
Evolutionary Software Improvement
for Instruction Set Meta-evolution

Michael Orlov and Moshe Sipper
Department of Computer Science, Ben-Gurion University

PO Box 653, Beer-Sheva 84105, Israel
Email: {orlovm,sipper}@cs.bgu.ac.il

Abstract—A major drawback of evolutionary computation is
that only relatively small-scale solutions can be found during
the search process—it is currently impossible to evolve a whole
chunk of software. We propose a method named evolutionary
software improvement, which makes it possible to take some
module, or some aspect of an existing software system, and
improve just that part using evolutionary computation. We apply
evolutionary software improvement to our genetic-programming
system Megavac, refining its instruction set for a class of multi-
input handling problems. This allows us to develop problem-
fitting instruction sets in a meta-circular fashion, and leads to
surprising solutions evolved by Megavac for the given class of
problems.

I. INTRODUCTION

A major drawback of evolutionary computation is that only
relatively small-scale solutions can be found during the search
process—it is currently impossible to evolve a whole chunk of
software. We propose a method named evolutionary software
improvement, which makes it possible to take some module,
or some aspect of an existing software system, and improve
just that part using evolutionary computation.

The choice of a system on which to test and refine the
software improvement process outlined above is critical. The
system must be big enough so that it is not trivial, and can
be improved in ways that are both interesting and unexpected.
The system must not be too big, otherwise its numerous ar-
chitectural and implementation details will impede the testing
and the tweaking of the process. The system’s properties must
be easy enough to change, to allow focusing on the important
properties of evolutionary software improvement. This implies
sufficient researcher familiarity with the system.

Our own evolutionary-computation platform Megavac, de-
scribed in Section III, is a good candidate for such a software
system. It is a spatially structured steady-state evolutionary
system, with individuals represented as cyclic linear programs.
It has interesting properties, such as ability of individuals to
send and receive messages. The system affords easy definition
of properties that can be improved, such as time of conver-
gence to best individual, or quality of best individual. It is
non-trivial—improvements to, e.g., the main loop, can result
in interesting variants of evolutionary algorithms. Finally,
Megavac has 18 000 lines of code, so the system itself is non-
trivial.

M. Orlov is partially supported by the Lynn and William Frankel Center
for Computer Sciences.

The self-referential nature of using evolutionary software
improvement on an evolutionary-computation platform is dou-
bly beneficial, since interesting results not only have the po-
tential to make Megavac human-competitive, but also provide
novel results in the evolutionary-computation field.

The instruction set employed in genetic programming has
a huge impact on the evolutionary process. Ofria et al. [1]
have shown that even no-op instructions have vital effect. The
presence of some instructions may have detrimental effect on
the search space. On the other hand, the presence of complex
meta-instructions that are equivalent to a sequence of simpler
instructions may help solve the specific class of problems at
hand. In this paper we develop problem-fitting instruction sets
in meta-circular fashion.

In Section IV, we apply meta-evolution to a combined
ECJ-Megavac framework. A subset of the complete Megavac
instruction set is evolved in order to facilitate faster evolu-
tionary solutions of multi-input problems using concurrent
layered learning. Such problems require handling multiple
inputs, leading to surprising solutions. This process offers a
glimpse into the area of evolutionary software improvement,
outlined in Section V.

II. EVOLUTIONARY SOFTWARE IMPROVEMENT

A. Area of Application

In order to make evolutionary software improvement a fea-
sible process for an existing software system, the methodology
must satisfy several requirements.

First of all, there must be some aspect of the system that can
be changed in order to improve some of the system’s charac-
teristics. This aspect is not necessarily a specific component; it
can be some behavioral aspect of the system as a whole—for
instance, the main loop.

Second, since we would like to use evolutionary computa-
tion to improve the chosen sub-system, its function needs to
be representable as an evolvable program. This necessitates
definition of suitable primitives that are sufficiently expressive
and allow the necessary functionality to evolve.

