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Abstract

Parallel evolutionary algorithms, over the past few years, have proven empirically worth-
while, but there seems to be a lack of understanding of their workings. In this paper we
concentrate on cellular (fine-grained) models, our objectives being: (1) to introduce a suite
of statistical measures, both at the genotypic and phenotypic levels, which are useful for
analyzing the workings of cellular evolutionary algorithms; and (2) to demonstrate the
application and utility of these measures on a specific example—the cellular programming
evolutionary algorithm. The latter is used to evolve solutions to three distinct (hard)
problems in the cellular-automata domain: density, synchronization, and random number
generation. Applying our statistical measures, we are able to identify a number of trends
common to all three problems (which may represent intrinsic properties of the algorithm
itself), as well as a host of problem-specific features. We find that the evolutionary algo-
rithm tends to undergo a number of phases which we are able to quantitatively delimit.
The results obtained lead us to believe that the measures presented herein may prove useful
in the general case of analyzing fine-grained evolutionary algorithms.
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1 Introduction

The field of evolutionary computation encompasses a wide range of methodologies, in-
cluding genetic algorithms, evolution strategies, evolutionary programming, and genetic
programming. Central to all these approaches is the notion of solving problems by evolving
an initially random population of candidate solutions, through the application of operators
inspired by natural genetics and natural selection, such that “fitter” (i.c., better) solutions
emerge. Evolutionary algorithms have been gaining ubiquity over the past decade and
are commonly used in industry and academia. They have been successfully applied to nu-
merous problems from different domains including optimization, automatic programming,
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machine learning, economics, immune systems, ecology, population genetics, and social
systems.

One of the basic aspects of evolutionary algorithms is their inherent parallelism: the
existence of a population implies that there are several individuals evolving in parallel.
This has not escaped practitioners in the field, who have explored the issue of parallel
evolutionary algorithms. One can cite two basic motivations underlying these parallelization
efforts. First, there is the wish to reduce the necessary run time, thus expediting the
emergence of a solution to the problem at hand. A second motivation lies in the algorithmic
benefits resulting from a parallel implementation that echoes evolution in nature—the field’s
fundamental inspiration.

A basic tenet of parallel evolutionary algorithms is that the population has a spatial
structure. A number of models based on this observation have been proposed, the two most
important being the island model and the grid model. The coarse-grained island model
features geographically separated subpopulations of relatively large size. Subpopulations
exchange information by having some individuals migrate from one subpopulation to an-
other with a given frequency and according to various migrational patterns (see Figure 1a).
This can work to offset premature convergence by periodically re-injecting diversity into
otherwise converging subpopulations. In the fine-grained grid model individuals are placed
on a toroidal d-dimensional grid (where d = 1,2, 3 is used in practice), one individual per
grid location. This approach is also known as cellular (Whitley, 1993; Tomassini, 1993 )(see
Figure 1b). Fitness evaluation is done simultaneously for all individuals with genetic op-
erators taking place locally within a small neighborhood. From an implementation point
of view, coarse-grained island models, where the ratio of computation to communication
is high, are more adapted to multiprocessor systems or workstation clusters. Fine-grained
cellular models are better suited for massively parallel machines or specialized hardware.
Hybrid models are also possible, e.g., one might consider an island model in which each
island is structured as a grid of locally interacting individuals. For recent reviews of parallel
evolutionary algorithms the reader is referred to Cantd-Paz (1995) and Tettamanzi and
“Tomassini (1998).

(b)

Figure 1: The two basic models of parallel evolutionary algorithms: (a) the coarse-grained
island model, and (b) the fine-grained grid (or cellular) model.

Though such parallel models have empirically proven worthwhile (Cohoon etal., 1987;
Starkweather et al., 1991; Loraschi et al., 1995; Manderick and Spiessens, 1989; Tomassini,
1993; QOussaidene et al., 1997; Andre and Koza, 1996), there lacks a better understanding
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of their workings. Gaining insight into the mechanisms of parallel evolutionary algorithms
calls for the introduction of statistical measures of analysis. This is the underlying motivation
of our paper. Specifically, concentrating on cellular models, our objectives are: (1) to
introduce several statistical measures of interest, both at the genotypic and phenotypic levels
that are useful for analyzing the workings of fine-grained parallel evolutionary algorithms;
and (2) to demonstrate the application and utility of these measures on a specific example,
that of the cellular programming evolutionary algorithm (Sipper, 1997a). Among the few
theoretical works carried out to date, one can cite Mihlenbein (1991), Canti-Paz and
Goldberg (1997), and Rudolph and Sprave (1995). The latter treated a special case of
fine-grained cellular algorithms, studying its convergence properties. However, they did
not present statistical measures as done herein.

