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Abstract This paper focuses on two issues, first perusing the idea of algorithmic de-

sign through genetic programming (GP), and, second, introducing a novel approach

for analyzing and understanding the evolved solution trees. Considering the problem

of list search, we evolve iterative algorithms for searching for a given key in an array

of integers, showing that both correct linear-time and far more efficient logarithmic-

time algorithms can be repeatedly designed by Darwinian means. Next, we turn to the

(evolved) dish of spaghetti (code) served by GP. Faced with the all-too-familiar conun-

drum of understanding convoluted—and usually bloated—GP-evolved trees, we present

a novel analysis approach, based on ideas “borrowed” from the field of bioinformatics.

Our system, dubbed G-PEA (GP Post-Evolutionary Analysis), consists of two parts:

1) Defining a functionality-based similarity score between expressions, G-PEA uses

this score to find subtrees that carry out similar semantic tasks; 2) Clustering similar

sub-expressions from a number of independently-evolved fit solutions, thus identifying

important semantic building blocks ensconced within the hard-to-read GP trees. These

blocks help identify the important parts of the evolved solutions and are a crucial step

in understanding how they work. Other related GP aspects, such as code simplification,

bloat control, and building-block preserving crossover, may be extended by applying

the concepts we present.

Keywords Genetic programming · Search algorithms · Post-evolutionary analysis ·
Edit distance · Reasoning · Building blocks

1 Introduction

One of the most basic tasks a computer scientist faces is that of designing an algo-

rithm to solve a given problem. In his book Algorithmics, Harel [25] defines the subject

matter as “the area of human study, knowledge, and expertise that concerns algo-

rithms.” Indeed, the subtitle of Harel’s book—“The Spirit of Computing”—evidences

the importance of algorithm design in computer science.
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While simple problems readily yield to algorithmic solutions, many, if not most,

problems of interest are hard, and finding an algorithm to solve them is an arduous

task. Compounding this task is our desire not only to find a correct algorithm but also

an efficient one, with efficiency being measured in terms of resources to be used with

discretion, such as time, memory, and network traffic.

Evolutionary algorithms have been applied in recent years to numerous problems

from diverse domains. Though their application within the field of software engineering

has been gaining increased attention [26], the issue of algorithmic design via evolution

has been explored only to a limited extent. This dearth of research might be partly

attributed to the complexity of algorithms—and the even greater complexity of their

design and analysis.

Our aim in this paper is twofold:

1. To demonstrate algorithmic design through Darwinian evolution.

2. To introduce a framework for analyzing the evolved algorithms.

To find out whether our approach has merit we focus herein on a benchmark algo-

rithmic case, one familiar to any freshman computer-science student: searching for a

given key in an array of elements. A solution to this problem is known as a list search

algorithm (implying a one-dimensional array, or a linked-list of elements), and can be

either iterative or recursive in nature. In the first part of the paper we show that our

first goal can be attained, and we name this GP approach evolutionary algorithmics.

We evolve iterative algorithms for arrays of integers (rather than lists), and refer to

them as array search algorithms, or simply search algorithms. We pose two questions:

1) Can evolution be applied to finding a search algorithm? and 2) can evolution be

applied to finding an efficient search algorithm?

Employing genetic programming (GP) to find algorithmic innovations, our findings

show that the answer to both questions is affirmative. Indeed, our judicious design of an

evolutionary language renders the answer to the first question quite straightforward:

A search algorithm that operates in linear time is easily evolved. We then turn to

finding a more efficient algorithm for sorted arrays, concentrating on execution time as

a measure of efficiency. We show that a logarithmic-time search algorithm can indeed

be evolved for this far more difficult case.

Having attained our first stated goal—algorithm design through evolution—we now

turn to our second goal, namely, the analysis of the resulting code. Genetic program-

ming is famous (some might say infamous) for producing spaghetti code (due to phe-

nomena such as bloat and introns [5, 57]), which is arduous to analyze and compre-

hend. This is not so surprising given that the biologically inspiring metaphor for genetic

programming—evolution by natural selection—has also produced a tangled genomic

web, which biologists and bioinformaticians are now hard at work to disentangle. In-

deed, the field of bioinformatics is where we turn to in order to design a methodology

for analyzing—and thereby comprehending—our genetically programmed programs.

In the second part of the paper we thus turn to post-evolutionary analysis. A simi-

larity measure between expressions is defined, based on which we describe an algorithm

for discovering a core set of semantic building blocks, i.e., a set of important tasks which

are implemented by sub-expressions in the evolved solutions.

Our proposed similarity measure between expressions is implemented here via a

new variant of the tree-edit distance metric [7]. The distance metric is carefully de-

signed to detect semantic similarities between code segments. In contrast to previous

approaches for comparing code segments [11, 32, 45, 63, 68], we look for similarity
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rather than equivalence. The paper provides several examples of similar code segments

detected by our algorithm—which are not equivalent—where similarity provides im-

portant information for code reasoning.

The approach takes advantage of the multitude of correct solutions offered by evo-

lution, which differ in the genotype but perform the same phenotypic task. A standard

clustering method is applied to detect the occurrence of phenotypically similar expres-

sions, which are used to infer the semantic building blocks and allow code reasoning.

We demonstrate the viability and efficacy of our approach on the array search prob-

lem, showing its applicability to the detection of semantic building blocks in different

evolved search solutions.

This research lays the basis for a novel approach in algorithm design and analysis

using GP, defining the terminology, framework, and methods. The paper is organized

as follows: In the next section we describe our setup and results for evolving search

algorithms. In Section 3 we discuss our approach to post-evolutionary analysis, and

develop and demonstrate our system for detecting common semantic building blocks

in evolved search algorithms. Related work on program evolution and post-evolutionary

analysis is described in Section 4, with concluding remarks and future work following

in Section 5.

2 Evolving Efficient List Search Algorithms

In this section we detail our evolutionary setup, methodology and results for the prob-

lem of evolving array search algorithms.

2.1 The Evolutionary Setup

We use Koza-style GP [41], in which a population of individuals, each represented by

an ensemble of LISP-like S-Expressions composed of functions and terminals, evolves.

Each individual represents a computer program—or algorithm—for searching an el-

ement in an array. Since most common computer languages are typed, we opted for

strongly-typed genetic programming [51], which may ultimately help in evolving more

understandable algorithms. We used the ECJ package to conduct the experiments [47].

2.1.1 Representation

We designed a representation that has proven successful in the evolution both of linear

and sublinear search algorithms. The genotypic function set is detailed in Table 1. In

order to evaluate an individual, a phenotype is constructed by plugging the genotypic

code into the template given in Fig. 1. The genotype thus represents the body of the for

loop, the hardest part to develop in the algorithm, while the incorporating phenotype

adds the necessary programmatic paraphernalia.

As can be seen in Fig. 1, the individual’s genotypic code is executed iterations

times for an input array of size n, with a global variable ITER incremented after each

iteration. For the linear case we set iterations to n, whereas for the sublinear case

iterations is set to dlog2 ne. This upper limit on the number of loop iterations is the

only difference between the evolution of the two cases and can be considered as part

of the fitness function (described below), specifically, the differentiating part.
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Table 1 Terminal and function sets for the evolution of search algorithms (both linear and
sublinear). int refers to Integer, bool – Boolean.

Name Arguments Return
Type

Description

TERMINALS
INDEX none int Current pointer into array
Array[INDEX] none int Element at location INDEX in the input ar-

ray. If INDEX is not in [0, n− 1], for array
length n, 0 is returned

KEY none int The element we are searching for
ITER none int Current iteration number
M0, M1 none int Getters to global variables, at the algo-

rithm’s disposal
[M0+M1]/2 none int Average of M0, M1 (truncated to nearest

integer)
NOP none void Does nothing
TRUE, FALSE none bool Boolean terminals
FUNCTIONS
INDEX:= int void Sets the value of variable INDEX to value

returned by argument
M0:=, M1:= int void Setters to global variables
>, <, = int, int bool Returns true if the first argument is

greater than, less than, or equal to the sec-
ond argument, respectively; else returns
false

PROGN2 void, void void Sequence: execute first argument, then ex-
ecute second argument

If bool, void, void void Conditional branching: if the first argu-
ment evaluates to true, execute second
argument, otherwise execute third argu-
ment

public static int search(int[] arr, int KEY) {
int n = arr.length;
int M0 = 0;
int M1 = n-1;
int INDEX = 0;
for (int ITER = 0; ITER < iterations; ITER++) {

-> GENOTYPE INSERTED HERE <-
}
return INDEX;

}

Fig. 1 Evolution of search: The evolving genotype, composed of elements delineated in Ta-
ble 1, is incorporated into the above phenotypic Java template. The variable iterations is
set to n for evolving linear search algorithms, and is set to dlog2 ne for evolving sublinear
algorithms.

We decided not to add an early-termination condition, which exits the loop when

the index of the searched-for key is found, in order to render the problem harder for

evolution: The evolving search algorithm should learn to retain the correct index, if

the key is located before the loop terminates.

The terminal and function sets include read access to the variable ITER and the

searched-for KEY, and read/write access to a global variable INDEX, initialized to 0.

INDEX is used to access array elements through the Array[INDEX] terminal, and the
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value of INDEX after the final iteration is taken as the return value of the run. To

discourage INDEX being set to values outside the array bounds ([0, n− 1] since we use

Java), Array[INDEX] returns 0 if INDEX is outside of bounds. Note that the key 0 does

not appear in any input array because all the keys are positive, as described below.

The evolving search algorithm is provided with read/write access to two global

variables, M0 and M1, which the algorithm may use as it (or, more precisely, evolution)

sees fit. The variables are initialized to 0 and n− 1, respectively, which affords the in-

dividual potential knowledge of the array length. This information should prove useful

in sublinear solutions. The [M0+M1]/2 terminal embodies human intuition about the

problem, to facilitate the solution, which, nonetheless, still requires crucial algorith-

mic insight—to be derived via evolution. In Section 2.3 we re-examine this terminal,

repealing it altogether.

The remaining functions and terminals include standard comparative predicates

(<,>,=), conditional branching (If), a sequence operator (PROGN2), the Boolean ter-

minals TRUE and FALSE, and a simple NOP (no-operation) to enable, e.g., the evolution

of an if without an else part.

The evolving algorithms can inherently deal with keys not in the array, by wrapping

the search method in a method that returns an illegal index value (e.g., -1) if the

array does not contain the key in the returned index. Thus, the algorithms will not be

trained or tested on such inputs. We also mention that using our function and terminal

sets (specifically, ITER being read-only, and not defining a nested-loop function) and

limiting the number of iterations of the for loop, we avoid generating non-terminating

phenotypes.

2.1.2 Fitness Evaluation and Run Parameters

Fitness is defined similarly both for the evolution of linear and sublinear algorithms.

The basic idea is to present the evolving individual with many random input arrays,

have it run and search keys in them, and reward the individual for the closeness of

the outputs to perfect answers. It is important to note that fitness is based not on an

all-or-nothing quality (key found or not), but on gradations of “finding” quality—as

defined below.

