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Abstract  

Neural Networks consist of simple elements, capable of 
summation and tlircsholding. We define a more general 
element - the "Task Oriented Neuron" or Teuron, that 
can compute higher order functions. We further define 
Teuron Networks, and show two such networks that may 
be used as content addressable memories and as pattern 
classifiers. 

The first network is based on the Godel encoding 
schen~e. It uses this scheme in order to memorize se- 
quences of numbers. These sequences are then stored 
analogically. The second network uses binary encoding 
, i.e. a binary sequence is translated into its decimal 
equivalent and then stored analogically. 

We shall motivate the use of such networks by dis- 
cussing the feasability of their implementation. Our con- 
clusion is that they may be implemented in such a way so 
as to reduce cost due to reduction in number of elements 
coupled with constancy of link values (synaptic weights). 

1 Introduction 
Aritificial Neural Networks have been studied for many 
years with a two-fold goal in mind : achieving human- 
like performance in areas where standard computers fail 
or perform poorly (i.e. - image and speech recognition) 
and understanding the human mind better. An artifi- 
cial neural network is defined as an array of simple com- 
putational elements (often termed "neuronsn) intercon- 
nected by links (often termed "synapses") operating in 
parallel. Artificial neural net models are specified by the 
net topology, node (neuron) characteristics and training 
or learning rules (usualy associated with the synapses) 
[LIP87]. Nets are considered to have a great many num- 
ber of neurons. For example, the human brain, which is 
the largest known biological neural network, is presumed 
to have 10" - lo'* neurons. 

The massive parallelism achieved by artificial neural 
networks is oiily one of the benefits they present. Due 
to the large number of nodes ,each with primarily local 
connections ,these nets are usually much more robust or 
fault tolerant than sequential von Neumann computers. 
Another major benefit is the fact that a neural network 
adapts or learus. This is extremely important in areas in- 
volving unknown a-priori environments or dynamic envi- 
ronments (e.g. - new words encountered in speech rewg- 
nition). Neural networks also make weaker assumptions 
on thc environment. 

Although it is commonly presumed that biological 
neural nets are composed of "simple" elements we cannot 
be sure at all of this. The biological neuron has been ex- 
plored with intense vigor and there exists today quite an 
impressive body of knowledge concerning this elemental 
unit. We cannot, however, using the present knowledge, 
be certain that the biological neuron is indeed simple. 

In contrast to biological neural nets, artificial neural 
nets have been defined using extremely simple elements 
which really are simple in a mathematical sense. Most 
artificial neurons sum N weighted inputs and pass the 
result through a non-linearity . This, however, is not 
necessarily the appropriate approach. We can assume 
that biological neurons actually carry out higher order 
functions of their inputs , and design networks consisting 
of these elements (see [GGM88] and [KOC87] for exam- 
ples). Even if the end product (i.e. the network) does not 
resemble a biological network, it is still possible to  have 
some computational benefits by using the basic organiza- 
tion of a neural network, with more powerfull elements. 
In this work we present artificial elements that are most 
generaly defined, and denote them Teurons. 

The analog teuron is defined as follows: 

X ( t )  = (z1(t), . . . , zn(t)) is the input vector at time 
t .  

W ( t )  = (w l ( t ) ,  . . . , wk(t)) is a dynamic coefficient 
vector, whose value is given at time t .  

O(t)  is the output of the teuron at time t defined 
as- 
O(t + 1) = f l l f Z [  ...... [ f I ( X ( t ) ,  W(t))l .... 11 
where fi, fi, . . . , fi are arbitrary continuous or non- 
continuous functions. 

This is a natural expansion of the formal neuron, 
which is easily accomodated by our model. The formal 
neuron is defined as: 

X ( t )  = (xl(t), . . . , zn ( t ) )  is the input vector a t  time 
t .  

W ( t )  = (wl(t), . . . ,wk( t ) )  is a dynamic coefficient 
vector, generally referred to as synaptic weights. 

W ( t )  is usually represented as : ( ~ 1 1 ,  W I Z , .  . . , wl,,,.. . , I I  

fz = CIJ WIJXj 

fl is some non-linear function, e.g. a hard-limiter. 

The digztd teuron shall be defined most generally ay 
a Turing machine (actually a Teuring machine...). 
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In the following we shall introduce two teuron net- 
works which may be used as content addressable 
memories and pattern classifiers. The first network 
is based on the Godel encoding and the second net- 
work is based on binary encoding. 