We begin Section 2 with a presentation of basic formal definitions. Section 3 intro-
duces the various statistical measures used in the analysis of cellular evolutionary algorithms.
Section 4 describes cellular programming, our choice of evolutionary algorithm for demon-
strating the viability and applicability of our approach. In Section 5 we apply the statistics
of Section 3 to analyze the cellular programming algorithm when used to evolve solutions
to three different problems: density, synchronization, and random number generation. We
conclude in Section 6.

2 Basic Definitions and Notation

We now formally define the basic elements used in this paper (a summary is provided
in Table 1). A population is a collection of individuals, each represented by a genotype.
A genotype is not necessarily unique—it may occur several times in the population. In
addition, if the population has a topology, the spatial distribution of the genotypes is of
interest. Let n be the number of individuals in the system. Let R;, 1 < 4 < n be the
genome of the ith individual. Let I’ be the space of genotypes and G(I') be the space of
all possible populations. Let f(y) be the fitness of an individual having genotype v € T.
When the cells are arranged in a row, as in the examples in Section 4, a population can be
defined as a vector of n genotypes x = (Ry,...,R,). We have G(I') = T, provided the
row of cells is not folded into a circle by connecting the extremity cells. For example, with
a three-bit genotype, the space of genotypes I' is: {000, 001, 010, ..., 111}; for a population
of size n = 2, G(T') is: I'? = {{000, 000}, {000,001},..., {111,111}}.

For all populations € G(I'), an occupancy function n,:T' — N is defined, such that,
for all v € T, n; () is the number of individuals in « sharing the same genotype v, i.e., the
occupancy number of v in z. The size of population z, ||z||, is defined as |x|| = > er Mz (7)-

We can now define a share function ¢,: I' — [0, 1] giving the fraction ¢, () of individ-
uals in z that have genotype v, i.e., ¢, () = n.(v)/|l=|.

Consider the probability space (T, 2", p1), where 2' is the algebra of the parts of T
and y is any probability measure on I'. Let us denote by £ the probability of generating a
population 2 € G(I') by extracting n genotypes from I according to measure y. It can be
shown that it is sufficient to know either of the two measures— (over the genotypes) or ji
(over the populations) in order to reconstruct the other.

The fitness function establishes a morphism from genotypes into real numbers. If
genotypes are distributed over T' according to a given probability measure y, then their
fitness will be distributed over the reals according to a probability measure ¢ obtained from
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Table 1: Nomenclature.

r Space of genotypes
¥ Genotype in T’
f(v)  TFitess of genotype 7y
G(I')  Space of populations
7] Probability measure over I'
it Probability measure over G(I')
n Population size
t Generation
z Population in G(T')
ngz(v)  Occupancy number of genotype v in population z
g=(v)  Share of genotype -y in population x
P Probability measure over the trajectories
) Probability function over fitness
R; Genotype of ith individual in the population
X (Random) population at tth generation
Q Space of all possible evolutionary trajectories
w Evolutionary trajectory

p by applying the same morphism. This can be summarized by the following:

r 4 R
! ) 1

Iz ¢

The probability ¢(v) of a given fitness value v € [0, +00) is defined as the probability that
an individual extracted from I" according to measure g has fitness v (or, if we think of fitness
values as a continuous space, the probability density of fitness v). For all v € [0, +00),

6(v) = p(f~(v), where f1(v) = {y € T': f(3) = v}.

An evolutionary algorithm can be regarded as a time-discrete stochastic process

{X¢(w)h=0,1,2,...s 2)

having the probability space (Q, F,P) as its base space, (G(I'),25(1)) as its state space, and
the natural numbers as the set of times, called generations. € might be thought of as the set
of all the evolutionary trajectories, F is a g-algebra on §, and P is a probability measure
over F.

The transition function of the evolutionary process, in turn based on the definition of
the genetic operators, defines a sequence of probability measures over the generations.

Let ji; denote the probability measure on the state space at time ¢; for all populations
xz € G(T),
ji(r) = P{w e Q: X (w) =z} 3)

In the same way, let u; denote the probability measure on space (I',2") at time ¢; for all
yel,
p(v) = Pl = ~|r € Xy(w)] S

Similarly, we define the sequence of probability functions ¢(-) as follows: for all
vE|[0,+c0)andt € N,
ou(v) = pa(f1(v)) (5)
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3 Statistical Measures for Cellular Evolutionary Algorithms

In this section we shall introduce several statistics pertaining to cellular evolutionary algo-
rithms, which can be divided into two classes: genotypic statistics, which embody aspects
related to the genotypes of individuals in a population; and phenotypic statistics, which
concern properties of individual performance (fitness) for the problem at hand. Table 2
provides a summary of our statistics.