Specifically, to compute fitness, each individual is run over a set of training cases,

each case being an array to be searched. The set of training cases is fixed for all

individuals per generation, and is randomly generated anew every generation, as we

found this encouraged more general solutions. Let minN and maxN be the predefined

minimal and maximal training-case array lengths, and let N = maxN − minN + 1.

We generate N arrays of all N possible sizes in the range [minN,maxN ], both to

induce variety during evolution and also to render the solution general, able to function

correctly on as many different array lengths as possible.

In the linear case, an array of length n ∈ [minN,maxN ] holds a random permu-

tation of integers in the range [1000, 1000 + n − 1]. In the sublinear case, an array of

length n ∈ [minN,maxN ] holds a sorted list of random integers in the range [n, 100n].

Note that the key range is completely disjoint from the index range, to discourage

“cheating”(e.g., in a sorted array, a program might evolve to simply return the key

value, which happens to equal the index value).

All n keys are searched for by an (individual) phenotypic program in the population,

using the search(arr,KEY) method given in Fig. 1.
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In order to define fitness, we first provide a number of definitions. The error per

single key search is defined as the absolute distance between the correct index of KEY

in the array and the index returned by search(arr,KEY):

error(arr, key, correct) = |correct− search(arr, key)| .

An error of zero means that the search was successful. All generated arrays contain

unique elements, to avoid ambiguity in error definition. Note that the index returned by

the search function may be out of array bounds, and as such suffers from a larger error

value—another discouragement of illegal index values. Let calls be the total number

of search calls, over all N training cases, i.e., the total number of keys searched for:

calls =
maxN∑

n=minN

n =
maxN(maxN + 1)

2
− minN(minN − 1)

2
.

The average error per search call is calculated as follows:

avgerr =
1

calls

N∑

t=1

nt−1∑

i=0

error(arrt, arrt[i], i),

where arrt is the tth array of the N randomly generated arrays, and nt is its length

(nt = minN + t− 1). (Note: Java array indexes begin at 0.)

Note that the order of calls to search(arr,KEY) does not affect their outputs, so it

is safe to execute the individual program for consecutive indexes in the array without

bias.

We define a hit as the finding of the precise location of KEY, i.e.,

error(arr, key, correct) = 0. The total number of hits is thus given by:

hits =

N∑

t=1

nt−1∑

i=0

max (0, 1− error(arrt, arrt[i], i)) .

Finally, the fitness value of an individual is defined as the average error per search

call, with a 0.5% bonus reduction for every 1% of correct hits:

fitness = avgerr ×
(

1− 0.5× hits

calls

)
.

For example, if an individual scored 300 hits in 1000 search calls, its fitness will be

the average error per call, reduced by 15%. An evolving program attains a perfect raw

fitness value of zero if every test is passed, i.e., for every searched KEY the correct index

is returned.

The bonus hits component was added to encourage perfect answers since we felt

that an individual with a higher overall error could be considered better than one with

a lower overall error, if the former’s hit count is higher. We also noted that the hits

component increased fitness variation in the population.

Of note is the absence of a parsimony factor in our fitness function. This is due to

two reasons: (1) reported deleterious effects of parsimony pressure [64, 65], and (2) our

interest in obtaining code of any size—and then being able to analyze it (intelligently)

nonetheless.

The best solution of each run was subjected to a stringent generality test, by

running it on random arrays of all lengths in the range [2, 5000] (for linear search the
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Table 2 GP parameters.

Objective Find a key in a given input array of unsorted (linear-time case) or
sorted (sublinear-time case) positive integers in a prefixed number of
iterations

Function and Ter-
minal sets

As detailed in Table 1

Fitness Average error per search call on training set, with bonus reduction
for hits (as detailed in Section 2.1.2)

Selection Tournament of size 7, elitism of size 2, generational
Population Size 250
Initial Population Created using ramped-half-and-half, with depth between 2 and 6
Max tree depth 10
Generations 5000 (or until individual with perfect fitness emerges)
Crossover Standard subtree exchange
Mutation Standard grow (generate new subtree at chosen node)
Node Selection Nodes chosen for crossover or mutation are function nodes with prob-

ability 0.9 and terminal nodes with probability 0.1
Genetic Operator
Probabilities

On the selected parent individual: with probability 0.1 copy to next
generation (reproduction); with probability 0.05 mutate individual;
with probability 0.85, select a second parent and cross over trees

range was smaller, [2, 500], given the considerably longer runtime of such a search—and

of the generality test thereof).

Kinnear, Jr. [35] noted that “For any algorithm... that operates on an infinite

domain of data, no amount of testing can ever establish generality. Testing can only

increase confidence.” To increase our confidence in the solutions evolved we added

analysis by hand to the generality test (in Section 3 we address the issue of automated

analysis). Though some solutions were quite large, the intuition behind the algorithmic

idea could be gleaned by focusing on the ADF code (Section 2.3).

Array-length parameters were set to minN = 2 and maxN = 10 for the linear

case, to decrease evaluation time, and minN = 2 and maxN = 100 for the sublinear

case, as a trade-off between generality and performance. (When we used lower boundary

values, evolved solutions did not prove general. Higher boundary values yielded general

solutions, at the expense of increasing evaluation time by a quadratic factor.)

The GP run operators and parameters are summarized in Table 2.

2.2 Results

2.2.1 Linear

Evolving a linear-time search algorithm turned out to be easy with the function and

terminal sets we designed. We performed 50 runs, 46 of which (92%) produced solutions

with a perfect fitness of 0, also passing with flying colors the generality test, exhibiting

no errors up to length 500. In fact, our representation rendered the problem easy enough

for a perfect individual to appear in the randomly generated generation 0 in three of

the runs.

An example of an evolved solution is shown in Fig. 2, along with the equivalent

Java code. When plugged into the template of Fig. 1, we observe a linear-time search

algorithm that proceeds as follows: As long as KEY is not in location INDEX, INDEX is

incremented by one along with ITER. From the index wherein the key is found (i.e.,
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(If (= Array[INDEX] KEY)
(M1:= [M0+M1]/2)
(INDEX:= ITER))

(a)

if (arr[INDEX] == KEY)
M1 = (M0+M1)/2;

else
INDEX = ITER;

(b)

Fig. 2 An evolved linear-time search algorithm. (a) LISP-like genotype. (b) Equivalent Java
code, which, when plugged into the full-program template (Fig. 1), forms the complete algo-
rithm. (Note: the actual Java code contains an additional check when executing the arr[INDEX]
instruction; if the value of INDEX is within [0, arr.length − 1] return arr[INDEX], otherwise,
return 0.)

(PROGN2
(INDEX:= [M0+M1]/2)
(if (> KEY Array[INDEX])

(PROGN2
(M0:= [M0+M1]/2)
(INDEX:= M1))

(M1:= [M0+M1]/2))))

(a)

INDEX = (M0+M1)/2;
if (KEY > arr[INDEX]) {

M0 = (M0+M1)/2;
INDEX = M1;

}
else

M1 = (M0+M1)/2;

(b)

Fig. 3 An evolved sublinear-time search algorithm (simplified). Evolved solution reveals itself
as a form of binary search. (a) LISP-like genotype. (b) Equivalent Java code, which, when
plugged into the full-program template (Fig. 1), forms the complete algorithm.

Array[INDEX] = KEY), INDEX is no longer modified, preserving the correct value until

the end of the algorithm’s execution. An irrelevant setting of M1 to [M0+M1]/2 takes

place, but does not have any effect on the returned index.

2.2.2 Sublinear

The sublinear search problem proved (unsurprisingly) a greater challenge for evolution.

We performed 50 runs, 35 of which (70%) produced perfect solutions, exhibiting no

errors up to length 5000. The solutions emerged in generations 22 to 3632, and their

sizes varied between 42 and 244 nodes. The evolutionary runtime was quite varied,

with successful runs taking from 29 minutes to 6 days (the average being about 2

days). More statistics are given in Table 5, in Section 2.3. Seven runs (14%) produced

near-perfect solutions, which failed on a single key in the input arrays, usually either

the first or last key (scoring 99.96% hits on the generality test).

A simplified version of one of the evolved solutions is given in Fig. 3, along with

the equivalent Java code. The solution was simplified by hand from a tree of 50 nodes

down to 14, and it turns out to be an implementation of the well-known binary search.

Note the non-intuitive (INDEX:= M1) instruction, discussed in detail in Section 3.6,

which deals with a base case of the binary search step (an interval of size 2, where the

key is found in the second index).
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Table 3 Terminal and function sets for the automatically defined function ADF0.

Name Arguments Return
Type

Description

TERMINALS
M0, M1 none int Getters to global variables
0, 1, 2 none int Integer constants
FUNCTIONS
+, −, × int, int int Standard arithmetic functions, returning the

addition, subtraction, and multiplication of
two integers

/ int, int int Protected integer division. Returns the first
argument divided by the second, truncated to
integer. If the second argument is 0, returns 1

2.3 Less Knowledge—More Automation

Re-examining the representation used until now (Table 1), we note that most terminals

and functions are either general-purpose ones (e.g., conditional and predicates), or

ones that represent a very basic intuition about the problem to be solved (e.g., the

straightforward need to access INDEX and KEY). However, one terminal—[M0+M1]/2—

stands out, and might be regarded as our “intervening” too much with the course of

evolution by providing insight born of our familiarity with the solution.

In this section we remove this terminal, augmenting the evolutionary setup with

the mechanism of automatically defined functions (ADFs) [42], which we apply to the

sublinear-search problem. (Note on terminology: We use the term main tree rather than

result-producing branch (RPB) [42], since the tree does not actually produce a result:

The behavior of the program is mainly determined by the side effects of functions in

the tree, e.g., INDEX:= changes the value of INDEX.)

Specifically, the terminal [M0+M1]/2 was removed from the terminal set, with the

rest of the representation remaining unchanged from Table 1. We added an ADF—

ADF0—affording evolution the means to define a simple mathematical function, able

to use the variables M0 and M1. The evolved function receives no arguments, and has

at its disposal arithmetic operations, integer constants, and the values of the global

variables, as detailed in Table 3.

The evolutionary setup was modified to incorporate the addition of ADFs. The

main program tree and the ADF tree could not be mixed because the function sets are

different, so crossover was performed per tree type (main or ADF). We noticed that

mutation performed better than crossover, especially in the ADF tree. We increased the

array-length parameters to minN = 200 and maxN = 300, upon observing a tendency

for non-general solutions to emerge with arrays shorter than 200 in the training set.

The rest of the GP parameters are summarized in Table 4.

The sublinear search problem with an ADF naturally proved more difficult than

with the [M0+M1]/2 terminal. We performed 50 runs with ADFs, 12 of which (24%)

produced perfect solutions. The solutions emerged in generations 54 to 4557, and their

sizes varied between 53 and 244 nodes, counting the sum total of nodes in both trees.

The evolutionary runtime was also varied, with successful runs taking from 48 minutes

to 14 days (the average being a few days). Some more statistics are given in Table 5.