2 The Godel encoding 

We shall use Godel's method of coding a sequelice 
of numbers into a single number so that the num- 
ber can be decoded back into the original sequence 
[GOD31]. This method is described in [FIF87]. 
Suppose we have a sequence of non-zero integers: 
01, . . . , a,,. We can form the product: N = 2"'3"25"3. . . 
, where 2 ,3 ,5 , .  . . ,pn are the first n prime numbers. 
N is the code number of the original sequence and 
since it was formed using primes raised to a power, 
we can uniquely determine the power of each prime. 

The sequence, coded as the number N, may be re- 
covered using [hIOS52]: 

aj = W(p, ,  N )  - 1 

where W ( z ,  y) is the least integer z such that y is 
not divisible by x2. 

uses positive integers). The number of outputs is 
m. Each teuron represents one sequence. Thus , in 
order to memorize m sequences we need m teurons. 
The network operates according to the following 
algorithm : 

1. Initialize weights and thresholds: 

w,, = p , , l  < i < n , l  5 j < m  

where p;  is the ith prime factor, and w,j is the 
weight from input node i to output node j .  

Q j  = n w ? , l <  j < m 

where ( x ~ j , .  . . ,z,,j) is the j t h  sequence we 
wish the network to memorize. 

;=I 

2. Sequence recognition : 

(a) An arbitrary sequence 11,. . . ,I, is given 

(b) Each teuron computes : 
to the network. 

n 

o j = n w ;  
i=l 

yj = F ( 0 j  - Oj) 

3 The Power Teuron 
where : 

The power teuron we shall use is of the analog kind. 
It has n inputs : zl,. . . , xn , n synaptic weights : 
q , , .  . . . , w,, ,d threshold 0, and an output y,. 
y, is given by: 

n 

0, = n w ;  
*=I 

yj = F(oJ - 'J) 

where F is some non-linearity. 
Thus, the power teuron multiplies powers instead of 
summing products (like the formal neuron [MCC43]). 
We shall now proceed to demonstrate the applica- 
tion of the power teuron in building content ad- 
dressable memories (CAM). 

4 
Teurons 

A simple CAM using Power 

The Godcl encoding may be used to compress an 
entire sequelice into a single number. Thus, mem- 
ory of a sequelice is reduced to memory of the sin- 
gle number. We can use this idea to build a simple 
CAM using the above encoding. The implementa- 
tion will be based upon the analog teuron intro- 
duced in the previous section : the power teuron. 
The basic topology of the network is given in figure 
1. 

There are n binary inputs to the network. Their 
values may be either " 1" or "2" (the Godel encoding 

qz)={; x=o otherwise 

As the coding is unique only one teuron will output 
1 - if the network has memorized this sequence. 
Otherwise, all the teurons will output 0. 

This network ,although simple ,has some advan- 
tages when compared to other types of neural net- 
work CAMS. It is feed forward ,as opposed to 
many CAMS which are iterative. Such networks 
may iterate many times until convergence, which is 
not always guaranteed. Our network does not iter- 
ate at all (thus supplying an answer much faster) 
and "convergence" is always guaranteed. It also re- 
quires exactly one teuron per memorized sequence. 
Thus , it is minimal in the sense that any network 
with less than m elements will not be completely 
parallel. The fact that we have exactly one teuron 
per sequence may seem to affect the network's fault 
tolerance (teuron destruction means memory loss). 
However, this is not a difficult issue to resolve. We 
shall discuss this point further ahead. 

x, ..................................... 
Figure 1: topology of a simple powcr teuron meniory. 
Teurons depicted by 0 
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5 A pattern classifier using 
Godel encoding 

We shall now present an enhancement to the above 
scheme, namely a network that will be able to clas- 
sify n bit inputs into m distinct classes. The nel- 
work will use Godel encoding to "remember" the 
exemplar for each class. Each input will be com- 
pared to each ol the m exemplars using Euclidian 
distance (which is actually the hamming distance 
in binary inputs). The class chosen will be that 
with the minimal hamming distance between the 
exemplar and the input pattern. The topolgy of 
the network is given in figure 2. 

The network works according to the following algo- 
rithm : 

Initialize weights and thresholds: wiJ = pi for 
l < i < n , l < j < m  
where pi is the itli prime factor and toil is the 
weight from input node i to output node j. 

where (xlj,. .. , xnj) is the exemplar of class j. 

Present an input pattern to the network : zl,. .. , x, 

Compute outputs (i.e. compute yi) : 

" 

where x,] = R(O,/w,, t w,]) 
R(z/y) is the remainder of x divided by y. 

2 x=o 
1 otherwise 

4. Pick min teurons (described in the following 
section) compute the minimum yJ. Self mi11 

teurons (also described) may also be used. 