Table 2: Summary of statistics introduced in this section.

Notation Formula Explanation
e (7) Occupancy number of vy in population z
g () ng (7)/ ||zl Share of v in population z
v(x) Zr:l%lje‘!\z\(ri(l[ﬁ#laj] Frequency of transitions in population =
i=1
H{z) > ~er z(7)log q,—%*—) Entropy of population z
D(z) 12 er (M1 =gz (V) Genotypic diversity of population z
El¢,] Performance of population x
o?(x) Var[¢.] Phenotypic diversity of population x
2
P2 () Ly 1= %‘% Ruggedness of population z

3.1 Genotypic Statistics

One important class of statistics consists of various genotypic diversity indices (within the
population) whose definitions are based on the occupancy and share functions delineated
below.

Occupancy and Share Functions

At any time ¢ € N, for all v € T, ny, () is a discrete random variable with binomial
distribution
n

Pl =K = (|

)Nt('Y)k[l — (] (6)

/

is perhaps more interesting, because it is an estimator of the probability measure y;(7); its
mean and variance can be calculated from those of n.y, (), yielding

thus, Elnx, (v)] = np(y) and Var[nx, (v)] = npe(7)[1 = pe(7)]. The share function g, (7)
; 1 (V)1 — g

Elax, (0] = () and  Varfax, (7)) = 1010 o
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Structure

Statistics in this category measure properties of the population structure, that is, how
individuals are spatially distributed. Obviously, such statistics apply only to populations
that have a spatial structure (see Figure 1b).

Frequency of Transitions

The frequency of transitions »(z) of a population z of # individuals (cells) is defined as the
number of borders between homogeneous blocks of cells having the same genotype divided
by the number of distinct couples of adjacent cells. In other words, v(z) is the probability
that two adjacent individuals (cells) have different genotypes.

Formally, the frequency of transitions () can be expressed as

2?21 ZjeN(i) [R: # RJ]
v(z) = CENTEE ;
iz [IN @]
where [P] denotes the indicator function of proposition P, and N (i) is the neighborhood

of cell 4. In the example studied in Section 4, we have a one-dimensional grid structure,
whereby Equation 8 reduces to

®)

n

W)= =3 [Ri # Rismoarnys] ©)

i=1

Diversity

There are a number of ways to measure genotypic diversity; we define two: population
entropy, and the probability that two individuals in the population have different genotypes.

Entropy. The entropy of a population x of size n is defined as

H(o) = Y 0.0 og — (10)

verl

Entropy takes on values in the interval [0, logn] and attains its maximum, H(z) = logn,
when z comprises n ditferent genotypes.

Diversity Indices. The probability that two individuals randomly chosen from z have different
genotypes is denoted by D(z).

Index D(X}) is an estimator of quantity

S o) (=) =1 =3 ) (1

verl ~er

which relates to the “breadth” of measure p,.

PROPOSITION 1: Let x be a population of n individuals with genotypes in I'. Then,

D(@) = =2 3" a:(M(1 ~ 4 (7)) (12)

vel
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PROOF: We choose the first individual at random with uniform probability: it will have
genotype v with probability g, (7). We then choose a second individual without replacement
from the remaining n — 1 individuals. This time, the probability that it will have genotype
v is %, given that the first individual has genotype v. Therefore, the probability that
it will not have genotype 7 is

1— ng(y)—1 _n- ne(7) (13)

n—1 n—1

Now, we have to sum this probability over all possible genotypes that can be extracted first,
weighted by the probability of extracting them, which is g,

L n —ng{v)
D(z) —7;%(7)“—_1‘— (14)
Observe that
o) _no el By, 15)

Substituting in Equation 14 yields the thesis.
We observe that for all populations z € G(I),

H(z)
logn

D(x) = (16)

In other words, D(z) rises more steeply than entropy as diversity increases.
An interesting relationship between D and v is given by the following proposition.

PROPOSITION 2: Given a random one-dimensional linear population x of size n, the expected
frequency of transitions will be given by

Elv(z)] = D(z) (17)

PROOF: We express the expected frequency of transitions:
1 n 1 k23
E(@)] = o 3 Pl # Yimoan1] = ~ Y D(a) = D(x) (18)
i=1 i=1

(Note that this can also be proven for dimensions higher than one by generalizing the above
proot.)

3.2 Phenotypic Statistics

Phenotypic statistics deal with properties of phenotypes, primarily, fitness. Associated with
a population = of individuals, there is a fitness distribution. We will denote by ¢, its
(discrete) probability function.

