INTERNET WATCH

The Challenge
of Tamperproof

Internet

Computing

Edmund M.A. Ronald, Ecole Polytechnique, Paris
Moshe Sipper, Swiss Federal Institute of Technology, Lausanne

he Internet is the largest distrib-

uted computer ever built—at

least, in theory. Writing on the

actual role of this worldwide

network of tens of millions of
computers, Terry Winograd, director of
the Stanford Human-Computer Interac-
tion Consortium, observed, “the com-
puter is not a machine whose main pur-
pose is to get a computing task done.
The computer ... is a machine that pro-
vides new ways for people to commu-
nicate with other people.” (See “The
Design of Interaction,” Beyond Calcu-
lation: The Next Fifty Years of Com-
puting, Peter J. Denning and Robert M.
Metcalfe, eds., Springer-Verlag, New
York, 1997, pp. 149-161.)

The prevailing tendency to exploit
computation to achieve better commu-
nication is swiftly redefining the global
information ecology by making every
published item instantly visible in any
part of the world. However, the inverse
trend—harnessing global communica-
tion to achieve more powerful computa-
tion—is also developing before our eyes.

CONVERGING ON THE INTERPUTER
Researchers have proposed various
schemes to transform the Internet into
the “Interputer.” Several companies are
creating applications, tools, and proto-
cols to harvest cycles from idling CPUs

Computer

around the world, while compensating
their obviously industrious users with
offline and online gifts (David Pescovitz,

“Power to the PC: Distributed Com-
puting over the Internet Goes Com-
mercial,” Scientific American, Apr. 2000,
pp. 15-16). Pescovitz notes that the
largest distributed computation in his-
tory is SETI@home, a project that aims
to discover life on other planets. More
than 1.7 million volunteers have partic-
ipated in this project thus far.

Although the potential benefits of a
universally accessible Interputer are
undoubtedly extensive, a fundamental
problem lurks backstage: How can you
guarantee the accuracy of the results you
receive from a remote computing node,
which has just purportedly run the pro-
gram you sent it?

Suppose Arnold writes program P and
sends it to Bernice over the Internet, along
with input I. Bernice runs program P on

supplied input I and sends back to Arnold
output O, which she claims to be the
computation’s result. How can Arnold be
sure that O is indeed P’s output runon 1?
That is, how can we achieve tamperproof
Internet computing, or ““cyberputing?”’

TWO KEY QUESTIONS

The problem of checking that O = P(l)
is undecidable in its most general form—
as SO many questions concerning pro-
gram dynamics tend to be. However, if
we assume Bernice returns an answer
after a known, finite amount of time—
thus placing an upper limit on the num-
ber of computational steps—the problem
becomes theoretically possible to solve
(that is, the problem is formally decid-
able—though not necessarily tractable).
Obviously, we’d like a shorter verifica-
tion procedure than Arnold’s running P
on | and comparing his output with
Bernice’s. Therefore, we aim for an effi-
cient tool or procedure that would assure
Arnold of O’s veracity.

Internet computing—harnessing
global communication to
increase computational power—
is now possible. But will it ever
truly be secure?

A few questions regarding the tam-
perproof-computing scenario come to
mind:

e |IsBernice malicious? Did she intend
to send Arnold the erroneous out-
put, or was this just an accident?

* Does Bernice have a standard com-
puter, or does she use special, tam-
per-resistant hardware?

If Bernice is malicious, the second ques-
tion may be irrelevant. As Ross Anderson
and Markus Kuhn note, ““trusting tamper
resistance is problematic; smartcards are
broken routinely, and even a device that
was described by a government signals
agency as ‘the most secure processor gen-
erally available’ turns out to be vulnera-
ble. Designers of secure systems should

consider the consequences with care”
(“Tamper Resistance—A Cautionary
Note,” Proc. 2nd Usenix Workshop Elec-
tronic Commerce, Usenix Assoc., Berke-
ley, Calif., 1996, pp. 1-11).