The network iiiitializes the weights to prime num- 
bers and the thresholds to the Godel number rep- 
resenting the appropriate exemplar. The network 
then compares the the input pattern to each ex- 
emplar by decomposing the exemplar back into the 
original bits. The results of the comparisons (111 

comparisons for m exemplars) are then passed through 
one or more self-min teurons. 
A self-mill teuron receives all the values of the other 
teurons (in our  case all the other hamming dis- 
tances) and outputs 1 only if it is the minimum 
otherwise it will output 0. 
We may implmeut this teuron as a digital teuron. 
As such ,it will use extremely simple circuits known 
as - comparators. Such circuits arc used in ALUs 
and in associative memories. Comparators may 
work in parallel, thus achieving high performance. 
This teuron may also be implemented as an analog 
teurou i n  the lollowing manner: suppose it receives 
M - 1 valucs . zl,.  . .  , zMM-l and its own value is 

I, (standing for zde/,). The teuron computes the 
following function: 

f = [(El - 2,) + (z2 . 2,) + ... + ( I M - 1  . z,)] 

[IZI - GI -t 122 - 2,l + + 12%-1 - z,l] - ..... 
We then pass the result through the following non- 
linear function g : 

1 x=o 
dx) = { 0 250 

( note : f 5 0). 

A pick-min teuron receives M values , selects the 
minimum one and triggers the appropriate output. 
A digital teuron implementing the pick-min func- 
tion will use comparators working in parallel like 
the ones we used in the self-min digital teuron. 
An analog implementation will simply compute the 
function g o f presented in the self-min scheme for 
each input zi , and then select the z; which pro- 
duces an answer of "1". 
We shall now present one more scheme used for 
CAM and pattern classification. A discussion of 
both schemes will then follow. 

I" I 

Y 

I 

x, ..................................... 

Figure 2: topology of a pattern classifier 

6 Using binary encoding in 
CAM and pattern classification 

While the Godel encoding is general and may be 
used for any sequence of numbers there is a simpler 
encoding we may use for binary numbers : binary 
encoding. Thus, we treat each n bit input pattern 
as an n bit binary number. Obviously , each num- 
ber represents exactly one pattern. 
This ericodirig is much simpler to obtain and it may 
be used instead of the Godel encoding in the above 
schemes for CAM and pattern classification. We 
shall now present the algorithm for pattern classi- 
fication using binary encoding. The algorithm for 
the CAM network may be obtained in a straight- 
forward manner. The topologies are exactly those 
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presented above. The bit values are "0" and "1". 
The algorithm for pattern classification using bi- 
nary encoding : 

1. lnilialize weights and thresholds : 

n 

oj = 1 wuvxij 

where (zl j , .  . . ,zn,) is the exemplar of class j. 
2. Present an input pattern to the network : 51,. . . , zn 

3. Compute outputs (i.e. compute yi),: 

1 I 2 0  
'(l) = { 0 otherwise 

4. Pick min teuron (or teurons) compute the nlin- 
imum yJ. Self rnin teurons may also be used. 

As we can see the teuron computing the binary en- 
coding is quite simple using only sums and prod- 
ucts. The result of phase 3 which is the hamming 
distance of each exemplar from the input pattern 
is passed on to one or more pick-min (or self min) 
teurons. Thus, the class with minimum hamming 
distance is chosen. We shall now discuss the net- 
works presented in the paper. 

7 Discussion 

The networks presented above have a few advan- 
tages over similar types of networks used for mem- 
ory and pattern classification. 

The networks are essentially feed forward and thus 
convergence is always guaranteed. Networks such 
as the Hamming net [LIP871 [LGM87] and the Hop- 
field net [HOP821 are iterative and convergence is 
not always guaranteed. No iterations also means, 
in this case, faster convergence. It should be noted 
that there are other neural network models which 
are feed forward and have these advantages. Such 
models include the Multi-layer perceptron [LIP871 
[MIPGS] used for pattern classification and Koho- 
nen's self organizing feature maps used as associa- 
tive memories [LIP871 [KOH84]. 
A very important point when implementation is- 
sues are concerned, lies in the fact that the weights 
are essentially constant (primes in the Godel net- 
work and powers of 2 in the binary encoding net- 
work). Thus when implrnenting such a network we 

can use simple electronic elements which may be 
hardwired and non-changable. For example if we 
use resistors for the synapses then they may be con- 
stant resistors and not varying resistors. This fact 
may decrease the cost of such a network. Instead 
of n varying weights per neuron in neural networks 
we have one varying threshold. 
Comparing the two networks amongst themselves 
we note that the Godel network may reach extremely 
large thresholds very fast. This is due to the fact 
that we multiply primes and thus the numbers "be- 
have" in a manner similar to the function n!. The 
binary encoding network solves this problem by us- 
ing an encoding which, although suitable for binary 
numbers only, is much more conservative in the val- 
ues of thresholds. 