Performance

The performance of population z is defined as its average fitness, or the expected fitness of
an individual randomly extracted from z, E[¢,].
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Diversity
The most straightforward measure of phenotypic diversity of a population x is the variance
of its fitness distribution, o (z) = Var[¢,].

Structure

Statistics in this category measure how fitness is spatially distributed across the individuals
in a population.

Ruggedness

Ruggedness measures the dependency of an individual’s fitness on its neighbors’ fitness.
Ruggedness of population z € G(T') of size n can be defined as follows:

2

i [1 1+ IN()If(R:) (19
i=1

20y = 1 _
pia) = n 4 L+ eniy J(B)

Notice that p?(z) is independent of the fitness magnitude in population z, i.e., of perfor-
mance Fl¢,].

For a one-dimensional population of size n, Equation 19 becomes:
n

2y 1 [1_ 1+ 2f(R) r 20
P (x) n ; 1+ f(R(ilnocln)+l) + f(R(z'~21110(1n)+1) ( )

4 Cellular Programming

In this section we present the cellular programming algorithm, a fine-grained evolutionary
algorithm. We shall demonstrate the applicability of our measures in the next section.

4.1 Cellular Automata

Our evolving machines are based on the cellular automata model. Cellular automata (CA)
are dynamic systems in which space and time are discrete. A cellular automaton consists of
an array of cells, each of which can be in one of a finite number of possible states, updated
synchronously in discrete time steps, according to a local, identical interaction rule. The
state of a cell at the next time step is determined by the previous states of a surrounding
neighborhood of cells. This transition is usually specified in the form of a rule table,
delineating the cell’s next state for each possible neighborhood configuration (Wolfram,
1994; Toffoli and Margolus, 1987). The cellular array (grid) is d-dimensional, where
d = 1,2,3 is used in practice (in this paper we shall concentrate on d = 1). A one-
dimensional CA is illustrated in Figure 2 (based on Mitchell (1996)).

CAs exhibit three notable features: massive parallelism, locality of cellular interactions,
and simplicity of basic components (cells). As such they are naturally suited for hardware
implementation with the potential of exhibiting extremely fast and reliable computation
that is robust to noisy input data and component failure. A major impediment to ubiquitous
computing with CAs stems from the difficulty of using their complex behavior to perform
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Rule Table:
neighborhood: 111 110 101 100 011 010 001 000
output bit: 1 1 1 0 1 0 0 0
Grid:

t=0 [OTT]IJO[I]O]I[T[O[T[I[0][0]T]T]

t=1 [T[T[T[TJOJT T[T [TJI[OJ0]T]T]

Figure 2: Illustration of a one-dimensional, 2-state CA. The connectivity radius is r = 1,
meaning that each cell has two neighbors, one to its immediate left and one to its immediate
right. Grid size is n = 15. The rule table for updating the grid is shown on top. The
grid configuration over one time step is shown at the bottom. Spatially periodic boundary
conditions are applied, meaning that the grid is viewed as a circle, with the lefunost and
rightmost cells each acting as the other’s neighbor.

useful computations. Designing CAs to exhibit a specific behavior or to perform a particular
task is complicated and limits their applications. This results from the local dynamics of
the system, which renders the design of local rules to perform global computational tasks

extremely arduous. Automating the design (programming) process would greatly enhance
the viability of CAs (Mitchell et al., 1994; Sipper, 1997a).

The model investigated in this paper is an extension of the CA model, termed non-
uniform cellular automata (Sipper 1996, 1997a, 1998). Such automata function in the
same way as uniform ones, the only difference being in the cellular rules that need not be
identical for all cells. Our main focus is on the evolution of non-uniform CAs to perform
computational tasks using the cellular programming approach. Rather than seek a single
rule that must be universally applied to all cells in the grid, each cell is allowed to “choose”
its own rule through evolution.

4.2 The Cellular Programming Algorithm

We study 2-state, non-uniform CAs, in which each cell may contain a different rule. A
cell’s rule table is encoded as a bit string (the “genome”), containing the next-state (output)
bits for all possible neighborhood configurations (see Figure 2). Rather than employ a
population of evolving, uniform CAs, as with standard genetic algorithm approaches, our
algorithm involves a single, non-uniform CA of size n, where the population of cell rules
is initialized at random. Initial configurations are then generated at random in accordance
with the task at hand, and for each one the CA is run for M time steps. Each cell’s fitness
is accumulated over C' = 300 initial configurations, where a single run’s score is 1 if the
cell is in the correct state after M iterations, and 0 otherwise. After every C' configurations
evolution of rules occurs by applying crossover and mutation. This evolutionary process is
performed in a completely Jocal manner, where genetic operators are applied only between
directly connected cells. It is driven by nf;(c), the number of fitter neighbors of cell i after
c configurations. The pseudo-code of the algorithm is delineated in Figure 3.