The ADFs in the perfect solutions are equivalent to one of the following: (M0+M1)/2,

(M0 + M1 + 1)/2, or (M0/2 + (M1 + 1)/2) (all fractions truncated); to wit, they are
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Table 4 GP parameters for ADF runs.

Objective Find a key in a given input array of sorted positive integers, in a
prefixed number of iterations

Function and Ter-
minal sets

As detailed above in this section

Fitness Average error per search call on training set, with bonus reduction
for hits (as detailed in Section 2.1.2)

Selection Tournament of size 7, elitism of size 2, generational
Population Size 250
Initial Population Created using ramped-half-and-half method, with depth between 2

and 6 for main tree and between 1 and 2 for ADF
Max tree depth main tree: 10; ADF tree: 4
Generations 5000 (or until individual with perfect fitness emerges)
Crossover Standard subtree exchange from same tree (main or ADF) in both

parents
Mutation Standard grow (generate new subtree at chosen node)
Node Selection Nodes chosen for crossover or mutation are function nodes with prob-

ability 0.9 and terminal nodes with probability 0.1
Genetic Operator
Probabilities

On the selected parent individual: with probability 0.1 copy to next
generation (reproduction); with probability 0.25 mutate individual’s
main tree; with probability 0.4 mutate individual’s ADF tree; with
probability 0.2, select a second parent and cross over main trees; with
probability 0.05, select a second parent and cross over ADF trees

(PROGN2
(PROGN2

(if (< Array[INDEX] KEY)
(INDEX:= ADF0)
NOP)

(if (< Array[INDEX] KEY)
(M0:= INDEX)
(M1:= INDEX)))

(INDEX:= ADF0)))

ADF0:
(/ (+ (+ 1 M0) M1) 2)

(a)

if (arr[INDEX] < KEY)
INDEX = ((1+M0)+M1)/2;

if (arr[INDEX] < KEY)
M0 = INDEX;

else
M1 = INDEX;

INDEX = ((1+M0)+M1)/2;

(b)

Fig. 4 An evolved sublinear-time search algorithm with ADF (simplified). Evolved solution
is another variation of binary search. (a) LISP-like genotype. (b) Equivalent Java code, which,
when plugged into the full-program template (Fig. 1), forms the complete algorithm.

reminiscent of the original [M0+M1]/2 terminal we dropped. A simplified version of one

of the evolved solutions is given in Fig. 4, along with the equivalent Java code. The

solution was simplified by hand from 58 nodes down to 26 (automatic simplification is

among the goals of G-PEA, presented in the next section).

Some statistics for all the evolutionary runs are given in Table 5.
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Table 5 Statistics of GP runs. 50 runs per setup were executed. The “Gens” column lists the
number of generations until evolution stopped (either 0 fitness was achieved or the upper bound
of 5000 was reached). The “Size” and “Hits %” statistics refer to the best-of-run individual,
and show the number of its nodes and the percentage of correct answers (“hits”) on the final
generality test (i.e., with much larger arrays).

Setup % of
Runs

Gens Hits % Size

Linear
All runs 100%

average 832 98 42
stdev 1152 14 35

“Perfect” runs 92%
average 726 100 38
stdev 1018 0 30

Sublinear
All runs 100%

average 1560 93 131
stdev 1560 20 65

“Perfect” runs 70%
average 1054 100 116
stdev 966 0 49

Sublinear with ADF
All runs 100%

average 3542 44 175
stdev 1940 42 76

“Perfect” runs 24%
average 913 100 92
stdev 1280 0 51

3 Task-Oriented Post-Evolutionary Analysis

At the end of the run of an evolutionary algorithm, the best-of-run individual is usu-

ally taken as the output of the algorithm. Typically, when employing genetic program-

ming, such solutions are difficult to read and comprehend. The solutions tend to be

bloated [57], to contain unnecessary code (syntactic introns) and unoptimized code (se-

mantic introns) [5], and to be non-human-friendly in general. Thus, post-evolutionary

analysis of the obtained solutions is common practice in genetic programming [41, 57].

In many cases, such analysis includes some manual simplification and interpretation of

the solutions, or portions of them thereof (as we did above).

In many domains, it is not always possible to apply efficient code simplification

of the evolved solutions. Moreover, reducing solution size is not necessarily sufficient

for understanding the manner by which the code tackles the underlying problem, and

more sophisticated domain-specific analysis is required, e.g., as in [17, 27, 28].

While it seems like an intuitive goal for GP solution analysis, the concept of code

reasoning has no trivial interpretation. For human-written programs, it is usually pos-

sible to determine the “reason”, or “purpose”, of a relatively complex expression in the

program. In contrast, in the case of automatically produced programs such as those

obtained from a GP process, it may be quite difficult to decipher expression tasks

(if such a task can, indeed, be defined at all). Many other terms in the GP analysis

terminology are not formally defined in a coherent manner throughout the literature.

Among these, there are terms such as phenotype, building block, and context, for which

it is possible to find several definitions (e.g., [15, 36, 45, 49, 54, 63]). Building blocks

have been studied extensively, and in many of the previous works the definition of a

building block was accompanied by a theoretical discussion, some extending similar

concepts in GAs [23].

In this work we provide an alternative definition of a GP building block, which is

based on the semantics (or phenotype) of expressions, rather than on their syntax (or

genotype). Here, we define the semantics of an expression in terms of the modifications
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it engenders in an environment (McPhee et al. [49] also addressed the semantics of

building blocks, though in a manner different than ours—see Section 4).

Using this approach, we propose a paradigm for code reasoning entitled task-

oriented analysis, and exemplify its utilization for the post-evolutionary analysis of

the array search problem. We include a general framework for post-evolutionary anal-

ysis, which is expected to mine information of high quality from the results obtained

by evolutionary runs. We use the term expression, where possible, instead of tree or

subtree, since we believe that our approach can be used for different kinds of genetic

programming. As noted, we exemplify it using tree-based GP. For ideas on other types

of GP, see Section 5.

3.1 Terminology

In this section we formulate some basic concepts that will be used later on. Our first

step to fully understanding a large evolved solution is to break it into a number of

smaller chunks, and analyze the more interesting ones separately. In the world of tree-

based GP, this entails processing evolved solution trees to discover their potentially

interesting subtrees.

The basic elements of computer programs are code expressions, where each expres-

sion may be a terminal (i.e., some basic phrase in the given programming language), or

composed from other sub-expressions. In the standard GP world, expressions are repre-

sented as nodes in a tree, where terminal expressions are leaves, composite expressions

are internal nodes, and the root corresponds to the complete individual genome. An

environment of an expression is defined by the set of values assigned to the variables

that are examined or modified by the expression. The execution of some expression

within a program causes the program to modify the current environment. Therefore,

expressions can be viewed as implementations of functions, for which both the do-

main and the range are the set of possible environments. In some special cases, such

as arithmetic expressions, this modification affects a single variable (containing the

return value). Note that this would be the case for GP languages with no side effects.

In the general case a single expression can modify a subset of variable values in the

environment. We consider two expressions to be equivalent if both implement the same

function. Note that this definition of equivalence does not imply syntactic identity.

Even if the exact function implemented by some expression can be defined, it may

still be complicated for a human to understand the significance of this function, and

the manner by which it is utilized by a GP individual in order to “fit its surrounding.”

Moreover, given a specific position within some evolved GP algorithm, it is possible

that some of the environments may never occur when running the algorithm up to this

position and thus the manner by which the expression modifies such environments is

irrelevant for understanding its essence.

In our paradigm, we interpret the concept of code expression reasoning as supply-

ing a compact, clear, and human-friendly abstraction of the environment modification

induced by the execution of expressions. We use conditions to abstract key properties

satisfied by environments, where a condition is a predicate applied over an environ-

ment, resulting in either true or false values. We formulate the term of expression task

as a pair of conditions—a precondition and a postcondition—and say that an expres-

sion admits some task if for every environment satisfying the precondition, executing

the expression will result in an environment satisfying the postcondition.
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To demonstrate the concept of expression tasks, consider the array search problem.

It is possible to formulate the required task for an algorithm that solves this problem

by defining the precondition “Array is sorted and it contains KEY, and M0 and M1

point to the first and last indices in the array, respectively”, and the postcondition

“INDEX is the index of KEY within Array”. Any expression that is executed given that

the environment in the beginning satisfies the precondition, and is guaranteed to result

with an environment satisfying the postcondition, fulfills the required task and thus is a

valid solution for the problem. Of course, if the precondition does not hold (for example

if the input array is not sorted), there is no guarantee that the execution terminates

with an environment satisfying the postcondition. In order to perform this complex

task, the algorithm needs to contain sub-expressions that perform auxiliary or partial

tasks of the goal task. A typical example for the array search problem is that of an

expression whose task is to reduce the size of the interval in which the algorithm looks

for the key, while guaranteeing that the key remains within the reduced interval. This

task can be formulated by defining the precondition “Array is sorted and it contains

KEY, the index of KEY in Array is at least M0 and at most M1, and M1 - M0 = R (for

some integer R)”, and the postcondition “Array is sorted and it contains KEY, the index

of KEY in Array is at least M0 and at most M1, and M1 - M0 < R”.

Note that the environment of some expression within a program might be input

dependent, and thus can be deterministically defined only with respect to a specific run

of the program. On the other hand, it is sometimes possible to capture in a condition

common features of all possible environments at some stage of the program (e.g.,

“whenever the program executes expression e, the value of variable x is at most 100”).

We refer to such a condition as the context of the expression within the program.

Note that it might be possible to formulate several different pairs of preconditions

and postconditions for a given expression, thus it may be argued that it admits several

tasks. Nevertheless, in the process of reasoning about the code, we aim to detect those

tasks which are crucial for the success of the algorithm, and ignore tasks that have no

effect on it. We refer to such essential tasks as semantic building blocks.

In this paper we use the terms “functional,” “semantic,” and “phenotypic” inter-

changeably; also used interchangeably are the terms “structural,” “morphological,”

“syntactical,” and “genotypic.” Aside from convenience, this usage also reflects our

philosophy regarding the conflation of these terms into a unified meaning.

3.2 Algorithmic Framework

We present a general framework for utilizing task-oriented analysis in the process of

post-evolutionary reasoning about code. This framework can be easily extended and

improved, or tailored with domain and problem specific adaptations. At this stage, we

only assume the availability of a procedure that assesses semantic similarity between

a pair of expressions, where such a measure is described in the next subsection.

The framework is motivated by the assumption that if some expression performs

a task that is crucial to the success of the individual—hence comprising a building

block—other expressions implementing the same building block should appear in many

solutions that were found by GP, possibly independently evolved. On the other hand,

any task that is not important to the success of an individual is not likely to abound in

the resulting independently evolved solutions. Thus, if multiple repeats of a single task
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are detected, it is reasonable to consider this task as a candidate to being a building

block.

Note that the last assumption does not imply the existence of identical, or even

equivalent, repetitive copies of a given expression, which may be quite rare among sepa-

rately evolved programs. Rather, in order to apply such a “common-task” data-mining

approach in an effective and practical manner, one needs to address the challenge of

seeking repetitions of similar expressions, where similarity should correlate with the

corresponding set of common tasks shared by the expressions. This approach follows

the same logic as that observed in real biological evolution, where genome elements

that are conserved in a wide range of organisms seem to be more likely to carry out

important biological functionality [8, 50, 67, 71].

