input the state of the world
and generates actions as output, which themselves affect the state of the world.
While there is uncertainty in the MDP framework regarding the outcome of the
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agent’s actions, the agent’s current state is known. The description of MDP prob-
lems usually includes: 1) a transition function, assigning probabilities of reaching
each state after performing a specific action in a given state; and 2) a reward func-
tion, describing the immediate reward for performing an action at a certain state
Kaelbling et al (1998).

The problem we face is similar in that the world can be represented as a set of
states, and the agent must choose from a set of actions according to the current state.
However, we have neither the transition nor the reward function. Moreover, since we
are not alloted time for pre-computation, it is not possible to derive estimations of
these functions.

2.2 Heuristic search

Search algorithms for video controllers (as well as for other types of problems) are
strongly based on the notion of approximating the distance of a given configuration
(or state) to the goal (e.g., maximum score, catching the flag, etc.). Such approx-
imations are found by means of a computationally efficient function, known as a
heuristic function. By applying such a function to states reachable from the current
one considered, it becomes possible to select more-promising alternatives earlier in
the search process, possibly achieving better results (e.g., a higher score, or reach-
ing the goal faster). The putative result is strongly tied to the quality of the heuristic
function used: employing a perfect function means simply “strolling” onto the solu-
tion (i.e., no search de facto) and maximizing the solution score, while using a bad
function could render the search less efficient than totally uninformed search, such
as breadth-first search (BFS) or depth-first search (DFS).

2.3 Hyper-heuristics

In the area of combinatorial optimization the term hyper-heuristics was first used
by Cowling et al (2000) to describe heuristics to choose heuristics. This defini-
tion of hyper-heuristics was expanded later (Burke et al, 2010a) to refer to an au-
tomated methodology for selecting or generating heuristics to solve hard compu-
tational search problems. In the process of hyper-heuristics learning, heuristics are
used as building blocks. These heuristics can be of high level, usually complex and
memory-consuming (e.g., landmarks and pattern databases), or low-level heuristics
that are usually intuitive and straightforward to implement and compute.

Hyper-heuristics have been applied in many research fields, among them:

• Classical planning (Yoon et al, 2008; Levine et al, 2009; Fawcett et al, 2011).
• Classical NP-Complete domains, e.g., 2D and 3D bin-packing (Burke et al,

2010b, 2012), personnel scheduling (Burke et al, 2003; Cowling et al, 2000).
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• Classical AI domains and puzzles, e.g., the Rush Hour puzzle (Hauptman et al,
2009), the game of FreeCell (Elyasaf et al, 2012), and the Tile Puzzle (Elyasaf
et al, 2011; Arfaee et al, 2010).

• Mining RNA sequence-structure motifs (Elyasaf et al, 2015).

The growing research interest in techniques for automating the design of heuristic
search methods motivates the search for automatic systems for generating hyper-
heuristics.

2.4 Real-rime learning of hyper-heuristics

While research on learning hyper heuristics is numerous, there is little work on
real-time learning of hyper heuristics. In many cases, converting offline algorithms
to real-time ones is not trivial because real-time algorithms must handle the rapid
change of the domain and the problems, while maintaining previous knowledge.

2.5 Solvers from GVGAI (Monte Carlo)

Many Monte Carlo Tree Search (MCTS) Browne et al (2012) submissions often out-
performed other alternatives, with even the given, sample MCTS algorithm ranking
3rd on the 2014 GVGAI competition.

Top performers included fast evolutionary MCTS and knowledge-based fast evo-
lutionary MCTS Perez et al (2014), which embedded the algorithm roll-outs within
evolution. The individuals of the evolutionary algorithm were weight vectors, used
to bias the roll-outs of MCTS. Every roll-out performed during the search evaluated
a single individual of the evolutionary algorithm, providing as fitness the reward
calculated at the end of the roll-out.

Also of note is MCTS with influence map Park and Kim (2015), the latter element
being a numerical representation of influence on the game map, helping find a road
to rewards over the horizon. The influence map essentially assigns a value to each
object in the game world, representing if it is ’good’ or ’bad’. The value is then
updated upon interaction with the object, eventually causing the player to focus on
rewarding interactions.

3 Method

Recall our discussion on playing a video game for the first time. Our goal herein
is to apply AI real-time learning techniques to develop controllers for video games
that mimic the ability to generalize from previous experience, and reduce learning
time as new levels present themselves.
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Our approach comprises two principle components working in parallel as the
game-playing agent encounters new levels:

1. Learning the heuristic function for evaluating the states’ potential for achieving
the different goals. The output of this component is a hyper-heuristic that re-
ceives a game state and returns a linear combination of different game goals,
representing the potential for achieving these goals.