The Godel network's main advantage lies in the fact 
that the scheme is general. We may use continuous 
input values (altough this would require a stronger 
teuron because the one we presented relied on the 
fact that there are only two input values possible, 
when decomposing the Godel number). 
If we view the input as a binary number then the 
GGdel encoding may produce a code number which 
is larger, in some cases, than the original series (e.g. 
the input "1,1,1" which has a value of 7 produces 
a Godel number of 2 * 3 * 5 = 30. This is not always 
the case. Consider , for example, a picture whose 
elements are 8 bit pixels - that is pixels with values 
in the range [0,255]. Thus ,the elements are actu- 
ally digits in base 256. Suppose, further ,that the 
intensily histogram of the image is bimodal, with a 
small range of intensity values as the badground. 
Then , a 2 pixel sub image might have a value of 
,say ,"2,1" which translates to 2 * 256 + 1 = 513 
with a Godel code of 2' * 3 = 12 ). We must re- 
member, however, that we have moved to an ana- 
log representation. Thus, theoretically a t  least, we 
have no limitations on the size of the number to 
be stored. The Codel encoding is also unique (i.e. 
each sequence is represented by one number which 
represents that sequence only) whereas other codes 
are not neccassarily so. Another point to note is 
the fact that the "size" of a number is something 
which can easily be tailored according to need. In 
our case we could , as the Godel number is an in- 
teger, map this iiuniber into the range [O,1]. 

The Godel code also has the advantage of being 
"sparse", in the sense that code numbers are set 
apart from each other. This may help in situatioiis 
of "drifting" of the memory. Thus, for example, if 
we take the sequences "l,l,l" and "1,1,2" (where 
"1" ,"2" actually represent "0" and "1" respectiv- 
ley) then their binary values are 0 and 1 while their 
Godel encoding is 30 (2*3*5) and 150 (2 * 3 * 5'). 
Thus , if the element memorizing these numbers 
"drifts" by one unit then in the binary encoding 
case we have a completely different number. In the 
Codel case we are still in the "safe" range. In view 
of the arguincrits presented in this paragraph we 
maintain that our method does indeed have merit. 

436 

Authorized licensed use limited to: Ben-Gurion University of the Negev. Downloaded on December 31,2023 at 13:16:33 UTC from IEEE Xplore.  Restrictions apply. 



Current technology has been able to deal with ex- 
tensive analog elements. Dynamic RAMS of four 
Mbits exist which actually consist of four million 
analog elements. Although each element uses es- 
sentially two voltage levels ("0" and "1" levels), it 
is capable of many more. CCD cameras exist which 
employ an array of 1000 x 1000 analog elements, 
each one capable of translating light energy into 
one of a 1000 levels of electrical energy. Thus we 
have one million analog elements capable of 1000 
energy levels. This is typical of todays analog ele- 
ments - their voltage resolution is in the range of 
milli-volts. 

Using , for example, elements capable of 1024 levels 
we achieve a reduction of 10 to 1 in the number of 
elements required. A 10 bit number needs one such 
element instead of 10 bit elements. A one million 
array of 1024 level elements may be used to store 
10000 100-digit numbers of base 1024. Thus, we 
may store 10000 numbers of up to 1024"' or 2'"'O. 

It should be noted that analog elements have prob- 
lems (which also hinder many neural network iin- 
plementations). They are less stable than digi- 
tal elements and need constant refresh (e.g. in 
the CCD camera the image must be constantly re- 
freshed). Also, the industry seems to have moved 
in the digital direction , which is easier to handle. 
We argue that analog implementations present in- 
triuging possibilities. Future research may come up 
with analog elements which are easy to handle, and 
which may be miniaturized to such an extent that 
valuable chips may be built. 

The fact that our network is confined to a limited 
number of memorized sequences seems at first sight 
as a drawback, comparing to other types of neural 
networks. However, this is not the case: the same 
holds for any type of Hopfield like network - only 
that the limiting factor is around 0.15n, where n is 
the size of the network in the original model, or a 
somewhat higher liniil in related models. Another 
point related to this issue is the degree of fault tol- 
erance required from such a network. This issue 
has often been cited as one of the main advantages 
of neural networks. We suggest that much less em- 
phasis should be put on the issue of fault tolerance 
in such network. . While biological neural nets use 
unreliable elements (neurons and synapses) which 
may be destroyed (thousands of neurons die each 
day in an adult humau), artifical nets use extremely 
reliable electronic or optic elements. Thus , while 
trying to gain from understanding the principles of 
biological neural computations, it might not be nec- 
essary to simulate its redundancy, as well as other 
non (coinputationally) functional details. 
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