The automatic detection of expressions admitting such essential tasks is a key step

in understanding the manner by which the evolved algorithms behave. As a first step in

the process of reasoning about code, we suggest here a general framework for semantic

building-block detection. The identification of these building blocks can then supply

insights into the solution strategies developed by evolution.

Our system, dubbed G-PEA (GP Post-Evolutionary Analysis), assists the analyzer

in detecting building blocks, by employing two bioinformatics-based techniques: 1)

assessment of similarity between a pair of trees [46, 56], and 2) clustering of similar

trees [60] (Fig. 5). The raw material supplied to G-PEA is a host of evolved solutions

from multiple GP runs.

The G-PEA system framework is defined as follows:

Phase 1: Assemble as input a set of the best evolved solutions, obtained from several

independent runs of the evolutionary algorithm.

Phase 2: For every pair of (sub-)expressions appearing in the input set, compute the

corresponding semantic similarity measurement.

Phase 3: Apply a clustering procedure for detecting clusters of similar expressions,

and report each of the obtained clusters. Then try to deduce a common task for

the expressions within the cluster, which is a candidate semantic building block.

Note that in the case of standard GP, expressions are represented by trees, where

an expression can be composed of several simpler sub-expressions that appear as its

child subtrees. If the similarity between two expressions is computed, in Phase 2, with

respect to the similarity between their corresponding internal sub-expressions (as in this

work), iterating over the expression trees should be done in a bottom-up, post-order

manner (Algorithm 1). This guarantees that when computing the similarity between

two expressions, the similarities between all their corresponding sub-expressions (i.e.,

subtrees) have already been computed. This fact can be used to achieve a semantic

similarity measurement computed in O(1) time for every pair of expressions. Thus, the

overall runtime of Algorithm 1 is quadratic in the number of nodes in the input set.

For ideas on other types of GP, see see Section 5.

As we will show later, Phase 3 (clustering) helps achieve two goals: First, it re-

duces the number of “false positive” hits, where an expression is considered important

only if similar expressions appear in several other solutions (and not only in a single

additional solution). Second, by examining together a set of functionally related ex-

pressions, it is easier for the human analyzer to infer a common consensus task for all

of the expressions, than to infer such a task only for a pair of expressions.
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Fig. 5 Overview of the G-PEA system. The input to G-PEA is a multitude of solutions
evolved by GP (e.g., best-of-runs). G-PEA first computes the pairwise distance between all
sub-expressions in the input, and then clusters similar ones. By detecting these clusters the
system enables the GPer to infer common tasks exhibited by the cluster members, i.e., to
reason about—and possibly simplify—their evolved, likely bloated, spaghetti code.
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Algorithm 1 Pairwise-based Similarity Computation

1: // Input: S – Set of GP trees
2: // Output: distance – Pairwise distance matrix between every two subtrees in S
3: for every subtree i ∈ S (post-order) do
4: for every subtree j ∈ S (post-order) do
5: distance[i][j]← semantic similarity between i and j
6: // similarity calculation is based on distances between the children of i and of j,
7: // already computed due to bottom-up post-order
8: end for
9: end for

3.3 Measuring Expression Similarity

As defined above, two expressions are considered phenotypically equivalent if they per-

form exactly the same function. Thus, for example, the expressions (x:= (+ y z))

and (x:= (+ z y)) are phenotypically equivalent, since it is easy to see that applying

each one of the expressions, given some environment, will result in exactly the same

(modified) environment.

Relaxing the demand of equivalence, we may think of phenotypic similarity between

two expressions, where such similarity may be correlated with the probability that the

two expressions modify a given environment in the same manner. Or, alternatively,

the phenotypic similarity between two expressions could be measured as a function of

the similarity between the two modified environments obtained from the execution of

the two expressions. For example, we may argue that the expressions (If B X Y) and

(X) are similar since in some cases (when B is true) they perform exactly the same

environmental modification, and that the expressions (x:= (+ x 100)) and (x:= (+

x 101)) are similar since they result in similar modified environments for every given

environment.

In general, the problem of determining whether two expressions are phenotypically

equivalent is known to be undecidable [62]. Moreover, the actual phenotypic behavior

is usually engendered by the context of the expression within the containing solution

(i.e., the set of possible environments that may occur when the expression is executed).

Full-blown static context analysis (compiler-like) is beyond the scope of this work, and

is detailed in the future work section. It is still possible to calculate exact phenotypic

behavior without such analysis, yet it would require applying various environments to

cover all possible representative scenarios (e.g., [49]), a highly challenging task in its

own right, which is also computationally intensive. Since phenotypic equivalence is a

special case of phenotypic similarity, it is clear that it would be impractical to directly

compute the phenotypic similarity measure as suggested above.

Nevertheless, some evidence of phenotypic similarity may be obtained from the

genotypic similarity, which is based on the structural resemblance of expressions. If

two expressions are identical, it is clear that they have exactly the same phenotype.

For nonidentical expressions, we may try to assess their phenotypic similarity based on

their genotypic similarity. Thus, little genotypic dissimilarity between two compared

expressions may have a low impact (or none at all) on their phenotypic similarity mea-

surement (e.g., the above example of reordering the arguments of a + operation). On

the other hand, in those cases where no evidence for phenotypic similarity can be found

between two dissimilar genotypes, no phenotypic similarity will be assumed. Though

it is not always possible to correlate genotypic and phenotypic similarities, we demon-
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strate in this work that genotypic-based similarity can still expose important functional

patterns, despite its limitations. Our approach differs from previous approaches that

focused on genotypic structural motifs, such as schemata, tree fragments, and exact

subtree repetition [45, 54, 63]. We use genotypic information as a means to assess

environmental modifications, rather than as the goal of the analysis.

It is important to observe that expression similarity is completely independent of

the specific problem at hand (i.e., the fitness function that assesses individual qual-

ities), rather, it depends only on the language that is used to describe individuals.

Therefore, defining and implementing a phenotypic similarity measure can be done

once per language, then to be shared when analyzing results of evolutionary processes

of several different problems.

Since standard GP expressions are tree-like structures, we base our similarity mea-

surement on a standard tree similarity metric: tree-edit distance [7, 53]. In the edit-

distance metric, the similarity between two trees corresponds to the amount of “editing”

one must apply to one tree in order to obtain the other. In Section 4 we survey previous

applications of tree-edit distance in the field of GP.

Consider a set of tree-edit operations, such as subtree pruning and attaching, chil-

dren reordering, replacement of a tree with one of its subtrees, etc., and assume that

a cost (or a penalty) is associated with each such edit operation. Given two trees, T1

(source tree) and T2 (target tree), an edit script between T1 and T2 is a sequence of

edit operations that, when applied to T1, transforms it into T2. Let the cost of an edit

script be the sum of costs of its operations. The edit distance between T1 and T2 is

then defined to be the minimum cost of an edit script that transforms the former tree

to the latter.

In this work, we normalize distances to within the range [0, 1], and define that a

distance value of 0 reflects phenotypic equivalence between two trees, or subtrees. A

distance value of 1 corresponds to the case where no indication of phenotypic similarity

could be detected. Any other distance value in the range [0,1] inversely reflects the level

of our confidence in the equivalence between the trees: the closer the score is to 0, the

more semantic similarity was detected between the trees. We make a small exception

to this definition with respect to the special case of Boolean expressions, as will be

described later on.

The distances are calculated in a recursive manner, such that the distance between

two subtrees is derived from the (previously computed) distances between their re-

spective children, as will be explicated below. Note that Algorithm 1 generalizes this

approach, and replaces recursion with dynamic programming, for efficiency. In this

work we chose to define a symmetric distance measure, though this is not mandatory.

3.4 Edit Operations and Cost Examples for the Array Search Language

We show several examples of increasing complexity with respect to the array search

language, displaying the intuition behind the selection of the allowed edit operations

and their costs. The operations were chosen by following a few simple guidelines: The

end goal is to ascribe a low distance value to semantically similar expressions; the sys-

tem should be robust enough so as not to depend on a specific parameter or cost, and,

when in doubt, prefer to err on the side of caution: the tool should be encouraged to

highlight potential building blocks, and we prefer a few extra false positive-marked ex-

pressions over missing potentially important blocks. Parameter tweaking is an integral
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(a) (If B X Y) (b) Z

Fig. 6 Distance calculation: Example 1. Two code expressions: (a) an If expression with a
predicate branch B (returning a Boolean value), a consequent branch X, and an alternative
branch Y (both returning void); (b) a general (void-returning) expression Z.

part of every complex system, but we found that we hardly had to experiment with the

edit operations—most of our initial costs were sufficient for detecting the interesting

building blocks presented below, without inundating us with too many results to sift

through.

Note that these examples, as suggested by the title of this subsection, relate to the

GP language presented in this paper, and are independent of the array search problem

itself. Most functions in this language are standard, general-purpose nodes, like If and

PROGN2, and are used in many GP problems. For clarity, we present only a selection

of operations and costs, omitting the full technical details. The complete list can be

found in the supplemental online material. We assume that nodes of different types

(void, numeric, or Boolean) are incomparable, with a similarity distance of 1.

Example 1. As a first example, consider the two expressions in Fig. 6. To convert

expression (a) into expression (b) we can apply the following edit operation sequence:

1. convert X into Z,

2. convert Y into Z, and

3. replace the If node with Z.

Once both children of the If node equal Z, the complete expression is equivalent

to Z, and thus the cost of the last replacement operation is 0. The cost of the two

conversion operations is obtained by summing the (recursively computed) distances

distance(X,Z) and distance(Y, Z), normalized by a factor of 0.5 each, thus maintaining

the requirement for a score in the range [0,1]. The intuition is that in some cases

expression (a) executes sub-expression X and in others sub-expression Y, whilst the

target expression (b) always executes Z. Therefore, the cost of the genotypic change

from (a) to (b) is based on both conversion costs. We chose 0.5 as the normalizing

factor, because we assume we have no information about the value distribution of the

Boolean child B. If we do know that B is true with probability p, we can refine the

above formula to

costif−void((a), (b)) = p× distance(X,Z) + (1− p)× distance(Y, Z).

The value of p can be estimated empirically or by other semantic genotype analysis

techniques. We use the costif−void notation to denote that this value is the total

penalty for the edit script composed of the three edit operations mentioned above,
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converting an If expression to a void-returning expression (Z). There may be other

edit scripts for converting (a) to (b), as demonstrated below, and by definition the

value of distance((a), (b)) will be the value of the minimum-cost script.

If context information is taken into account, we may notice that X is executed

only when B evaluates to true, thus the set of possible environments for the execution

of X is restricted to those satisfying the condition that B is true. This can influence

the computation of the distance between X and Z, for example, in the case where the

information that B is true implies some knowledge on the phenotypes of X and Z.