2. A game controller that uses generated hyper-heuristics in order to pick the most
promising course of action. During its run the game controller passes encoun-
tered game states to the learning component. The latter learns the given states
and incorporates the extracted knowledge to the evolved hyper heuristic.

3.1 Heuristic templates

Many games’ goals can be generalized into the same principal goal, with minor
variations. The most straightforward example is goals that relate to distances in the
game, as in Pacman and Zelda, two seemingly different games Perez et al (2015). In
Pacman, the main goal is to clear the board, i.e., “eat” all the pills and power pills.
Bonus points are given for “eating” ghosts while under the effect of a power pill. In
Zelda, the goal is to collect the key, then exit the level. Here, killing enemies with
the sword rewards the player with bonus points.

The goals of collecting pills/keys in Pacman/Zelda, respectively, are computa-
tionally identical—we need to minimize the distance between the player and the
objects, represented as number of steps. Similarly, we have the goal of maintaining
a certain distance from either ghosts/enemies in Pacman/Zelda, respectively. The
mechanism of calculating the distance is identical, however, the conditions regard-
ing when to minimize or maximize it are different: in Pacman we wish to minimize
the distance if we are under the effect of a power pill, and maximize otherwise;
in Zelda we want to minimize distance if we can use our sword in the appropriate
direction, and maximize it otherwise, if we are short on time and need to exit the
level.

Heuristic templates are our method of encoding knowledge that is relevant to
most game domains, in a way that can be customized as the game runs. They can
be viewed as parameterized heuristics, where the parameters are the current state
and any number of additional integers representing: a) a specific object in the game
world; b) a type of an object in the game world; or c) a list (enum).

A complete list of our heuristic templates is given in Table 1.
Additional non-parameterized heuristics are given in Table 2.
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Table 1 Heuristic templates.

Id Name Parameters Description
1 Heuristic distance between ob-

ject types
Integer type 1, Integer type 2 Parametrized by two types of

objects. Values are taken from
a set of types the controller
encountered during the game.
Calculates the geometric mean
for each sprite type, and re-
turns the Manhattan distance
between the two means.

2 Count nearby NPCs Integer Manhattan distance Counts the number of NPCs
that are less than Manhattan
distance away from the player.

3 Score in K moves Integer k Game score if the controller
does nothing for k moves. Use-
ful for predicting how “safe” a
position is.

4 Distance from corner enum corner If there is a path between cor-
ner and the player, returns its
length. Otherwise, returns the
Manhattan distance between
the player and the corner.

5 Movable distance from im-
movable

Integer immovable Calculates the A* distances
between the selected immov-
able and all movable objects.

6 Heuristic distances Object reference, list objects Calculates the Manhattan dis-
tances between the given ref-
erence object and the list
of objects. The reference ob-
ject/Objects list can be any of
the ones exposed by the state.

3.2 Hyper-heuristics

Combining several heuristics to get a more accurate one is considered one of the
most difficult problems in contemporary heuristics research (Samadi et al, 2008;
Burke et al, 2010a).

This task typically involves solving two major sub-problems:

1. How to combine heuristics by arithmetic means, e.g., by summing their values
or taking the maximal value.

2. Finding exact conditions (i.e., logic functions) regarding when to apply each
heuristic, or combinations thereof—some heuristics may be more suitable than
others when dealing with specific state.

In order to accomplish the first task, we first need to generate heuristics from our
heuristic templates. To do that we differentiate between the different return values
of the templates. If the template returns a real number, the generated heuristic is
the returned value multiplied by a fixed weight, randomized during the heuristic
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Table 2 Non-parameterized heuristics.

Id Name Description
7 Facing NPC Equals 1 if an NPC is directly in front of the

player, -1 otherwise.
8 Avatar Resources Count The total number of resources the player

possesses.
9 Immovable Count The total number of immovable objects that

are not walls, in the game world.
10 NPC Count The total number of NPCs in the game

world.
11 Last Action is ’use’ Equals 1 if the last action successfully per-

formed by the player was ’use’. Can be
used to reward applying that action in games
where that is beneficial.