Crossover between two rules is performed by selecting at random (with uniform prob-
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for each cell i in CA do in parallel
initialize rule table of cell ¢
fi = 0 {fitness value}
end parallel for
¢ = 0 {initial configurations counter}
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell { do in parallel
if cell ¢ is in the correct final state then
fi=fi+1
end if
end parallel for
c=c+1
if ¢ mod C = 0 then {evolve every C configurations}
for each cell ¢ do in parallel
compute nf;(c) {number of fitter neighbors}
if nf;(c) = 0 then rule i is left unchanged
else if nf;(c) = 1 then replace rule 7 with the fitter neighboring rule,
tollowed by mutation
else if nfi(c) = 2 then replace rule ¢ with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf;(c) > 2 then replace rule ¢ with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)
end if
fi=0
end parallel for
end if
end while

Figure 3: Pseudo-code of the cellular programming algorithm.

ability) a single crossover point and creating a new rule by combining the first rule’s bit
string before the crossover point with the second rule’s bit string after the crossover point.
Mutation is applied to the bit string of a rule with probability 0.001 per bit.

There are two main differences between the cellular programming algorithm and the
standard genetic algorithm approach (e.g., Mitchell et al., 1994). First, the latter involves a
population of evolving, uniform CAs; all CAs are ranked according to fitness with crossover
occurring between any two individuals in the population. Thus, while the CA runs in
accordance with a local rule, evolution proceeds in a global manner. In contrast, the cellular
programming algorithm proceeds locally in the sense that each cell has access only to
its locale, not only during the run but also during the evolutionary phase, and no global
fitness ranking is performed. Second, the standard genetic algorithm involves a population
of independent problem solutions; the CAs in the population are assigned fitness values
independent of one another and interact only through the genetic operators in order to
produce the next generation. In contrast, our CA coevolves since each cell’s fitness depends
upon its evolving neighbors. This may also be considered a form of symbiotic cooperation,
which falls, as does coevolution, under the general heading of “ecological” interactions (see
Mitchell (1996), 182-183). In summary, cellular programming is a local, coevolutionary,
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parallel genetic algorithm.

4.3 The Computational Tasks

In the next section we study three computational tasks using one-dimensional, 2-state,
7 = 1 CAs: density, synchronization, and random number generation. Spatially periodic
boundary conditions are applied, resulting in a circular grid. The tasks are described below.

The Density Task. The one-dimensional density task is to decide whether or not the ini-
tial configuration contains more than 50% 1s, relaxing to a fixed-point pattern of all
1s if the initial density of 1s exceeds 0.5, and all Os otherwise (see Figure 4a). As noted
by Mitchell et al. (1994), the density task comprises a non-trivial computation for a
small radius CA (r < n, where n is the grid size). Density is a global property of a
configuration whereas a small-radius CA relies solely on local interactions. Since the
1s can be distributed throughout the grid, propagation of information must occur over
large distances (i.e., O(n)). The minimum amount of memory required for the task
is O(log n) using a serial-scan algorithm, thus the computation involved corresponds
to recognition of a non-regular language. Note that the density task cannot be per-
fectly solved by a uniform, two-state CA, as proven by Land and Belew (1995). This
result applies to the above problem statement where the CA’s final pattern (output) is
specified as a fixed-point configuration. Interestingly, it has recently been proven that
by changing the output specification, a two-state, 7 = 1 uniform CA exists that can
perfectly solve the density problem (Capcarrére et al., 1996).

The Synchronization Task. The one-dimensional synchronization task was introduced
by Das et al. (1995) and studied by Sipper (1997a, 1997b) using non-uniform CAs.
In this task the CA, given any initial configuration, must reach a final configuration,
within M time steps, that oscillates between all 0s and all 1s on successive time steps
(see Figure 4b). As with the density task, synchronization also comprises a non-trivial
computation for a small-radins CA.

Random Number Generation (RNG). Random numbers are needed in a variety of ap-
plications, vet finding good random number generators is a difficult task (Park and
Miller, 1988). To generate a random sequence on a digital computer, one starts with
a fixed-length seed and iteratively applies some transformation to it, progressively ex-
tracting as long as possible a random sequence. Such numbers are usually referred to as
pseudo-random, as distinguished from true random numbers resulting from some nat-
ural physical process. In the last decade, cellular automata have been used to generate
random numbers (Hortensius et al., 1989; Wolfram, 1994).