Example 2. As another example, we show how to compute the distance between ex-

pressions that return a Boolean value. In this special case, we define a distance score

of 0 to reflect an equivalence between the two compared expressions, and a score of 1

to reflect an equivalence of one expression to the Boolean negation of the other. Any

value in the range [0,1] represents our confidence in either of these cases (a score of 0.5

indicates we have no information about the correlation). Note that the two cases are

complementary, so a score composed of such a single component suffices in this case.

To exemplify this, consider the expressions given in Fig.7. If we know in advance

that sub-expressions A and C are equivalent, and that sub-expressions B and D are

also equivalent, we can conclude that (a) evaluates to true if and only if (b) evaluates

to true. Thus, (a) and (b) are equivalent, i.e., distance((a), (b)) = 0. On the other

hand, if we know in advance that A is equivalent to D and B is equivalent to C then

(a) evaluates to true implies that (b) evaluates to false, and vice versa (note that this

relation does not hold in the special case where A, B, C, and D evaluate to the same

value, when both Boolean expressions evaluate to false; we address this possibility

below). In this case (a) is almost equivalent to the negation of (b), and distance((a), (b))

should be close to 1. Relaxing these requirements in order to replace equivalence with

similarity, we can compute a distance score between 0 and 1, according to the following

formulas:

directCost((a), (b)) = 1− (1− distance(A,C))× (1− distance(B,D)),

negatedCost((a), (b)) = 1− (1− distance(A,D))× (1− distance(B,C)).

directCost is a value in the range [0, 1], which is closer to 0 the smaller the distance

is between A and C and between B and D. Similarly, negatedCost represents the

combined similarity in the reverse order.

Note that if we have no similarity information (distances are all 1), both costs

equal 1. Combining directCost and negatedCost to obtain a distance score for the

whole expression, we get

cost<−<((a), (b)) =
directCost((a), (b))

directCost((a), (b)) + negatedCost((a), (b))
,

which fulfills our requirements: the value is between 0 and 1, where 0 means equivalence

and 1 means total dissimilarity, i.e., equivalence to the negated case. For the case where

both directCost and negatedCost are equal, the distance is 0.5. For the special case

where A, B, C, and D are all equivalent, we define the distance to be 0, since in this

case the two expressions (a) and (b) always evaluate to false and thus are equivalent.

A more in-depth look at the last example shows that the distance calculation should

be further refined, to compensate for the fact that < is not the exact opposite of

>, but rather is the opposite of ≥. For example, consider Fig. 8. Here, the previous
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(a) (< A B) (b) (< C D)

Fig. 7 Distance calculation: Example 2. Two less-than expressions. (Expressions A, B, C and
D all return an integer value.)

(a) (< A B) (b) (< B A)

Fig. 8 Two less-than expressions, with identical children in reverse order. (a) is not equivalent
to the negation of (b) since both return false in the case of A and B returning the same value.

formula would yield the score of 1, indicating a scenario of: (a) true if and only if (b)

false. But note that if A and B evaluate to the same numerical value during a certain

execution of the programs—even though they are not equivalent—both the (a) and

(b) expressions will evaluate to false. Our formulation can be extended to include a

penalty for negatedScore, to compensate for such cases. We have implemented this in

our model, but exclude the specific details here for brevity.

Following the reasoning of the examples given above, we have designed similarity

rules and costs for each pair of Boolean expression types (functions and terminals in

the function and terminal sets). For instance, the penalty for similarities between the

pairs (<,>) and (>,>) were defined in a similar manner to the definition of the (<,<)

expression pair discussed above.

Note that the above example could have been simplified, and the comparison

strengthened to be more precise, if the underlying language had allowed us the mi-

nus (-) function and 0 terminal. We could have then transformed the expressions in

Fig. 7 to the equivalent canonized form: (< (- A C) 0) and ((< (- B D) 0), and thus

would only have had to compare two arithmetical expressions. This would have allowed

us to also cover cases in which there is no evidence for similarity, e.g., between A and C

and between B and D, yet we do know something about the similarity of the two minus

expressions.

Example 3. Next, we look at the case of two If expressions, depicted in Fig. 9. As

before, to assess the similarity between these expressions, we try to answer the ques-
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(a) (If B1 X Y) (b) (If B2 Z W)

Fig. 9 Distance calculation: Example 3. Two If expressions, wherein distance calculation has
to take several edit scripts into account.

tion: “Given some environment, how similar would the two modified environments

be, after applying each one of the expressions?” When executing expression (a) either

sub-expression X or Y will be executed, depending on the value of B1 in the given

environment; similarly for (b). Thus, the similarity between (a) and (b) should incor-

porate the similarity between the sub-expressions as well as our confidence in which

sub-expressions will be executed in each tree, given a common environment.

This confidence is represented by the distance between the Boolean sub-expressions.

The closer distance(B1, B2) is to 0, the higher is our confidence that in a given environ-

ment the Boolean sub-expressions will return the same value (true or false). Therefore,

either X will be executed in (a) and Z in (b), or Y in (a) and W in (b). Thus, when

distance(B1, B2) = 0 we would like the distance score between (a) and (b) to de-

pend solely on distance(X,Z) and distance(Y,W ). For a distance(B1, B2) close to

1, the score should mainly rely on the distances in reverse order, i.e., distance(X,W )

and distance(Y, Z). The following formula incorporates the above intuition to compute

similarity between two If nodes:

costif−if ((a), (b)) = (1− distance(B1, B2))× distance(X,Z) + distance(Y,W )

2

+(distance(B1, B2))× distance(X,W ) + distance(Y, Z)

2

Again, instead of choosing the factor 0.5, the two elements of the above formula

might be factored with p and (1 − p) respectively, for some 0 ≤ p ≤ 1, if we know

something about the probability of the Boolean sub-expressions to evaluate to true.

The above formula computes the cost for converting the children of the If node

in (a) to the children of the If node in (b), and is marked costif−if ((a), (b)). Since

the distance between (a) and (b) is the cost of the minimum-cost script, we have to

consider more edit scripts to calculate the distance.

Another script that comes to mind is converting both X and Y to the complete (b)

subtree, and then removing one of them along with the If parent, leaving us with a

single copy of the (b) subtree. This is the exact script discussed in Example 1, with

the void-returning (b) subtree acting as the Z expression in the example. Thus, we will

use the formula from Example 1 to compute costif−void((a), (b)).

Symmetrically, we have the script that first duplicates the (a) subtree and adds an

If parent node and a B2 left sibling, and then converts one copy of (a) into Z and the
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(a) (PROGN2 X Y) (b) (PROGN2 Z W)

Fig. 10 Distance calculation: Example 4. Two PROGN2 expressions. Various penalties can be
incurred, such as a penalty for child-order reversal.

other into W. This script is marked costvoid−if ((a), (b)) and its cost is calculated by

applying Example 1 to converting (b) to (a), i.e., it is equal to costif−void((b), (a)).

Assuming there are no other edit scripts between (a) and (b), the final distance

between these expressions can then be formulated as:

distance((a), (b)) = min{costif−if ((a), (b)), costif−void((a), (b)), costvoid−if ((a), (b))}.

Example 4. As another example of distance calculation, consider the expressions given

in Fig. 10. In expression (a) both sub-expressions X and Y will be executed, and in

expression (b) both Z and W will be executed. There are several plausible edit scripts

for converting (a) to (b) and, as mentioned, the final distance between (a) and (b) will

be set to the cost of the lowest-cost edit script.

One edit script converts X to Z and Y to W. The smaller the distance between X

and Z and between Y and W, the smaller the cost of this script. Another script converts

X to W and Y to Z, and then reverses the order of the PROGN2 children. This edit script

will have to incorporate some penalty for reversing execution order, because in some

cases this impacts upon the performed task. For instance, an (x:= (+ y 1)) followed

by (y:= 5), will perform a different task than if the expression order were reversed.

This penalty can be assessed on a per-case basis (depending on the given expressions

and the common environment variables they access), but a simpler option is to ascribe

a small penalty to child-order reversal. This latter method worked well for us.

Another edit script that comes to mind is the conversion of X to the whole (b)

expression, and the deletion (pruning) of the Y sub-expression (or, in other words,

replacement of (a) root with the converted X). The edit scripts converting Y to (b), Z

to (a), or W to (a), are symmetric cases, and should also be considered. Note that the

distance between the sub-expressions and the whole expression, e.g., between X and

(a), can be recursively computed, so the distance calculation between (a) and (b) just

has to select the minimum of the aforementioned script costs.

3.5 Results: Pairwise Similarity

We demonstrate the first part of our G-PEA system (Fig. 5), namely, computation of

pairwise similarity, on the 35 correct binary search solutions evolved in Section 2.2.

We chose the language without ADFs because the terminal ADF0 might have different
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(PROGN2
(INDEX:= [M0+M1]/2)
(If (< KEY Array[INDEX])

(M1:= INDEX)
NOP))

(a) Tree 30, Subtree 14

(PROGN2
(INDEX:= [M0+M1]/2)
(If (> KEY Array[INDEX])

NOP
(M1:= INDEX)))

(b) Tree 32, Subtree 9

Fig. 11 Similar expressions from two evolved array search solutions, detected by G-PEA,
which returned distance((a), (b)) = 0.024. The distance calculation for this example is detailed
in the online material.

phenotypic behaviors in different solutions. The model can, of course, be adapted to

calculating the distance between ADF genotypes, but special care would have to be

taken for some of the functions. Some distance rules for arithmetic functions could

resemble the ones we defined, e.g., the rule to calculate the distance between expressions

(+ A B) and (+ C D) might be similar to the rule for (= A B) and (= C D), since both

do not take the order of the children into account. But other functions, like division and

subtraction, would have to adhere to different rules, with a different penalty scheme.

Before analyzing the evolved programs we “cleaned” them up by applying some ba-

sic simplification rules, as in [18, 74], in order to remove some of the semantic introns [5]

found in our solutions. These were applied in a recursive manner and included rules

such as (INDEX:= INDEX)→NOP, (PROGN2 NOP X)→X, (= A A)→TRUE, (If (TRUE) X

Y)→X, etc. To achieve tree canonization, we also applied the rule:

(PROGN2 X (PROGN2 Y Z))→(PROGN2 (PROGN2 X Y) Z), which “hanged” all

subsequent PROGN2 nodes as left children. All rules were designed not to change the phe-

notypic behavior of the individual, while simplifying the genotypes in order to increase

the potential of detecting similarity between expressions. If the model is extended to

arithmetic expressions, we believe this simplification phase will be highly important.

There are several examples in [18, 74] that support this assumption.

After the cleanup phase, the size of the solutions varied between 17 and 175 nodes.

The smaller individuals are quite easy to understand, but the larger ones are bloated

and difficult to analyze or even to follow. In what follows, we present some examples of

similar expressions found by our pairwise distance evaluator. (A note on notation: the

trees are numbered 0 to 34, and the subtrees of each solution are numbered starting

from 0, in a post-order manner.)

