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A Single-Iteration Threshold Hamming Network
I. Meilijson, E. Ruppin, and M. Sipper

Abstract—We analyze in detail the performance of a Hamming
network classifying inputs that are distorted versions of one of its
m stored memory patterns, each being a binary vector of length
n. It is shown that the activation function of the memory neurons
in the original Hamming network may be replaced by a simple
threshold function. By judiciously determining the threshold
value, the “winner-take-all”’ subnet of the Hamming network
(known to be the essential factor determining the time complexity
of the network’s computation) may be altogether discarded. For
m growing exponentially in n, the resulting Threshold Hamming
Network correctly classifies the input pattern in a single iteration,
with probability approaching 1.

I. INTRODUCTION

EURAL networks are frequently employed as associative

memories for pattern classification. The network typ-
ically classifies input patterns into one of several memory
patterns it has stored, representing the various classes. A
conventional measure used in the context of binary vectors
is the Hamming distance, defined as the number of bits in
which the pattern vectors differ. The Hamming network (HN)
calculates the Hamming distance between the input pattern
and each memory pattern, and selects the memory with the
smallest Hamming distance, which is declared “the winner.”
This network is the most straightforward associative mem-
ory. Originally presented in [7]-[9], it has received renewed
attention in recent years [6], [1].

The framework we analyze is an HN storing 7 + 1 memory
patterns £1,£2,- .. £™T! each being an n-dimensional binary
vector with entries £1. The (m + 1)n memory entries are
independent with equally likely +1 values. The input pattern
z is an n-dimensional vector of +1’s, randomly generated as
a distorted version of one of the memory patterns, (say £™+1)
such that P(z; = &™) = @, @ > 0.5. a is the initial
similarity between the input pattern and the correct memory
pattern £m+1,

A typical HN, sketched in Fig. 1, is composed of two
subnets:

1) The similarity subnet, consisting of an n-neuron input
layer and an m-neuron memory layer. Each memory
layer neuron : is connected to all » input layer neurons.

2) The winner-take-all (WTA) subnet, consisting of a fully
connected m-neuron topology.

A memory pattern £¢ is stored in the network by letting the
values of the connections between memory neuron ¢ and the
input-layer neurons j (j = 1,---,n) be

a;; = §;°. §))]
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Fig. . A Hamming net.

The values of the weights W;; in the WTA subnet are chosen
so that for each ¢, = 1,2,---,m + 1

Wi=1 —1/m<W;<0fori#j. (@3]
After an input pattern z is presented on the input layer, the
HN computation proceeds in two steps, each performed in a
different subnet:
1) Each memory neuron ¢ (1 < ¢ < m+1) in the similarity
subnet computes its similarity Z; with the input pattern

n n
Zizé Zaij$j+7l :% Zfl]i‘j-f-n . (3
j=1 j=1
2) Each memory-neuron 7 in the similarity subnet transfers
its Z; value to its duplicate in the WTA network (via
a single “identity” connection of magnitude 1). The
WTA network then finds the pattern j with the maximal
similarity: each neuron ¢ in the WTA subnet sets its
initial value y;(0) = Z;/n, and then computes y;(t)
iteratively ({ = 1,2,...) by

yit) = ©o [ Y Wisy;(t - 1) @
i
where O is the threshold logic function
u fu>T
Or(u) = {0 otherwise. ®)

These iterations are repeated until the activity levels of
the WTA neurons do not change any more, and the only
memory neuron remaining active (i.e., with a positive
;) is declared the winner. It is straightforward to see
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that given a winner memory neuron i, its corresponding
memory pattern ¢ can be retrieved on the input layer
using the weights a;;. The network’s performance level
is the probability that the winning memory will be the
correct one, m + 1.

Since the computation of the similarity subnet is performed
in a single iteration, the time complexity of the network is
primarily due to the time required for the convergence of the
WTA subnet. In a recent paper [4], the worst-case convergence
time of the standard WTA network described above was shown
to be of the order of ©(mln(mn)) iterations. This time
complexity can be very large, as simple entropy considerations
show that the capacity of HN’s is approximately given by

enG(a)

m =/ 2mna(l — a) (6)

where

Gle)=In2+alha+(1—-a)n(l -a). )
As an example, if @ = 0.7 (70% correct entries) and n = 400,
the memory capacity is m = 107, resulting in a large overall
running time of the corresponding HN.