Sipper and Tomassini (1996a, 1996b) applied the cellular programming algorithm
to evolve random number generators. Essentially, the cell’s fitness score for a single
configuration (see Figure 3) is the entropy of the temporal bit sequence of that cell with
higher entropy implying better fitness (this should not be confused with the entropy
measures defined in Section 3). This fitness measure was used to drive the evolutionary
process after which standard tests were applied to evaluate the quality of the evolved
CAs. The results obtained suggest that good generators can indeed be evolved (see
Figure 4c). These exhibit behavior at least as good as that of previously described
CAs with notable advantages arising from the existence of a “tunable” algorithm for
obtaining random number generators.
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(a) (b) (c)

Figure 4: Demonstration of three evolved non-uniform CAs. Grid is one-dimensional,
with radius 7 = 1 and size n = 150. White squares represent cells in state 0, black squares
represent cells in state 1. The pattern of configurations is shown through time, which
increases down the page. Initial configurations were generated at random. Figure (a)
shows the density task. Initial density of 1s is greater than 0.5 and the CA relaxes to a
fixed pattern of all 1s, correctly classifying the initial configuration. Figure (b) shows the
synchronization task. Final pattern consists of an oscillation between a configuration of all
Os and a configuration of all 1s. Figure (c) shows random number generation. Essentially,
each cell’s sequence of states through time is a pseudo-random bit stream.

5 Results and Analysis

Using the different measures presented in Section 3, we analyzed the processes taking
place during the execution of the cellular programming algorithm presented in the previous
section. This was carried out for all three tasks delineated in Subsection 4.3 (density, syn-
chronization, and RNG). From previous experiments, we knew that they present different
degrees of difficulty for the evolutionary algorithm, with density being the hardest and the
other two being easier (though non-trivial (Sipper 1996, 1998)). All experiments were run
for CAs of size 150. The number of experiments varied with the tasks: 20 for RNG, 56 for
density, and 75 for synchronization.

First we present features commonly observed for all tasks, which may thus represent
properties intrinsic to the algorithm itself rather than idiosyncrasies of a particular task.
Specific properties are described in the subsequent subsections.

5.1 Common Features

There are a number of trends common to all three tasks. A notable feature we observed is
the significant decrease in entropy (H) which is initially high, due to the random nature of
the initial population. This can be considered as an increase in order, reflected in the trends
exhibited by other measures.

In all runs the entropy falls from a high of approximately 0.8 to a low of approximately
0.7 within the first 20 generations, and subsequently tends to decline. Though this decline is
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not monotonous, regardless of the outcome the entropy ends up below 0.5 for all three tasks.
This fall in entropy is due to two factors. First, we can observe in all runs a steep drop in the
transition frequency (v) in the first few generations followed by an almost continuous drop
in the subsequent generations whose slope is task dependent (see Figure 5). Though it may
be intuitive that blocks will tend to form given the possibility of rule replication between
neighboring cells after each generation, our measures now provide us with quantitative
evidence. Note that the transition frequency () progresses towards an oscillatory state
about values below 0.3 (including the synchronization case, though this occurs around
generation 160). The second factor involved in the lower entropy is the number of rules.
One can see directly that a low v implies few rules. This is corroborated by the decreasing
trend of diversity (D).

For the three tasks studied herein the objective is to reach a high average fitness over
the entire population rather than consider just the highest-fitness individual cell. Intuitively,
we can expect that the phenotypic variance will tend to be minimized, and we can factually
check that both the fitness variance (¢%) and ruggedness (p?) are always very low towards
the end of an evolutionary run. A clear correlation between the genotypic and phenotypic
measures we observed is that a higher fitness variance results in a much steeper decrease
of v, rendering the grid more uniform. Usually the evolved CA had less than 10 different
rules out of the 256 possible ones. We found that fitness variance (52) is about ten times
higher for RNG and density than for synchronization, which underlies the difference in the
declivity of the v curves in Figure 5.
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Figure 5: Progression of the transition frequency (v) over the first 20 generations of typical
runs.

In conclusion, there is an increase in order. This means that the population tends to
evolve towards a small number of rules organized in blocks, i.e., a low H and v. As we
will see in the following subsections, which detail properties specific to each task, the exact
values of H, D, and v differ.

5.2 Random Number Generation (RNG)

The evolution of random number generators is highly successful in terms of final fitness.
Though high fitness does not necessarily entail good random behavior, Sipper and Tomassini

Fvolutionary Computation  Volume 7, Number 3 267

Copyright © 1999. All rights reserved.



M. Capcarrere, M. Tomassini, A. Tettamanzi and M. Sipper

(1996a, 1996b) have shown that such evolved CAs do fare well on several randomness tests.
For all runs, we obtained normalized fitness values higher than 0.99 in relatively few
generations (approximately 100).