12 Touching Walls Count Counts the number of walls blocking the
player (0-3).

13-18 A* Distance A list of the distances—measured in num-
ber of states—between the player and one
of: NPCs, immovable objects, portals, re-
sources, movable objects. The distance is
calculated as follows: at the beginning of
each level, a graph is generated from the
world, with a node for each position the
player can stand on. Nodes are connected
if they are adjacent. Upon a request for a
distance between two nodes, a path is cal-
culated using weighted A* Pohl (1970) and
then cached for the duration of the level.

generation. If the returned value is a list of real numbers, we first have to perform one
of the following aggregating arithmetic: min, max, sum, multiplication, or division.
Similarly, we do the same for basic heuristics.

Our learning algorithm solves the problem of combining heuristics by quick eval-
uation, thereby ruling out unpromising hyper-heuristics. Finding the exact condi-
tion under which to apply each hyper-heuristic is solved by design—new hyper-
heuristics are evaluated specifically on game states the controller encountered re-
cently, and often states the controller will encounter shortly.

3.3 Learning hyper-heuristics through evolution

3.3.1 Individuals

Our individuals are hyper-heuristics. An individual is composed of a list of heuristics
derived from heuristic templates, basic heuristics, and basic observations. A hyper-
heuristic is a linear combination of these heuristics.
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An individual is represented as an abstract syntax tree (AST) Jones (2003) of a
Java class, which is compiled during evaluation.

3.3.2 Fitness function

As the real-time algorithm imposes fast hyper-heuristic evaluations, we expand
the given initial state to the depth of X and set the individual fitness to be:
h( f inal state)− h(initial state) where h is the individual. In order to return val-
ues in a timely manner X was chosen to be 70.

At each depth we choose the next action in the following manner: We preform a
3-step-look-ahead by applying all possible actions to the depth of three. We choose
the action that—on average—led to the highest heuristic value.

We used standard, Koza-style GP with the usual suspects: tournament selection
with group size k = 3; subtree crossover; and constant and subtree-grow mutation
operators.

3.4 GVGAI

As discussed in Section 1, the GVGAI competition proposes the challenge of creat-
ing controllers for a large range of stochastic real-time games, allowing the partic-
ipants to train on a set of games, while testing them on a different, undisclosed set
of games.

The competition imposes a single-thread limit, preventing us from participating
because we need multi-threading for our online learning. Instead, we use the frame-
work provided for the competition as a benchmark for our learning algorithm. We
note that while the element of the undisclosed games is removed, we do not perform
any sort of training on a subset of the games, or perform adjustments for specific
games; instead we focus on real-time learning of the scenarios presented to the con-
troller.

The GVGAI framework works by presenting the controller with a state that rep-
resents the fully observable world. The controller then has 40 milliseconds to return
a selected action. Along with the state a forward model is provided in the form of
a search tree, where each node represents a state, and each edge an action. Being
of stochastic nature, performing action A from state S may yield different results
whenever we attempt it.

3.5 Game controller

As discussed above, under the GVGAI framework our controller has 40ms to re-
turn an action for a given state. We first handle communication with the learning
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component: We save the current state for future GP generations, and take the best
hyper-heuristic learned so far for our current evaluation.

We then use a 3-step-lookahead search algorithm that is almost identical to the
one used during fitness calculation: expand the search tree to depth 3 and calculate
the highest heuristic score reachable for each possible move. However, unlike dur-
ing fitness calculation, we repeat this step, taking the average heuristic score, thus
avoiding moves that are not likely to constantly lead to desirable moves.

4 And the Winner is . . .

Though a comparison with the 2014 entries would be somewhat of an “apples and
oranges” case, given our intentional deviation from the strict GVGAI framework,
we still note—with some pride—that we would have ranked number 3 of 19.

For testing, we used the 3 game sets used in the GVGAI competition in CIG
2014—which are now fully available as training sets. GVGAI used a formula-one
like scoring system, awarding scores for the best performing contenders for each
game. However, since we’re mostly interested in the generality of our algorithm,
and not in individual game performance, we compare it using percent of games
won.

In the CIG 2014 GVGAI competition our algorithm would have ranked 3rd out
of 19, with 36.3% of games won. If we increase the time the controller has before it
must return an action from 40 to 80 milliseconds this percentage increases to 40.09%
games won, leading us to believe our method is scalable, and would perform better
with more resources.

Though the road ahead still has many paths to follow, we believe we have begun
meeting our challenge: using genetic programming to evolve hyper heuristic-based
general players through real-time, online learning.
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