CRYPTOGRAPHY TO THE RESCUE

Cryptographic techniques can help.
A public-key scheme, for example, can
render tamperproof a simple one-line pro-
gram containing a two-operand mathe-
matical operation such as addition; in this
case, P=a+band | =(a, b). Arnold and
Bernice first agree on the public-key
scheme they will use. Arnold then sends
Bernice a lookup table containing all pos-
sible combinations of a and b, along with
their resulting sums, ¢ = a + b. Each row
comprises a pair (a, b) as the index, along
with a triplet (a, b, ¢) containing the orig-
inal input and result c. Table 1 shows this
16-bit addition table.

Arnold’s public key, E,, encrypts both
P and I, cloaking them while still pro-
viding an index into the lookup table. He
then sends these to Bernice, who looks
up the answer in the table and sends
Arnold the output O = E,(a, b, ¢). Arnold
can immediately decrypt O using his pri-
vate key, D,. The encrypted lookup table
gives Bernice access to only an obfus-
cated version of ¢ and prevents her from
tampering with computations. When
Arnold receives a message containing a,
b, and c, he can determine whether the
result line belongs in the lookup table. To
foil attacks, Arnold can randomize and
modify the lookup table as often as he
pleases.

WELL, NOT EXACTLY...

Although this simple scheme demon-
strates a possible use of cryptographic
techniques in tamperproof Internet com-
puting, it is neither all-encompassing nor
necessarily practical. How do you make
multioperand operations (a+b +c+d +
e) tamperproof? How do you protect
program constructs such as assignments
and conditional jJumps? And, probably
the most difficult, how do you handle
loops and unconditional jumps (the con-
structs ultimately responsible for render-
ing a language universal)? Some form of
cumulative encrypted checksumming,
providing the final output O with an

Table 1. A 16-bit lookup table listing
indexing pairs (a, b) and triplets (a, b,
c), where c is the result of adding inputs
a and b. Public key E, encrypts both
entries. (The comma operator used in
the encrypted entries is simple textual
concatenation.)

Indexing
pair,
Index (a, b) c=atbh
1 EA(alv bl) EA(alv bl! cl)

2 Ea(az b2) Ea(8z, bz C2)

2% Ea(@ze Dy) Ea(Bz2, Dy, Co)

authenticity certificate, might be possi-
ble, but remains a challenge.

Is reliable tamperproof Internet com-
puting truly possible? The problem is
doubtless harder than standard cryptog-
raphy because it involves dynamic pro-
grams rather than static data. Of course,
the whole notion of cryptography is
rather slippery, anyway. As Terry Ritter
said, “Despite the frequent cryptography
articles in IEEE journals, cryptography is
an art, not an engineering discipline: The
property we seek to produce—strength
against unknown attack—is not measur-
able, and so it is literally out of control.”
(See “Cryptography: Is Staying with the

Herd Really Best?”” Computer, Aug.
1999, pp. 94-95.)

sive—the challenge of tamperproof

Internet computing is still worth
facing. And if, as Prince Otto von
Bismarck declared, “politics is the art of
the possible,” then perhaps it is also pos-
sible, through the art of engineering, to
render the nascent Interputer more
secure.

T hough elusive—and possibly illu-

Edmund M.A. Ronald is an affiliate
researcher in the Center for Applied
Mathematics at Ecole Polytechnique,
Paris. He is currently also a visiting
researcher at the Swiss Federal Insti-
tute of Technology, Lausanne, Switzer-
land. Contact him at eronald@cmapx.
polytechnique.fr.

Moshe Sipper is a senior researcher at the
Swiss Federal Institute of Technol-
ogy, Lausanne. Contact him at moshe.
sipper@epfl.ch.

Editor: Ron Vetter, University of North
Carolina at Wilmington, Department of
Computer Science, 601 South College Rd.,
Wilmington, NC 28403-3297; voice +1 910
962 7192, fax +1 910 962 7457; vetterr@
uncwil.edu

Nine good reasons why close to
100,000 computing professionals
join the IEEE Computer Society

Transactions on
= Computers

= Knowledge and Data Engineering

= Multimedia
= Networking

m Parallel and Distributed Systems

m Pattern Analysis and Machine Intelligence

m Software Engineering

m Very Large Scale Integration Systems

m Visualization and
Computer Graphics

IEEE .3 ()

COMPUTER
SOCIETY

computer.org/publications/