One can note that there is a steady increase in fitness during the first 60 generations,
accompanied by a relatively sharp descent in entropy (H) dropping from a high of 0.8 to
a low of approximately 0.3. We see in Figure 6 that the fitness average is already high
(approximately 0.98) when the entropy reaches the low-value range. We then observe
that the entropy stabilizes, and the average fitness remains generally high. During the
stabilization phase the genotypic variance (v) declines to almost 0. The evolved CA usually
contained less than 10 different rules.
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Figure 6: Fitness and entropy (H) vs. time for a typical run of the RNG task. We observe
that H declines while fitness increases, both eventually leveling off.

5.3 Synchronization

The evolutionary dynamics of the synchronization task were found to exhibit at most three
fitness phases: a low-fitness phase, a rapid-increase phase, and a high-fitness phase. Note
that for this task a successful run is considered to be one where a perfect fitness value of 1.0
is attained. The evolutionary runs can be classified in four distinct classes. Two of represent
successful runs (Figures 7a and 7b) and the two represent unsuccessful runs (Figures 7¢ and
7d). The classification is based on the number of phases exhibited during the evolution.
We now present the results of our experiments according to these three fitness phases.

Phase I: Low Fitness. This phase is characterized by an average fitness of 0.5, with an
extremely low variance. However, while exhibiting phenotypic (fitness) “calmness,”
this phase is marked by high underlying genotypic activity: the entropy (H) steadily
decreases, and the number of rules strongly diminishes. An unsuccessful type-c run
(Figure 7c) results from “genotypic failure” in this phase. To explain, let us first note
that for the synchronization task, only rules with neighborhood 111 mapped to 0 and
000 mapped to 1 (cf. Figure 2) may appear in a successful solution. Let us call this
the “good” quadrant of the rule space and define the “bad” quadrant to be the one
that comprises rules mapping 111 to 1 and 000 to 0. In some experiments, evolution
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Figure 7: The evolutionary runs for the synchronization task can be classified in four
distinct classes based on the three observed fitness phases: phase I (low fitness), phase 11
(rapid fitness increase), and phase III (high fitness). (a) represents a successful run exhibiting
the first two phases. The solution is found at the end of phase II. (b) represents a successful
run exhibiting all three phases. The solution is found at the end of phase 1II. (c) represents
an unsuccessful run “stuck” in phase I. (d) represents an unsuccessful run, exhibiting all
three phases. Phase I1I does not give rise to a perfect solution.

falls into the bad quadrant, possibly due to a low fitness variance. Only the mutation
operator can possibly hoist the evolutionary process out of this trap. However, it is
usually insufficient with the mutation rate used here. In such a case, the algorithm is
stuck in a local minimum, and fitness never ascends beyond 0.53 (see Figure 7c¢).

Phase II: Rapid Fitness Increase. A rapid increase of fitness characterizes this phase. lts

onset is marked by the attainment of a 0.54 fitness value (at least). This comes about
when a sufficiently large block of rules from the good quadrant emerges through the
evolutionary process. In a relatively short time after this emergence (less than 100
generations), evolved rules over the entire grid all end up in the good quadrant of the
rule space. This is coupled with a high fitness variance (¢2). This variance then drops
sharply while the average fitness steadily increases, reaching a value of 0.8 at the end
of this phase. Another characteristic of this phase is the sharp drop in entropy. On
certain runs, a perfect CA was found directly at the end of this stage, thus bringing the
evolutionary process to a successful conclusion (see Figure 7a).

Phase III: High Fitness. The transition from phase II to phase III is not clear cut, but

we observed that when a fitness of approximately 0.82 is reached, the fitness average
then begins to oscillate between 0.65 and 0.99. During this phase the fitness variance
also oscillates between approximately 0 and 0.3. While low, this variance is stll higher
than that of phase I. Whereas in phases I and Il we observed a clear decreasing trend
for entropy (H), in this phase entropy exhibits an oscillatory pattern between values of
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approximately 0.3 and 0.5 (see Figure 8). We conclude that when order (low entropy)
is too high, disorder is re-injected into the evolutionary process, while remaining in
the good quadrant of the rule space—hence the oscillatory behavior. On certain runs it
took several hundred generations in this phase to evolve a perfect CA—this is a success
of type b (see Figure 7b). Finally, on other runs no perfect CA was found, though
phase III was reached and very high fitness was attained. This is a type-d unsuccessful
run (see Figure 7d) which does not differ significantly from type-b successful runs.
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Figure 8: Synchronization task: Entropy and average fitness for a successtul run of type b.
We can observe phase I (generations 0-38), phase II (generations 39-110), and phase III
(generations 111 and onward).