Consider the two expressions given in Fig. 11. This example shows how “almost”-

equivalent expressions are found to be very similar by the algorithm. Note that for

all possible environments, except for those in which KEY evaluates to exactly the same

value as Array[INDEX], the execution of both expressions would result in exactly the

same modified environment.

Another example of expression similarity detected by our algorithm is given in

Fig. 12. In this example, the “spaghetti-code” of expression (a) is, in fact, equivalent

to expression (b). First, note that the predicate genotypes in both roots are different—

but phenotypically equivalent.

The consequent branch (left child) in both expressions is identical and therefore

equivalent. As for the alternative branches (right children, If node #2 in (a), and the
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(If (> KEY Array[INDEX]) //#1
(M0:= [M0+M1]/2)
(If (> KEY Array[INDEX]) //#2

(If (> KEY Array[INDEX])
NOP
(If (> KEY Array[INDEX])

(INDEX:= [M0+M1]/2)
NOP))

NOP))

(a) Tree 32, Subtree 60 (size: 23)

(If (< Array[INDEX] KEY)
(M0:= [M0+M1]/2)
NOP)

(b) Tree 19, Subtree 38
(size: 7)

Fig. 12 Similar expressions from two evolved array search solutions, detected by G-PEA,
which returned distance((a), (b)) = 0.0625.

NOP node in (b)), a closer look reveals that these two expressions, in the given context,

are also equivalent. This is so because of If #2 residing in the alternative branch of

If #1, and having the same Boolean predicate, thus always evaluating to false, and

executing the NOP instruction.

Though we did not aim to detect such context-based similarity, our algorithm has

flagged these two sub-expressions as similar. If we ignore the context, and assume that

each of the three Boolean predicates inside the If #2 subtree has a 50% chance of being

true, 7 out of 8 possible predicate value combinations result in the execution of a NOP

instruction. Thus, it is similar to a single NOP node. This example shows the added

value of the similarity-based method, since it would have detected similarity even if

the context of If #2 in expression (a), or its nested predicates, had been different.

3.6 Results: Similarity-Based Clustering

One of the drawbacks of using the pairwise-similarity criterion alone to detect candidate

building blocks is the large number of potential false-positive hits. Using the flexible

similarity measurement we have defined, it is likely that many expression pairs will

turn out to be similar, regardless of the importance of the task they encode. In order

to reduce the false-positive rate, i.e., to report only expressions that are more likely

to be significant, we search for those common to a number of separate solutions. Since

these solutions evolved in different evolutionary runs, we assume that it is unlikely for

semantically similar expressions of sufficiently large size to appear in many solutions,

unless they perform an important task for the problem at hand. These tasks are the

building blocks we are searching for.

To this end, in the last phase of G-PEA (Fig. 5), we apply a basic clustering ap-

proach, by setting a distance threshold τ , and searching for cliques in the set of expres-

sions in all 35 evolved array search solutions (from Section 2.2), such that the similarity

distance score between any pair of expressions in the clique is at most τ . Setting τ to

0 means that all elements of detected clusters must be phenotypically equivalent. In-

creasing τ decreases the specificity of the tool, potentially increasing cluster sizes, and

the amount of interesting clusters, at the cost of increased genotypic variance within
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(If (< KEY Array[INDEX])
(M1:= INDEX)
NOP)

(a) Tree 7, Subtree 106

(If (> Array[INDEX] KEY)
(M1:= INDEX)
NOP)

(b) Tree 15, Subtree 88

(If (< Array[INDEX] KEY)
NOP
(If (= KEY Array[INDEX])

NOP
(M1:= INDEX)))

(c) Tree 6, Subtree 97

(If (< KEY Array[INDEX])
(If (< KEY Array[INDEX])

(M1:= INDEX)
(M0:= INDEX))

NOP)

(d) Tree 9, Subtree 64

(If (< KEY Array[INDEX])
(M1:= INDEX)
NOP)

(e) Tree 30, Subtree 13

(If (> KEY Array[INDEX])
NOP
(M1:= INDEX))

(f) Tree 32, Subtree 36

Fig. 13 Cluster A, expressing a typical binary search building block. Note that not all expres-
sions are phenotypically equivalent, e.g., (e) and (f). Note also that (d) appears to perform
additional tasks, but the (M0:= INDEX) instruction is unreachable, rendering the expression
equivalent to others, e.g., (a).

clusters. The cluster examples below were found using τ = 0.3, an intermediate value

empirically found to produce interesting results for the scoring scheme we have applied.

Since we are searching for cross-solution common subtrees, we limited the clusters

to no more than one subtree per solution. This canceled out the effect of repeating

subtrees within the same solution, a situation that might arise due to crossover, possibly

resulting in the subtrees’ being tagged as common.

In what follows, we discuss some of the clusters detected by G-PEA. Interestingly,

we note that many of the detected clusters appear to perform a task related to binary

search.

As a first example, consider cluster A, presented in Fig. 13. As can be observed,

though (genotypically) different in syntax, all expressions perform a common (pheno-

typic) task, that of setting M1 to the value of INDEX if KEY is smaller than Array[INDEX]—

a typical subroutine in binary search algorithms. This evidence supports our contention

that expressions common to many solutions are likely to play an important role in

each evolved solution. Notice that not all expressions in the cluster are equivalent,

e.g., expressions (e) and (f), which operate differently for the case where KEY equals

Array[INDEX].

At a cursory glance expression (d) appears to do an additional task, that of updating

M0 to INDEX for some preconditions. Nevertheless, our algorithm has detected that, for

a significant number of preconditions, the task performed by this expression is the same

as the other expressions in the cluster. Thus, the computed similarity score was good

enough (lower than the threshold) to be included in the cluster.
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(If (= KEY Array[INDEX])
NOP
(INDEX:= [M0+M1]/2))

(a) Tree 6, Subtree 78

(If (= KEY Array[INDEX])
NOP
(INDEX:= [M0+M1]/2))

(b) Tree 9, Subtree 78

(If (= Array[INDEX] KEY)
NOP
(INDEX:= [M0+M1]/2))

(c) Tree 11, Subtree 19

(If (= KEY Array[INDEX])
NOP
(INDEX:= [M0+M1]/2))

(d) Tree 22, Subtree 46

(If (= Array[INDEX] KEY)
NOP
(PROGN2
(INDEX:= [M0+M1]/2)
(If (> Array[INDEX] KEY)

(M1:= [M0+M1]/2)
NOP)))

(e) Tree 20, Subtree 170

(If (= Array[INDEX] KEY)
NOP
(PROGN2

(INDEX:= [M0+M1]/2)
(M1:= INDEX)))

(f) Tree 26, Subtree 50

Fig. 14 Cluster B, expressing a non-intuitive binary search building block. The common task
in the expressions deals with the base case of an interval of size 2, where the key is found in
the second index.

Such a scenario, demonstrating an expression which is similar to a significant num-

ber of expressions in other solutions, but containing some extra code segments, raises

the hypothesis that the additional code segments are possibly insignificant, e.g., seman-

tic introns performing no important task, or simply unreachable (syntactic introns).

Taking a closer look at expression (d) we observe that the (M0:= INDEX) instruction is

in fact unreachable, due to the nested If instruction. This implies that expression (d) is

actually equivalent to other expressions in the cluster (for instance, (a)), demonstrating

the ability of G-PEA to control the sensitivity of the results by relaxing the genotypic

equivalence criteria using the clustering threshold τ . Note that incorporating context

analysis in the similarity-measuring procedure could have detected the unreachable

code segment in (d), giving a more accurate similarity score. Similar arguments ex-

plain how expression (c) has joined cluster A, and again, context analysis would have

improved the similarity score between it and the other expressions in the cluster.

Another example of a detected cluster is cluster B, shown in Fig. 14. In general,

the common behavior of the presented expressions is as follows: If the key is found (i.e.,

Array[INDEX]= KEY) then do nothing, otherwise move INDEX to the mid-point between

M0 and M1 (and possibly do some additional computation). At first glance, this task

does not seem crucial for the success of a binary search algorithm, and it is unclear why

a code performing it proliferates in many solutions evolved in separate runs. However,

further inspection reveals that, in fact, the code reflects a technique for dealing with a

critical base case of the search step.
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Typically, M0 and M1 are used by the evolved algorithms to bound the sub-array in

which the key may be found. The algorithms use the (INDEX:= [M0+M1]/2) instruction

to examine the mid-point of this interval, and then halve the interval size by moving

either M0 or M1 to this mid-point.

This standard approach for binary search works well for all cases, except for the

base case of an interval of size 2 (i.e., M1= M0+1), in which KEY is found in M1. In this

case, the standard setting of (M0:= [M0+M1]/2) does not decrease the interval size,

since the value of [M0+M1]/2 is M0 (due to integer truncation). The standard setting

of INDEX to [M0+M1]/2 does not suffice either, as the correct index to return is M1.

Without any special treatment of this case, INDEX would retain the M0 value until the

last iteration, and the search function would return this incorrect answer. In order to

deal with this difficulty, many evolved algorithms developed the following approach:

after executing a step that reduces the relevant interval size, INDEX is assigned the

value of M1. Then the common task presented in the above cluster is executed, i.e., if

the solution is found—the algorithm maintains it by doing nothing, otherwise—INDEX

returns to being set to the average of M0 and M1. (Note that this sequence of operations

is performed in every iteration, not just for intervals of size 2, since the algorithm

cannot discern the size of the current interval.)

Examining the context in which these expressions appear in the full genotypic trees

(not displayed here for brevity—see online material), we find that in the four solutions

wherein the clustered subtrees (a), (b), (d), and (g) were reachable, the precondition

of INDEX= M1 indeed holds in every run. The two expressions (c) and (f) were actually

found to be parts of unreachable code segments. A possible explanation for “interest-

ing” code segments being unreachable is that they originate in a crossover operation

with another individual, in which they may have been used.

Note that some expressions in the cluster perform additional tasks, after the com-

mon task detailed above. As in the example of cluster A, this genotypic variance did

not increase the distance score as to exceed the cluster threshold.

The final example shown is cluster C, given in Fig. 15. This is a clear example

of the ability of the G-PEA system to detect similarity between code segments of

significantly different sizes. The first four expressions, (a) through (d), clearly perform

the same task. The three remaining expressions, (e) through (g), perform the same

task and extend it by additional operations for some preconditions. Observe that it

would have been very difficult to notice this similarity manually for expression (g), due

its large size. G-PEA helps detect such cases automatically.

Untangling the “spaghetti code” of expression (g) presents quite a challenge if

one were to do this by hand. G-PEA both flagged the subexpression as important,

and displayed similar expressions that might help to highlight the essence of the task

performed by this code. An examination of expressions (f) and (g) reveals that they

are, in fact, phenotypically equivalent. Both perform the full task of the binary search

iteration, which halves the relevant interval and deals with the base case discussed in

the above example of cluster B.