We present in this article a detailed analysis of the perfor-
mance of a HN classifying distorted memory patterns. Based
on our analysis, we show that it is possible to completely
discard the WTA subnet by letting each memory neuron : in
the similarity subnet operate the threshold logic function ©r
on its calculated similarity Z;. If the value of the threshold T°
is properly tuned, only the neuron standing for the “correct”
memory class will be activated. The resulting Threshold Ham-
ming Network (THN) will perform correctly (with probability
approaching 1) in a single iteration. Thereafter, we develop
a close approximation to the error probabilities of the HN
and the THN. We find the optimal threshold of the THN and
compare its performance with that of the original HN.

II. THE THRESHOLD HAMMING NETWORK

We first derive by elementary methods some sharp approx-
imations to the binomial distribution. For a thorough review
of binomial computation and approximation (including some
of the material presented here), see [2].

Lemma 1: Let X ~ Bin(n,p). If z,, are integers such that
lim, 02> = 3 € (p, 1), then

P(X = a,) ~ !
o 2rnB(1 — )
xexp{—n[ﬂlng—i—(l -3 1—3——;}} 8)
and
P(X > an) ~ Ll J

(1 B)/2xnB(1 - B)

Xexp{—n[ﬂlng-i—(l—ﬁ)lni:g] }9)

in the sense that the ratio between LHS and RHS converges
to 1 as n — oo. For the special case p = 3, let G(B) =
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In2+ BInB+ (1 - B)In(1 — G), then
exp{-nG(f)}
2mnf(1 - B)
X>z) exp{—-nG(B)}
25 B ) o),

Proof: Using Stirling’s approximation n! = (2)"v/2mn
in the binomial expression for P(X = z,,), we have

P(X = z,) ~ (10)

an

n! —z
PX =zx,)= —m_wn!(n — xn)!pz"(l —p)tTn

~ (%)" 27T'I'Lpnﬂ(1 _.p)n(l_ﬂ)
(22)" (242)" 2mn /BT )
- GV ()7
1

V2B - p)

corllin(5) e ()]}

(12)
Observing that
n—zn—x—1
X=z+k)=PX $)9;+1 p
n—x—k+1( p k
X z+k (l—p) (13)
we see that
k
P(X =zn+ k)~ P(X = m(%)
n—-nBn-n3-1 n-nf-k+1
nB+1 nB+2 nB+k
(1—[3)17)'c
~P(X =z, ——~ 14
o =2 (g (’
and, by summing up the geometric series we obtain
1
B(1-p)
1-p
:1_2P(X=x")
8
~ 1-p
(1-B)y2mnp(1 - p)
g l—ﬁ]}
xexps —n{fln—+(1-78)ln——| 3.
p{ [ P -8 I-p
as)

The rationale for the next two lemmas will be intuitively
clear interpreting X; (1 < ¢ < m) as similarity between the
initial pattern and (wrong) memory : and Y as similarity with
the correct memory m + 1. If we use x, as threshold, the
decision will be correct if all X; are below =, and Y is above
Z,. We will expand on this point later.
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Lemma 2: Let X; ~ Bin(n, ;) be independent, v € (0,1)
and let =, be as in Lemma 1. If

m= (2 - %) V2mnB(1 = B) (ln %)e"‘;(m (16)
then
P(max(Xy, Xz, , Xp) < ) = 7. a7
Proof:
P(max X; < @) = (P(X; < z))"

_ mP(X; > z,)

m
~ e~mP(X12:cn)
m

:<1

converges to v if and only if mP(X; > z,) converges to
In 2, which holds by (11).

Lemma 3: Let Y ~ Bin(n,a) with a > 1, let (X;) and y
be as in Lemma 2, and let € (0,1). Let z,, be the integer
closest to nf, where

(18)

f=a- a(ln—a)zn 1

19

and z, is the 7—quantile of the standard normal distribution,

ie.,
= /z" e~/ 2dg. 20)
V21 Jooo
Then, if Y and (X;) are independent
P(max (X, Xa, -+, Xm) <Y)
> P(max (X1, Xa, -+, Xm) <2, LY) @2n

and the RHS of (21) converges to yn for m as in (16) and
n — 0o
Proof: Observing that

P(max(X1, Xz, Xm) <zn <Y)

= P(max(X1,X2,, Xm) < zn)P(Y > z,) 22)

the proof follows using Lemma 2 on the first term of the RHS
of (22), and the Central Limit Theorem on the second term.