Lastly, the chosen component or aspect has to be amenable
to evolutionary improvement. On the one hand, the functional-
ity should be sufficiently algorithmic in nature to allow better
behavioral process to evolve. On the other hand, a comparison
of evolved functionalities should be reasonably fast to allow
improved behavior to emerge in the relevant time frame. The

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 60

Draf
t

mailto:orlovm@cs.bgu.ac.il


latter constraint does not, however, restrict the size of the
system as a whole—it is a fair assumption that a big software
system has the capacity to test varying functionalities of its
components without long startup and shutdown sequences.

B. The Software Improvement Process

The system requirements outlined above allow us to define
the following generic process for evolutionary software im-
provement.

Initially, we need to analyze the software system at hand
and locate a behavioral aspect, a component, a module, or a
package that can be expressed algorithmically. The selected
component has to be sufficiently independent to allow ex-
pression with a program of reasonable size. It must possess
sufficient behavioral freedom to justify the evolutionary ap-
proach. Substitution and evaluation of an altered component
must be sufficiently brief in order to allow better components
to develop.

We then need to define a fitness measure that quantifies
the performance of the component. The fitness must express
objective software improvement goals. Objectives such as effi-
ciency, quality, and parsimony pressure, need to be considered.

Finally, we should analyze the chosen component, and
define the language for expressing evolving individuals. Prim-
itives must allow the necessary freedom of expressed individ-
uals, and the existing component must be naturally expressible
in the language. The initial population is then initialized with
programs expressing the existing component.

If the software improvement process evolves a better aspect
or component, according to the chosen fitness measure, then
the system as a whole is improved using evolutionary compu-
tation. Moreover, if such a system is a state of the art software,
the result may be human-competitive [2].

III. EVOLUTIONARY PLATFORM MEGAVAC

Megavac is a spatially structured, steady-state evolutionary
platform, designed by Orlov and Sipper, with individuals
represented as cyclic linear programs. It is similar in concept
to Avida [3], but the emphasis is on evolutionary computation
and not on artificial life. Thus, for instance, the programs
do not need to replicate themselves, and fitness is expressed
directly, and not via metabolism speed. Megavac is modular,
and its many aspects are easily configurable. It was designed
to explore emergent cooperation between spatially structured
individual programs.

The main components of Megavac are: genomes container,
instruction scheduler, connection topology, selection method,
mutator, reproducer, and the environment. The genomes are as-
sembly programs with variable-length code, registers, data and
control stacks, connectors, and mutation probabilities. Each
genome can be in two states: wait and active. A genome that
executes a wait instruction goes into wait state, and remains
in this state until it receives a message from the environment,
or from a neighbor (which uses a send instruction to send
messages). Once a genome answers a message, it can be
rewarded with fitness, either implicitly by the environment, or

explicitly by the neighbor. Thus, a capability developed against
the environment can be potentially exploited by its neighbors.
Genomes with low fitness are replaced using the configured
selection and reproduction strategies.

Linear genetic programming [4] is used for genome rep-
resentation. The main advantage of this representation is that
genomes can be evaluated step-by-step in parallel, allowing
for more freedom in features such as inter-genome communi-
cation. Another major benefit of linear genetic programming
in the context of evolutionary software improvement is the
high execution speed achievable with this straightforward
implementation. The high execution speed makes it possible to
evaluate a population of Megavac configurations in reasonable
time. A more complete description is not possible here due to
space restrictions.

IV. EXPERIMENTS

A. Experimental Setup

The experimental setup for our evolutionary software im-
provement consisted of evolving bit vectors using the ECJ [5]
framework, each vector representing a subset of the complete
Megavac instruction set. The complete instruction set is shown
in Table I.

The ECJ part of the meta-evolution setup consisted of a ge-
netic algorithm with bit-vector individuals, each bit enabling or
disabling a Megavac instruction. A population size of 40 was
used, and the genetic algorithm was run for 40 generations. For
all problems we applied a single-point crossover probability of
0.8, a single bit mutation probability of 0.05, and tournament
selection of size 2.

Each meta-evaluation consisted of running Megavac for
1000 generations, each generation consisting of 32 instruc-
tion execution rounds. A population size of 128, torus four-
neighbor topology, and tournament selection that included
all neighbors, were used for all problems. Variable-length
mutation with initial code segment size of 1, data and control
stack sizes of 4, and 3 general-purpose registers were also
specified.