Several expressions in cluster C contain sub-expressions that appeared in cluster A

(e.g., expression (e) of cluster A is a sub-expression of expression (c) of cluster C). Note

also that the right branch of expression (a) in cluster C, subtree 168 of tree 20, was

not detected as part of cluster A, though it is equivalent to several expressions in the

cluster. This is due to the fact that the distance between the instructions (M1:= INDEX)

and (M1:= [M0+M1]/2) is calculated to be 1 in our setup, since we did not integrate the

estimation of the probability of INDEX equaling [M0+M1]/2. Adding context analysis
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(PROGN2
(INDEX:= [M0+M1]/2)
(If (> Array[INDEX] KEY)

(M1:= [M0+M1]/2)
NOP))

(a) Tree 20, Subtree 169 (size: 10
nodes)

(PROGN2
(INDEX:= [M0+M1]/2)
(If (> Array[INDEX] KEY)

(M1:= INDEX)
NOP))

(b) Tree 15, Subtree 89, (size: 10
nodes)

(PROGN2
(INDEX:= [M0+M1]/2)
(If (< KEY Array[INDEX])

(M1:= INDEX)
NOP))

(c) Tree 30, Subtree 14 (size: 10
nodes)

(PROGN2
(INDEX:= [M0+M1]/2)
(If (> KEY Array[INDEX])

NOP
(M1:= INDEX)))

(d) Tree 32, Subtree 9 (size: 10
nodes)

(PROGN2
(INDEX:= [M0+M1]/2)
(If (< KEY Array[INDEX])

(M1:= [M0+M1]/2)
(If (< KEY Array[INDEX])

(INDEX:= [M0+M1]/2)
(M0:= INDEX))))

(e) Tree 29, Subtree 16 (size: 17
nodes)

(PROGN2
(INDEX:= [M0+M1]/2)
(If (> KEY Array[INDEX])

(PROGN2
(M0:= INDEX)
(If (> KEY Array[INDEX])

(INDEX:= M1)
(INDEX:= [M0+M1]/2)))

(M1:= [M0+M1]/2)))

(f) Tree 34, Subtree 19 (size: 20
nodes)

(PROGN2
(INDEX:= [M0+M1]/2)
(If (> KEY Array[INDEX])

(If (> KEY Array[INDEX])
(PROGN2

(If (> KEY Array[INDEX])
(If (> KEY Array[INDEX])

(M0:= [M0+M1]/2)
(INDEX:= [M0+M1]/2))

(INDEX:= M1))
(If (> KEY Array[INDEX])

(INDEX:= M1)
(PROGN2

(INDEX:= [M0+M1]/2)
(INDEX:= [M0+M1]/2))))

(M1:= [M0+M1]/2))
(M1:= [M0+M1]/2)))

(g) Tree 31, Subtree 40 (size: 41 nodes)

Fig. 15 Cluster C. Expressions (a)-(d) encode a typical binary search task. Expressions (e)
and (f) include this task and extend it to the cases where Array[INDEX] < KEY. Expression
(g) becomes comprehensible once shown alongside expression (f), a much shorter, equivalent
expression.
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to our approach would have improved the distance calculations, as the precondition

INDEX= [M0+M1]/2 appears in all cluster-A solutions.

The relatively large expressions in cluster C show that since the pairwise algorithm

works on pairs of all subgraphs, it is computationally inexpensive, compared to related

tools that enumerate all subtrees (in exponential time). See Section 4.2.

This example suggests a number of important applications for the proposed distance

metric. The first application that comes to mind is the automatic simplification of GP

code, by replacing large code segments, such as expression (g) above, with a similar,

yet simpler, expression. This simplification can be done as a part of post-evolutionary

processing, where the simplified solution is re-evaluated and retained if no drop in

fitness is observed. The process can also be used during evolution for the sake of bloat

control. In this case, the fitness criterion might be relaxed. We detail ideas for such

future work in Section 5.

Note that our claim is not that all or even most solutions should contain the same

building block. Rather, it is suggested that building blocks will repeat in several so-

lutions among the many separately evolved solutions that developed similar strategies

to solve the problem. Each cluster in the given examples contains similar expressions

from 6-7 solutions out of 35, which—given the sizes of the detected building blocks and

the fact that each of the 35 solutions was evolved entirely independently—is highly

improbable to have happened by chance alone. Again, we take advantage of the as-

sumption that even though different strategies may evolve, by repeating the experiment

a sufficient number of times, some strategies should evolve more than once, and could

be detected by our approach.

4 Related Work

In this section we review related work both on program evolution and GP program

analysis.

4.1 Related Work on Evolutionary Algorithm Design

We performed an extensive literature search, finding no previous work on evolving

list search algorithms, for either arrays or lists of elements, except our own preliminary

results reported in [73]. The “closest” works found were ones dealing with the evolution

of sorting algorithms, a problem that can be perceived as being loosely related to array

search. Note that both problems share the property that a solution has to be 100%

correct to be useful.

Like search algorithms, the problem of rearranging elements in ascending order has

been a subject of intensive study in computer science [39]. Most works to date were

able to evolve O(n2) sorting algorithms, and only one was able to reach into the more

efficient O(n log n) class, albeit with a highly specific setup.

The problem of evolving a sorting algorithm was first tackled by Kinnear Jr. [34,

35], who was able to evolve solutions equivalent to the O(n2) bubble-sort algorithm.

Kinnear Jr. compared between different function sets, and showed that the difficulty

in evolving a solution increases as the functions become less problem-specific. He also

noted that adding a parsimony factor to the fitness function not only decreased solution

size, but also increased the likelihood of evolving a general algorithm.
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The most recent work on evolving sorting algorithms is that of Withall et al. [72].

They developed a new GP representation, comprising fixed-length blocks of genes,

representing single program statements. A number of list algorithms, including sorting,

were evolved using problem-specific functions for each algorithm. A for loop function

was defined, along with a double function, which incorporated a highly specific double-

for nested loop. With these specialized structures Withall et al. evolved an O(n2)

bubble-sort algorithm.

An O(n logn) solution was evolved by Agapitos and Lucas [2, 3]. The evolutionary

setup was based on their object-oriented genetic programming system. In [2] the au-

thors defined two configurations, one with a hand-tailored filter method, the second

with a static ADF. The former was used to evolve an O(n logn) solution, and the lat-

ter produced an O(n2) algorithm. Runtime was evaluated empirically as the number

of method invocations. In [3] an Evolvable Class was defined, which included between

one and four Evolvable Methods that could call each other. This setup increased the

search space and produced O(n2) modular recursive solutions to the sorting problem.

Agapitos and Lucas noted that mutation performed better than crossover in their

problem domain, a conclusion we also reached regarding our own domain of evolving

search algorithms with ADFs (Section 2.3). Other interesting works on evolving sorting

algorithms include [1, 55, 61, 66].

Another related line of research is that of evolving iterative programs. Koza et al.

[43] defined automatically defined iterations (ADIs), and Kirshenbaum [38] defined an

iteration schema for GP. These constructs iterate over an array or a list of elements,

executing their body for each element, and thus cannot be used for sublinear search,

as their inherent runtime is Ω(n).

Many loop constructs were suggested, e.g., Koza’s automatically defined loops

(ADLs) [43], and the loops used to evolve sorting algorithms mentioned above. But,

as opposed to the research on sorting algorithms, herein we assume that an external

for loop exists, for the purpose of running our evolving solutions. In the sorting prob-

lem, the O(n2) solutions requires nested loops, which the language must support. The

O(n logn) solution was developed in a language supporting recursion. In linear and

sublinear search algorithms, there will always be a single loop (in non-recursive solu-

tions), and the heart of the algorithm is the body of the loop (which we have evolved

in this paper).

4.2 Related Work on Post-Evolutionary and Building-Block Analysis

Related research includes a number of works that search for repeated patterns in GP

populations. Mostly, patterns are exact subtree repetitions, an approach with a number

of disadvantages that are detailed below.

Tackett [68] mined genetic programs for important (salient) sub-expressions, by

keeping track of all distinct subtrees in the population during the evolutionary run.

Subtrees were enumerated using a hash table. On the subject of understanding the sub-

expressions, the author suggests using cross-comparison of important sub-expressions

developed in separate runs. We address this open problem in our work. Recently, Joó

and Neirotti [31] extended Tackett’s work by allowing for wildcards in the searched-for

patterns, and suggesting an automatic method for identifying salient patterns.

Ciesielski and Li [11] data-mined log files from different GP problems, looking for

recurring patterns in the population trees. They used a number of pattern-matching
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measures: exact matching (identical trees), same tree shapes (ignoring node types), and

a measure intended for the commutative properties of nodes such as the ‘+’ function.

The following heuristic was defined for this last measure: two trees are commutative-

equivalent if they have the same shape and obtain the same fitness. The first measure

is quite restrictive, and we believe their last two measures are not general enough to

encompass many GP problems, such as languages with relatively large function or

terminal sets or languages with side effects like the one described in this paper.

Smart et al. [63] defined a compact representation for tree fragments and showed

statistics of fragment frequency during a run, in moderately sized populations. This is

an enhancement over simple enumeration-based methods, but still has strong limita-

tions on tree size because the number of fragments in a tree grows double-exponentially

with its depth.

Langdon and Banzhaf [45] analyzed repeated patterns in solution trees, using a

number of measures, including statistics based on searching for exact subtree and

fragment repetitions within a GP-evolved solution.

Kameya et al. [32] mined exact subtrees and fragments from the best solutions of

each generation, and protected the frequent subtrees during crossover, reasoning that

these were potentially good “building blocks.”

Our methodology has the following advantages vis-a-vis the approaches described

above. Firstly, these approaches report exact occurrences of an enumerated subtree,

while our system is far more flexible, able to discover approximate occurrences of sub-

tree motifs. Second, the enumeration of all possible subtrees up to a certain size is

computationally expensive (increasing exponentially with subtree size), and thus is

restricted in practice to the mining of subtrees whose size is bounded by a small con-

stant. Our approach, on the other hand, is based on an alignment algorithm, whose

complexity is quadratic in the size of the sought subtrees, enabling us to readily com-

pare subtrees of all sizes. Moreover, any type of intron, inherent to all GP languages,

would have a highly negative impact on such exact replica-detecting measures, result-

ing in many equivalent patterns being detected as distinct ones. Many of the above

reported works could be extended with our approach, to possibly yield better results.

Somewhat related to our research is the work of McPhee et al. [49], who defined

the semantics of a Boolean expression as the truth table of the expression. Two sub-

trees were considered semantically equivalent if they shared the same truth table. Their

definition can be considered as a special case of our own definition, restricted to envi-

ronments containing only Boolean variables and expression-induced modifications that

change a single (output) variable value. Nevertheless, there are several fundamental

differences between the two approaches. First, McPhee et al. detected semantically

equivalent expressions, by enumerating all possible environments in a Boolean domain.

In our work, expressions with similar semantics are detected, using light-weight syn-

tactic analysis of a more-expressive language. In addition, aiming to analyze properties

of the GP crossover operator, McPhee et al. focused on data collected during the evo-

lutionary run of a single population. Our work is targeted at post-evolutionary analysis

for code reasoning by building-block detection within data obtained from several runs.

Moreover, though the term “building block” appears in the title of [49], it is actually

never explicitly defined in the paper.