Bearing these three lemmas, recall that the similarities
(Z1,Z2,, Zm, Zms1) are independent. If Max(Zy,
Zay++Zmy Zms1) = Z; for a single memory neuron j,
the conventional HN declares ¢’ the “winning pattern.” Thus,
the probability of error is the probability of a tie or of getting
Jj # m+ 1. Let X; be the similarity between the input vector
and the j'th memory pattern (1 < j < m), and let Y be the
similarity with the “correct’memory pattern £™*1. Clearly, X ;
is Bin(n, 3 )—distributed and Y is Bin(n, a)—distributed. We
now propose a THN having a threshold value z,: As in the
HN, each memory neuron in the similarity subnet computes
its similarity with the input pattern. But now, each memory
neuron 7 whose similarity X is at least x,, declares itself “the
winner.” There is no WTA subnet. An error may arise if there
is a multiplicity of memory neurons declaring themselves
“the winner,” there is no winning pattern, or a wrong single
winner. The threshold z, is chosen so as to minimize the
error probability.
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To build a THN with probability of error not exceeding
€, observe that expression (17) gives the probability ~y that
no wrong pattern declares itself the winner, while expression
(20) gives the probability n that the correct pattern m + 1
declares itself the winner. The product of these two terms
is the probability of correct decision (i.e., the performance
level) of the THN, which should be at least 1 — €. Given
n,e and o, a THN may be constructed by simply choosing
even error probabilities, ie., v = 7 = /1 —e¢. Then, we
determine 3 by (19), let x, be the integer closest to nJ and
determine the memory capacity m using (16). If m, ¢ and o
are given, a THN may be constructed in a similar manner,
since it is easy to determine n from m and € by iterative
procedures. Undoubtedly, the HN is superior to the THN, as
explicitly shown by inequality (21). However, as we shall sce,
the performance loss using the THN can be recovered by a
moderate increase in the network size n, while time complexity
is drastically reduced by the abolition of the WTA subnet. In
the next section we derive a more efficient choice of x,, (with
uneven error probabilities), which yields a THN with optimal
performance.

ITII. THE HAMMING NETWORK AND AN
OPTIMAL THRESHOLD HAMMING NETWORK

To find an optimal THN, we replace the ad-hoc choice
of 0 V1 — € (among all pairs (y,7) for which
vn = 1 — €) by the choice of the threshold x,, that maximizes
the storage capacity m = m(n,¢,a). We also compute the
error probability ¢(m,n, «) of the HN for arbitrary m,n and
« and compare it with ¢, the error probability of the THN.

Let ¢ (®) denote the standard normal density (cumulative
distribution function), and let r ¢/(1 — ®) denote the
corresponding failure rate function. Then,

Lemma 4: The optimal proportion 6 between the two error
probabilities satisfies

11—~ r(zy)
5= ~ A ) (23)
] \/na(l—a)lnl—'f—ﬂ
Proof: Let M = max(X;,Xs,---,X,) and let
Y denote the similarity with the “correct” memory

pattern, as before. We have seen that P(M < z) =~

. exp{-nG(8)} - 1Ay — [
exp m\/ml_—ﬂ)&_%) } Since G'(8) = In -5 then

by Taylor expansion

PM<z)=P(M < zo+x— )
ezl 52 )
V2B - B)(2 - 5)
exp{—nG(ﬂ) —(z—2z0)In (TiLﬁ)}

V21 - B)(2 - 3)

= (P(M < 20))(758)™ " = ()™

R exp{ —m

(24)
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(in accordance with Gnedenko extreme-value distribution of
type 1 [5]). Similarly,

P(Y <z)=exp{lnP(Y < 2o+ —x0)}
T — N T — 1T

=expsInP|Z
p{ ( < Vno(l-a) +\/na(1~a))}

N o(z) z-=x
~ P(Y < zg)exp {W /ra(l —. f p )'}

(25)