54 Density

Density is arguably the most difficult task of the three. Indeed, this task necessitated the
longest evolution times, with fitness never exceeding 0.95. Thus, following Sipper (1996),
we define a successful density CA to be one with average fitness higher than 0.9.

One can distinguish three fitness phases: a rapid increase phase, followed by a stable
phase, ending with an unstable phase. Note that they are different from the synchronization
task phases. These phases also differ from those identified by Mitchell et al. (1994), when
applying a genetic algorithm to the evolution of uniform CAs that solve the density task.
They observed four phases dubbed “epochs of innovation”. The difference between the
dynamics of their algorithm and ours is not altogether surprising in view of the very different
natures of the two.

Phase I: Rapid Fitness Increase. During this phase, the frequency transition (/) and the
entropy (H) rapidly decrease from approximately 0.8 to 0.4 within the first 10 to
20 generations, while average fitness increases to approximately 0.8. With this task,
rules that are from the “bad” quadrant can nonetheless exhibit high fitness, between
approximately 0.75 and 0.85 (here the “bad” quadrant of the rule space is the one in
which the genome maps 111 to 0 and 000 to 1). This presents an obstacle to evolution,
possibly leading to a local minimum, where only the mutation operator may be of help.
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Phase II: Fitness Stabilization. After this initial burst of high evolutionary activity in
phase I, phase II average fitness levels off and begins to oscillate in a narrow band of
values between 0.8 and 0.85. Entropy oscillates between 0.1 and 0.3. Note that phase I
for a successful run exhibits more oscillatory behavior than that of its counterpartin an
unsuccessful run (see Figure 9). This again shows thatalmost total phenotypic inactivity
is often counterbalanced by high genotypic activity. Nevertheless, we observed in
certain runs that the entropy stabilized at low values (below 0.1). This always meant
that phase III was never reached and resulted in an unsuccessful run.
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Figure 9: The evolutionary runs for the density task can be classified in two distinct classes,
based on the three observed fitness phases: phase I (rapid fitness increase), phase II (fitness
stabilization), and phase III (unstable fitness). (a) shows an unsuccessful run exhibiting only
the first two phases. (b) shows a successful run exhibiting all three phases. The solution
is found during phase III. (Note that phase II for a successful run exhibits more oscillatory
behavior than that of its counterpart in an unsuccessful run; however, phase III can still be
readily distinguished by a net increase in oscillations.)

Phase I1I: Unstable Fitness. This phase, the onset of which is the hallmark of successful
runs, is characterized by the de-stabilization of the average fitness (see Figure 10). It
exhibits highly oscillating fitness behavior with values possibly differing by as much
as 0.3 (between approximately 0.65 and 0.95) from one generation to the next. This

suggests that the fitness landscape is highly rugged, which may explain the relative
difficulty of the task.

6 Concluding Remarks

In this paper we introduced several statistical measures of interest, at both the genotypic
and phenotypic levels, which are usetul for analyzing the workings of fine-grained parallel
evolutionary algorithms. We then demonstrated their application and utility on a spe-
cific example, the cellular programming evolutionary algorithm, which we employed to
evolve solutions to three different problems: density, synchronization, and random number
generation.

We observed a number of features common to all three tasks, which may represent
inherent algorithmic properties. First is the notable difference between activity at the
genotypic level and at the phenotypic level. At several stages of the evolutionary process,
though seemingly little phenotypic (observable) activity is taking place, the population is
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Figure 10: Density task: Entropy and average fitness for a successful run. We can see the
beginning of the unstable fitness phase at generation 3100 during which the best CA is
found (here at generation 3315).

in fact teeming with underlying genotypic activity. The latter gives rise at certain points
in time to discernible phenotypic effects evident by fitness phase transitions. We noted a
strong decrease in diversity (D), transition frequency (v), entropy (H), and the number of
rules. This provides quantitative evidence that the population tends to evolve towards a
more ordered state with respect to the initial state which is random and therefore highly
disordered.

Each task also exhibited a number of specific properties. For the RNG task a high-
fitness solution was always evolved in usually no more than 100 generations. The syn-
chronization task was seen to undergo (at most) three fitness phases: a low-fitness phase,
followed by a rapid increase in fitness, ending with a high-fitness phase. The nature of
these stages, or the absence of some of them, served to distinguish between four types of
evolutionary runs. Finally, the density task was seen to undergo (at most) three evolutionary
phases: a rapid-increase phase, followed by a highly stable phase, ending with an unstable
phase. A successful solution was observed to emerge only during the third phase (which
was not necessarily reached, e.g., in certain failed runs).

Parallel evolutionary algorithms have been receiving increased attention in recent
years. Gaining a better understanding of their workings and of their underlying mechanisms
presents an important research challenge. We feel that the work presented here represents
a step in this direction.
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