The fitness of a single Megavac execution was defined as
the area below the maximal fitness curve—that is, the sum
of per-generation maximal fitnesses. This definition has the
nice property of being independent from problems on which
Megavac is run. Other possibilities include, e.g., area below
the average fitness curve, and sum of fitness exponents, in
order to emphasize higher Megavac fitnesses.

Since Megavac employs linear genetic programming with
simple instructions, meta-evolution proceeds reasonably fast.
A single run with the above settings completes within 22 min-
utes on a 2.6 GHz dual-core AMD Opteron workstation, when
ECJ uses two threads for evaluation. Since ECJ easily supports
parallelization of the evolutionary process in a network, this
integrated framework should easily scale to more resource-
demanding experiments.

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 61



TABLE I
THE COMPLETE MEGAVAC INSTRUCTION SET. ALL VALUES ARE FLOATING
POINT, AND THERE ARE TWO STACKS: DATA AND CONTROL. IN ADDITION

TO THE ACCUMULATOR REGISTER, THERE ARE A NUMBER OF
GENERAL-PURPOSE REGISTERS. COMMUNICATION INSTRUCTIONS

ASSUME THAT THE DEFAULT CONNECTOR INDEX RESIDES IN THE FIRST
GENERAL-PURPOSE REGISTER.

Instruction Description

ALU instructions
zero Zero the accumulator register
add Pop value from data stack, and add to accumulator
sub Pop value from data stack, and subtract from accu-

mulator
neg Negate the value in accumulator
mul Multiply accumulator by popped data stack value
div Divide accumulator by popped data stack value
rnd Put a Gaussian random value N(0, 1) in accumula-

tor
erc value Put ephemeral random constant value drawn from

N(0, 1) in accumulator

Memory instructions
push Push accumulator value into data stack
pop Pop value from data stack into accumulator
drop Pop value from data stack
dup Push top data stack value into data stack
swap Exchange accumulator with data stack top
c2d Pop value from control stack, and push it into data

stack
d2c Pop value from data stack, and push it into control

stack

Register instructions
load index Copy general-purpose register index to accumulator
store index Copy accumulator to general-purpose register index
rswap index Exchange accumulator with general-purpose register

index

Control instructions
jump offset Jump offset instructions from the current code posi-

tion
call offset Push next instruction position into control stack, and

jump offset instructions
ret Pop code position from control stack, and jump to

that position
brnz offset If accumulator is non-zero, jump offset instructions
brgez offset If accumulator is non-negative, jump offset instruc-

tions
brlez offset If accumulator is non-positive, jump offset instruc-

tions
brge offset If accumulator is not less than data stack top, jump

offset instructions
brle offset If accumulator is not greater than data stack top,

jump offset instructions

Communication instructions
send Send accumulator to default connector index
sendn connector Send accumulator to connector index
wait Wait for data message or environment input in

mailbox, and for input connector index in default
connector register

waitn Similar to wait, but ignore environment input
fitness Send and subtract fitness given by accumulator value

to default connector
read Read message from mailbox into accumulator

Miscellaneous instructions
nop Do nothing

B. A Multi-input Problem

Megavac facilitates concurrent layered learning [6] via
composite environments. Here we define an environment

TABLE II
INSTRUCTION SETS EVOLVED DURING EVOLUTIONARY SOFTWARE

IMPROVEMENT OF MEGAVAC. BEST-OF-RUN INSTRUCTION SETS ARE
SHOWN. META-FITNESS IS THE AREA BELOW THE MAX-FITNESS CURVE IN

EACH MEGAVAC RUN. AVERAGE MEGAVAC FITNESS IS DERIVED FROM
DIVIDING THE META-FITNESS BY THE NUMBER OF MEGAVAC

GENERATIONS, 1000. AVERAGE FITNESS OF OVER 40.0 GUARANTEES (A
VERY GOOD) ABILITY TO SOLVE SUBTWO .