==(1—7ﬂ6XP{T(ZT;5%i%;%§j}

where ®* = 1 — ®. The probability of correct recognition
using a threshold z can now be expressed as

P(M < z)P(Y > )
Zo

zv(ﬁ%qu(l—(L—mexp{r@)‘i%%f:;5})'
(26)

We differentiate expression (26) with respect to 2o — z and
equate the derivative at £ = z to zero, to obtain the relation
between ~ and 7 that yields the optimal threshold, i.e., that
which maximizes the probability of correct recognition. This
yields

r(z) 1-19
= — . 27
T= P { Vna(l—a)lnZz 7 } @n

We now approximate

r(z)
l-yx -y~ 1-
7 i \/na(l—a)lnf%( )

and thus the optimal proportion between the two error prob-
abilities is

(28)

s—1=7 r(2)

T1-n" \/ﬁa(l—a)lnTiLﬂ.

29

Based on Lemma 4, if the desired probability of error is ¢,
we choose

be - €
N T I

(30)

We start with v = 7 = /T — ¢, obtain 3 from (19) and § from
(23), recompute n and ~ from (30) and iterate. The limiting
values of 3 and v in this iterative process give the maximal
capacity m (by (16)) and threshold z,, (as the integer closest
to ng).

We now compute the error probability e(m,n,a) of the
original HN (with the WTA subnet) for arbitrary m,n and &

and compare it with e.
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Lemma S: For arbitrary n, @ and ¢, let m,3,y,n and 6 be
as calculated above. Then, the probability of error €(m, n, a)
of the HN satisfies

1— ety (e6)®
~T'(1- 3
e(m,n,a) ( 6) 6ln% (1 _+_5)1+¢‘>E (31)
where
I'(t) = / ztle %dz (32)
0

is the Gamma function.
Proof:

P(Y <M)=>Y_ P(Y <z)P(M =x)
=Y P(Y <a)|[P(M <z +1) - P(M <z)]
S SR < g)e i

x [(POM < a))(5) "
~ (P(M < 20)) (%) 7).
(33

We now approximate this sum by the integral of the summand:
let b = l—iL and ¢ = 61n£—. We have seen that the
probability of incorrect performance of the WTA subnet is
equal to

P(Y < M)~ Y P(Y <zl
X[(P(M <o)V ~(P(M < 20" ]
~(1- n)/ (7”4 =" )emVdy,

Now we transform variables ¢ = b¥1ln > to get the integral
in the form

et t w dt

-c _ -t _ —bt v -

e ﬂ)/o (e ¢ )(ln—};) tinb
t

=K1/ (et — e Py~ (K g (35)
0

(34)

This is the convergent difference between two divergent
Gamma function integrals. We perform integration by parts
to obtain a representation as an integral with t~¥2 instead of
+~(+K2) in the integrand. For 0 < K> < 1, the corresponding
integral converges. The final result is then

1—-e°¢ c 1\ ™%

Hence, we have

(36)

P(Y < M)~ (1 )1‘8—“”%1“(1 5)(1 1)6
~(1- - n—
= Ly ¥
L—etinrds  (e)®
~T(1-6 37
( ) 61n1—fﬁ (1+5)1+55 37
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TABLE I
PERCENTAGE OF ERROR. n = 150, = 0.75
m 100 200 400 800 1600 | 3200
(Threshold) (99) [ (100) | (100) | (101) | (102) | (102)
HN: predicted 0031005 ]0.1 0.15 [0.25 [041
experimental 002 |0.04 |0.15 |0.10 |0.19 |0.47
THN: predicted 1.1 1.47 | 1.96 §257 |3.33 |4.27
experimental | 1.24 | 1.46 |2.27 |2.31 |3.08 |4.25
TABLE 1T
PERCENTAGE OF ERROR. n = 225, a = 0.75
m 100 200 400 800 1600 | 3200
{Threshold) (147) | (147) | (148) | (149) | (149) | (150)
HN: predicted 0.0002 | 0.0003 | 0.0006 | 0.001 | 0.002 | 0.0036
experimental |0 0 0 0 0 0.01
THN: predicted 0.06 0.09 0.12 0.17 |0.22 103
experimental | 0.09 0.09 0.14 0.17 | 0.13 | 0.29
alpha=0.6,m=10°
0.0001
0.0003
0.0009+
0.0025-
epsilon 0.0074
(error 4
probability)  0-018
0.054
0.144
0.374
T T T T T T
800 1000 1200 1400 1600 1800 2000 2200
n (input layer size)
alpha=0.7,m=10°
0.0001 -
0.0003 Q///é
0.0009+
0.0025+ M
e(PS“Or" 0.007+ THN <—
€7rol HN #_
probability)  0-0189
.05+
0.14
0.37