Distances between trees and between populations were used in a number of genetic

programming works, mostly for measuring population diversity. Both genotypic and

phenotypic methods were defined. We mention here some of those based on tree-edit

distance—for a good review of other methods see [10, 20].
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Edit distance was first utilized in GP research by Keller and Banzhaf [33], who

defined a set of edit operations based on the GP node type (label) in order to adapt

GA population diversity measures to the GP world. O’Reilly [53] used edit distance to

calculate distances between GP individuals, for analyzing the effects of several crossover

operators and the diversity within a population’s best individuals. The allowed edit

operations were single-node insertion, deletion, and substitution. De Jong et al. [16]

used a similarly defined edit distance, normalized by the smaller tree size, for measuring

diversity in a multi-objective scenario. Ekárt and Nemeth [19] defined an edit distance

metric specifically for GP, taking into account each node’s depth and type, and used

it to apply fitness sharing [23] to genetic programming.

Wedge and Kell [70] used a genotypic edit distance that ignores subtree size in

the substitution operation and compensates by normalizing with respect to the larger

tree size. They defined a “fitness distance” measure, calculated the genotype-fitness

correlation, and showed that it can be used for predicting preferred population sizes

for regression problems, under specific conditions. Tree-edit distance was also used

in a number of GP works (e.g., [12, 69]) to calculate Fitness Distance Correlation, a

measure of problem difficulty originating in GAs [30]. Forrest et al. [21] used GP for

doing software repair: Given an input program with a bug, a population of variants

was evolved until a program that passed all fitness tests was found. Edit distance was

then used in post-evolutionary processing to identify the set of changes between the

original program and the evolved solution.

In this study we use edit distance for a different purpose than the works discussed

above. We apply edit distance to the detection of code segments of similar function-

ality as a step in post-evolutionary analysis. Consequently, instead of reflecting the

morphological modifications, the penalties were chosen so as to reflect the functional

modifications of the corresponding expressions (see Section 3.4).

Cummins and O’Riordan [14] defined phenotypic distance measures between GP

solutions for a problem of information retrieval, and used it to cluster solutions that

are ‘close’ to each other in the solution space. Phenotypic measures were also used for

improving crossover [52] and for program simplification [36, 37]. Phenotypic distances

suffer from being difficult to define, and very costly to evaluate for many real-world

problems. Moreover, their computation might not be able to cover all possible inputs,

e.g., in algorithmics or evolution of controllers, thus degrading their accuracy and

repeatability.

5 Concluding Remarks and Future Work

We showed that algorithmic design of efficient list search algorithms is possible. With

a high-level fitness function, encouraging correct answers to the search calls within a

given number of iterations, the evolutionary process evolved correct linear and sublinear

search algorithms.

Knuth [39] observed that “Although the basic idea of binary search is comparatively

straightforward, the details can be somewhat tricky, and many good programmers have

done it wrong the first few times they tried.” Our evolutionary algorithm produced

many variations of correct binary search, and some nearly-correct solutions erring on

a mere handful of extreme cases (which one might expect, according to Knuth).
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In order to analyze the evolved solutions, we have defined a novel approach to

post-evolutionary GP solution analysis. This approach is based on several important

intuitions:

– The standard search for identical structural or syntactical motifs in GP trees is

too strict for code created by evolution, which typically includes syntactic introns,

for example. It seems that similarity-based measurements are more adequate for a

meaningful analysis of these kinds of entities.

– The analysis relies on the function carried out by GP expressions. Like previous

works, we examine syntactic features of GP trees, yet our similarity criteria aim

to correlate with expression functionality rather than with its syntax or structure.

This seems to be a more intuitive goal when analyzing GP programs.

– The repetition of similar fragments in a number of evolved individuals suggests the

importance of these fragments, while fragments with no observed similar instances

are less likely to play a significant role.

We have refined the definition of several terms, such as building blocks and ex-

pression tasks, and gave an algorithm for detecting and clustering similar expressions

in GP solutions, using a customized tree edit-distance measure. This algorithm was

applied to the array search problem, successfully highlighting important non-trivial

building blocks in the evolved solutions. The results also showed expressions differ-

ing in structure, but with equivalent functionality, demonstrating the strength of our

approach.

It may be argued that we have applied G-PEA to a simple problem. While binary

search has well-known, efficient solutions, evolving such efficient solutions is far from

trivial. Moreover, the GP system supplies a wealth of bloated, convoluted solutions,

upon which we were able to demonstrate G-PEA. Of course, a major line of future

work is applying G-PEA to additional (hard) problems.

Our work opens up a number of possible avenues for future research. In the algo-

rithm evolution field, we would like to explore the coevolution of individual main trees

and ADFs, as in the work of Ahluwalia and Bull [4]. Also, our phenotypes are not

Turing complete [75], e.g., because they always halt. It would be interesting to use a

Turing-complete GP system to evolve search algorithms.

As noted, many of the evolved solutions are bloated. It would be interesting to see

how adding parsimony pressure affects evolution and our post-evolutionary analysis.

We also plan to delve into related areas, such as other search problems and sorting

algorithms, and show evolutionary innovation in action. Ultimately, we wish to find an

algorithmic innovation not yet invented by humans.

We plan to enhance our G-PEA system with a number of features and extensions,

including:

1. Writing it as a generic, open-source, publicly available package, so it can be used

by the GP community, thus taking computer-assisted, post-evolutionary analysis a

step closer to being a common practice in GP research.

2. Adding support for a number of common GP languages and functions, such as

arithmetic operations.

3. Testing several advanced clustering algorithms that may improve G-PEA’s perfor-

mance.

The ability to assess semantic expression similarity gives rise to many other applica-

tions in GP. We list some suggestions for future research, extending the main concepts

presented here:
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1. Code simplification. As the results of this work suggest, expressions performing

similar tasks may differ significantly in size. A possible size-reduction simplification

can be obtained by replacing sub-expressions in a solution, with similar, smaller sub-

expressions. If the replaced and replacing expressions are equivalent, it is guaranteed

that the modified solution is valid. Otherwise, a standard validation process may be

applied before accepting the modified solution. This simplification, when applied

after the evolutionary process, enables one to avoid intense parsimony bloat control

during evolution, which may restrict the maintained genetic information [64, 65],

and yet to process solutions so that the output of the evolutionary process will be

easier to handle by humans.

2. During-evolution similarity analysis. Detection of similar expressions during evolu-

tion, rather than after it has finished, may help with faster propagation towards the

desired solution. Extending an approach presented previously in [74] with identity-

based building block detection, it is possible to incorporate online simplification,

as well as the following operators within the evolutionary process:

(a) Building-block preserving crossover. An interesting enhancement to evolution-

ary algorithms is aimed at reducing the probability of crossovers occurring

within building blocks (e.g., in [32]), following the hypothesis that such an op-

eration is more likely to reduce individual fitness. Semantic similarity-based

building block detection can naturally replace syntactic identity-based building

block detection in algorithms applying this feature. We expect it to perform

better as it is less sensitive to syntactic introns, and due to the more general

definition of building blocks.

(b) Block-level mutations. Once an expression corresponding to a semantic building

block has been identified, it would be possible to introduce a block insertion

mutation operator, which modifies an individual by randomly inserting a com-

plete building-block expression into its genome, or a block replacement mutation

operator, which replaces an expression with another that expresses a similar,

yet different, variant of the same semantics. The rational of these two evolu-

tionary operators is clear: In the case where a building block indeed performs

a crucial task for the success of an individual, its ability to spread quickly in

the population should increase significantly when using the block insertion op-

erator, rather than simple crossovers. Replacing a block with a semantically

similar block is more likely to introduce a non-lethal modification to the indi-

vidual while still exploring the domain’s solution space. These ideas are related

to subroutine extraction in GP [42, 58, 59].

3. Improving similarity computation using standard tools. Standard code-equivalence

detection techniques may be used in a pre-processing stage for similarity computa-

tion. Much research has been carried out, e.g., in axiomatic semantics [6, 22, 44],

producing off-the-shelf tools that can be applied to assist in finding the special

cases of phenotypically equivalent expressions.

4. Context-based similarity. As noted in Section 3.3, incorporating context information

may considerably increase the quality of the similarity metric. A simple example of

this idea is in the case of two nested If expressions that examine the same Boolean

argument. In this case, it is possible to know in advance which of the sub-expressions

of the internal If expression will be executed, and such information allows us to

refine the similarity measuring procedure so that it will examine only the relevant

“child” when compared with other expressions. In general, context information
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of some expression in a program may be thought of as information restricting the

possible environments that may occur when an expression is executed, and is based

in the case of GP on the values of the nodes appearing before the expression’s node

in a pre-order scan of the GP tree.

Context information can be detailed, specifying exactly the set of all possible en-

vironments, or it can be more compact, and may imply some environments that

cannot occur in the context or miss some possible environments. If, for example, it

is known that in some context the value of the variable x is either 3, 10, 11, 13, 14,

or 15, it is possible to encode this complete knowledge in the context information,

or to compactly encode some approximate knowledge such as 10 ≤ x ≤ 15 (miss-

ing environments in which x = 3 and including impossible environments in which

x = 12). Then, a Boolean argument such as (x < 30) in an expression within this

context is equivalent to true, and arguments such as (x < 11) may be assumed to

be most likely (i.e., similar to) false. Such knowledge may affect the expression

similarity measurement, e.g., by weighting edit operations differently.

Note that it would be interesting to conduct research on context information rep-

resentation on its own, where maintaining detailed information can improve the

similarity measurement quality while exploiting computational resources (via in-

tense storage usage and increased similarity computation complexity). In addition,

note that under an edit distance-like approach, context information implies an

asymmetric similarity measurement: for two expressions a and b within two pro-

grams A and B, respectively, it is possible that the cost of replacing a with b in A

would be different than the cost of replacing b with a in B, due to different context

information for a and b in their corresponding programs.

5. Other types of GP. We believe our methodology can be used with other types of GP,

e.g., linear GP [9]. The genotype of a linear GP individual is a sequence of instruc-

tions, and a natural approach would define a sub-expression to be a sub-sequence

of continuous instructions. Edit distance was initially defined for (linear) strings

and is used in modern bioinformatics research for comparing DNA and RNA se-

quences [24]. It is thus a natural choice for comparing linear GP sub-genomes. As in

our work, the allowed edit operations and their costs would have to be functionality

oriented and depend on the genome encoding language. For example, the deletion of

an instruction irrelevant to program output might have a zero cost, while removing

a conditional jump might incur, say, a 50% penalty due to the chance of jumping

to another code section. Special care would have to be taken to ensure efficient

algorithms [13, 48]. An additional possibility would be to invoke parsing tools over

the linear genomes, obtain parse trees, and apply a tree edit distance-based anal-

ysis (as the one presented here) over these trees. Such approaches were previously

successful when applied within related scientific domains, such as natural language

processing [40] and RNA structure analysis [29].

Online Material

Supplemental online material, containing a full list of the edit operations we used and

their costs and penalties, and the evolved individuals from the sublinear runs, including

those used for running G-PEA, can be found at www.cs.bgu.ac.il/~sipper/gpea.
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