Meta-fitness Average Instruction set

79104 79.1 brge, brlez, brnz, call, dup,
fitness, nop, pop, push, read,
rswap, send, sub, swap, wait, zero
(16 instructions)

74278 74.3 c2d, dup, erc, fitness, pop, push,
read, rnd, rswap, send, store, sub,
swap, wait, zero (15 instructions)

82820 82.8 add, brge, brlez, drop, dup, erc, jump,
pop, read, send, sendn, sub, swap,
wait (14 instructions)

82742 82.7 add, brge, call, drop, jump, load,
nop, push, read, rswap, send, sendn,
store, sub, wait, waitn (16 instructions)

79348 79.3 brge, brgez, brnz, c2d, d2c, erc,
fitness, neg, nop, push, read, ret,
rswap, send, store, sub, wait, waitn
(18 instructions)

combining Echo, which rewards genomes for returning the
same input to the environment, and SubTwo, which rewards
genomes for returning the difference of two previous inputs.
Echo rewards genomes with a fitness of 3.0, and SubTwo
rewards with 15.0. As a rule, more complex tasks should have
exponentially higher reward, to compensate for the longer
required genome length. This is important, since genomes
are executed circularly, and rewards collected during a single
generation are combined.

Without Echo, SubTwo is impossible to evolve, since
minimal solution length is six, and there are no approximate
solutions of shorter lengths. Moreover, reaching that solution
in the composite environment when using the complete in-
struction set requires a huge number of generations. We did
not succeed in evolving a solution to SubTwo in any run of
10 000 generations when enabling the complete instruction set.
This is due to the large dimension of the search space of 33
instructions. For instance, in the first generation of the meta-
evolution, a typical Megavac execution will only solve Echo
in the middle stages of the 1000 generations.

We ran a total of five experiments, aiming to evolutionar-
ily improve Megavac’s performance on the Echo+SubTwo
problem. Table II shows the results of these experiments. The
first instruction set in Table II represents a typical run of the
evolved framework. Early on, individuals containing wait-
read-send as a subsequence, solving Echo, appear in the
population. Immediately after such ideal individual appears in
generation 52, non-optimal individuals for solving SubTwo
begin to appear, containing multiple superfluous instructions.
Starting with generation 257, the population contains an opti-
mal individual wait-read-push-rswap(2)-sub-send. It
is a surprising result, since the genome reads an input only
once per each output, although it succeeds in producing a

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 62



difference between two inputs to the environment. Another
optimal individual frequently contained in meta-evolutionary
runs results is wait-read-swap-dup-sub-send.

The evolved instruction subset which we considered in
detail is: brge, brlez, brnz, call, dup, fitness, nop,
pop, push, read, rswap, send, sub, swap, wait, zero.
This instruction set includes only 16 instructions of the total
possible 33, a typical result in our evolutionary experiments.
Thus, the evolutionary software improvement process can be
seen to weed out unnecessary, or at least less contributing,
instructions, and improving the software system as a whole
by reducing its complexity and tightening its code.

C. Validating the Reduced Instruction Set

In order to test the applicability of evolutionary software
improvement, described in Section IV-B, we added another
multi-input problem to the composite environment. The addi-
tional problem is SubSq, awarding a fitness value of 75.0 to
genomes successfully producing output x2 − y for inputs x
and y.

With the complete instruction set of size 33, Megavac did
not evolve a solution to SubSq in any run of under 10 000
generations. This is not surprising, since a solution to the
simpler problem of SubTwo does not appear in a typical
run with similar number of generations when all instructions
are enabled. Since a genome solving SubSq is expected to
evolve from a genome solving SubTwo, it is unreasonable to
expect a solution to SubSq to develop reasonably fast when
the complete instruction set is used.

However, when the instruction set was restricted to the
subset analyzed in Section IV-B with the additional mul
instruction enabled, running Megavac with the same set-
tings after adding SubSq to the composite environment
produced the ideal individual wait-read-swap-dup-push-
mul-sub-send at generation 2066. We omit other experi-
mental details due to space constraints.