T T 1T T T 1T T T T T T T 7T
300 320 340 360 380 400 420 440 460 480 500 520 540 560 580 600
n (input layer size)

alpha=0.8,m=107

0.0001

0.0003+

0.0009

0.0025

epsilon 0.007
(error

probability)  0-0187

0.05

0.149

0.374

s

—

THN $—
HN —+—

T T T T T
220 240 260 280 300

n (input layer size)

T T
160 180 200 320

Fig. 2. Probability of error as a function of network size: three networks are
depicted, displaying the performance at various values of o and m.

~as claimed. Expression (31) is presented as K(e,6,0) - ¢,
where K (¢, 6, ) is the factor (< 1) by which the probability
of error € of the THN should be multiplied in order to get the
probability of error of the original HN with the WTA subnet.
For small 6, K is close to 1. However, as will be seen in the
next section, K is typically smaller.
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Fig. 3. Threshold sensitivity of the THN (a = 0.7, n = 210, m = 825).

IV. NUMERICAL RESULTS

We examined the performance of the HN and the THN via
simulations (of 10000 runs each), and compared their error
rates with those expected in accordance with our calculations.
Due to its probabilistic characterization, the THN may perform
reasonably only above some minimal size of n (depending on
a and m). The results for such a “minimal” network, indicating
the percent of errors at various m values, are presented in Table
L. As evident, the experimental results corroborate the accuracy
of the THN and HN calculations already at this relatively small
network storing a very small number of memories in relation
to its capacity. The performance of the THN is considerably
worse than that of the corresponding HN. However, as shown
in Table II, an increase of 50% in the input layer size n
yields a THN which performs about as well as the previous
HN.

Fig. 2 presents the results of theoretical calculations of the
HN and THN error probabilities, for various values of o and
m as a function of n. Note the large difference in the memory
capacity as o varies. For graphical convenience, we have
plotted log % versus n. As seen above, a fair “rule of thumb” is
that a THN with n’ = 1.5n neurons in the input layer performs
as well as a HN with o such neurons. To see this, simply pass
a horizontal line through any error rate value ¢ and observe
the ratio between n and n’ obtained at its intersection with the
corresponding € vs. n plots.

To examine the sensitivity of the THN network to threshold
variation, we have fixed « 0.7, n = 210, m 825
and let the threshold vary between 132 and 138. As we
can see in Fig. 3, the threshold value 135 is optimal, but
the performance with threshold values of 134 and 136 is
practically identical. The magnitude of the two error types
varies considerably with the threshold value, but this variation
has no effect on the overall performance near the optimum,
and these two error probabilities might as well be taken equal
to each other.

V. CONCLUDING REMARKS

In this paper we analyzed in detail the performance of a
HN and THN classifying inputs that are distorted versions of
the stored memory patterns (in contrast to-randomly selected
patterns). Given an initial input similarity «, a desired storage
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capacity m and performance level 1 — ¢, we described how to
compute the minimal THN size n required to achieve this per-
formance. As we have seen, the threshold z,, is determined as
a function of the initial input similarity . Obviously, however,
the THN it defines will achieve even higher performance when
presented with input patterns having initial similarity greater
than «. It was shown that although the THN performs worse
than its counterpart HN, an approximately 50% increase in
the THN input layer size is sufficient to fully compensate for
that. As the WTA network of the HN may be implemented
with only O(3m) connections [4], both the THN and the HN
require O(mn) connections. Hence, to perform as well as
a given HN, the corresponding THN requires ~50% more
connections, but the O(mlIn(mn)) time complexity of the
HN is drastically reduced to the O(1) time complexity of the
THN.

(1]
(2

(4]
(5]
(6]
(71
{8]
9]
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