V. DISCUSSION AND FUTURE WORK

We have shown the feasibility of evolutionary software
improvement on our evolutionary system Megavac. Represent-
ing Megavac as a genetic program, and evolving it using
traditional methods would not be possible. Instead, we lo-
cated a critical component affecting Megavac’s evolutionary
performance—its instruction set, represented this component
as an individual in a genetic algorithm, and evolved instruction
subsets that drastically improved the performance of Megavac.
This performance was then validated on an extended problem
set. Why those specific instructions were chosen during the
meta-evolutionary process of software improvement is inter-
esting, and left for future research.

We view evolutionary software improvement primarily as a
general technique for applying evolution to complex systems.
In this work we have evolved Megavac’s instruction set. The
next step is applying the more capable mechanism of genetic
programming to meta-evolution. We are currently working

on other aspects of the framework that can be evolutionarily
improved.

One such aspect is expressing the evolutionary process as an
algorithm. The evolutionary computation field has in its tool-
box numerous techniques for guiding the evolutionary process,
beyond the literal select-vary-reproduce approach. Expressing
Megavac’s reproduction process as an algorithm, and evolving
this algorithm using evolutionary computation can provide
objective insight into existing techniques, and hopefully au-
tomatically develop new ones. For instance, memetic algo-
rithms [7] achieve excellent results by combining evolutionary
exploration with local search. Will an automatically developed
process possess similar properties? Successful formulation of
the evolutionary process as an evolvable algorithm requires
careful definition of primitives, such as reproductive variation
operators.

Another aspect is when and how inputs are provided to
the genomes. When an input is provided to a genome by the
environment, inputs more suitable to certain tasks might better
advance the evolutionary process. The decision of which inputs
to provide can depend on the tasks a genome has already
solved. On the other hand, the environment can abstain from
providing an input to some genome altogether, if that genome
could be used by other genomes via a message system. The
decision of whether to abstain can also be developed evo-
lutionarily. Can evolutionary development of input generation
behavior facilitate the emergence of inter-genome cooperation?

The evolution of the aspects above offers a glimpse into
feasibility of the area of evolutionary software improvement.

REFERENCES

[1] C. Ofria, C. Adami, and T. C. Collier, “Design of evolvable
computer languages,” IEEE Transactions on Evolutionary Com-
putation, vol. 6, no. 4, pp. 420–424, Aug. 2002.

[2] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and
G. Lanza, Genetic Programming IV: Routine Human-Competitive
Machine Intelligence. Kluwer, Jul. 2003.

[3] C. Adami and C. T. Brown, “Evolutionary learning in the 2D
artificial life system ‘Avida’,” in Proceedings of the Fourth
International Workshop on the Synthesis and Simulation of
Living Systems, July 6–8, 1994, Cambridge, Massachusetts, USA,
R. Brooks and P. Maes, Eds. MIT Press, Sep. 1994, pp. 377–
381.

[4] M. F. Brameier and W. Banzhaf, Linear Genetic Programming,
ser. Genetic and Evolutionary Computation. Springer, Dec.
2006.

[5] S. Luke and L. Panait, “A Java-based evolutionary computation
research system,” Internet site, Mar. 2004. [Online]. Available:
http://cs.gmu.edu/∼eclab/projects/ecj/

[6] S. Whiteson and P. Stone, “Concurrent layered learning,”
in Proceedings of the Second International Joint Conference
on Autonomous Agents and Multiagent Systems, July 14–18,
2003, Melbourne, Australia, J. S. Rosenschein, T. Sandholm,
M. Wooldridge, and M. Yokoo, Eds. ACM Press, Jul. 2003,
pp. 193–200.

[7] N. Krasnogor and J. Smith, “A tutorial for competent memetic
algorithms: Model, taxonomy, and design issues,” IEEE Transac-
tions on Evolutionary Computation, vol. 9, no. 5, pp. 474–488,
Oct. 2005.

Workshop/Summer School on Evolutionary Computing
Lecture Series by Pioneers, August 18-22, 2008, Londonderry

Copyright IEEE 2008 63

http://cs.gmu.edu/~eclab/projects/ecj/



