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Abatract- 

The most common methodol- 
ogy of neural network analysis 
is that of simulation since as 
of yet there is no common for- 
mal framework. Towards this 
end we adopt one measure of se- 
rial algorithms, namely that of 
serial computational complex- 
ity and apply it to the analy- 
sis of neural networks. We an- 
alyze various networks and de- 
rive their complexity, thus pro- 
viding insight as to their com- 
putational requirements. 

I .  INTRODUCTION 
The most common methodology used for the 
purpose of demonstrating a neural network’s ef- 
fectiveness is that of simulation. This entails ver- 
ifying the proposed network’s performance in an 
empirical setting rather than from a theoretical 
standpoint. More rigorous analysis’ have been 
carried out, yielding improved results as to var- 
ious aspects of neural networks such as conver- 
gence rates and storage capacities. As of yet 
there is no common framework for analyzing the 
effectiveness of neural networks. 

Towards this end we adopt one measure of se- 
rial algorithms, namely that of serial computa- 
tional complexity and apply it to the analysis 

of neural networks. While such an analysis ig- 
nores the parallelism issues inherent in neural 
networks, it nevertheless provides us with a pic- 
ture of the computational complexity of a given 
model. Thus such a measure may serve as a 
guideline for implementation and comparison. 

We use the ubiquitous RAM (Random Access 
Machine) model [l] which may be described in 
simple terms as a Turing machine with a RAM 
(Random Access Memory). The instructions in 
this model are executed sequentially, unless con- 
trol flow is altered by the execution of a branch. 
A common instruction set is used [l] where addi- 
tion, subtraction and multiplication are included 
(among others) as elementary operations. Note 
however that the weighted sum of the artificial 
neuron requires a succession of such elementary 
steps. 

11. SERIAL COMPLEXITY OF NEURAL 
NETWORKS 

In this section we analyze various networks and 
derive their serial computational complexity. 

A. The Hamming network 
The Hamming network calculates the Hamming 
distance between the input pattern and each 
memory pattern, and selects the memory with 
the smallest distance, which is declared ‘the 
winner’. This network is the most straightfor- 
ward associative memory. Originally presented 
in [16, 17, 181, it has received renewed attention 
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Figure 1: The Hamming network 

in recent years [12, 2, 101. The Hamming net- 
work operates on binary vectors of f l  and is 
depicted in Figure 1. 

It is composed of two subnets. The lower sub- 
net, denoted the similarity subnet calculates the 
Hamming distance between the input vector and 
each memory pattern. It consists of two layers: 
An n-neuron input layer representing n-bit input 
patterns, and an m-neuron memory layer where 
each neuron represents one memory. Memory 
storage is achieved via the connection weights 
entering the neuron. The upper subnet, de- 
noted as the winner-take-all (WTA),  computes 
the memory which is at minimum Hamming dis- 
tance from the input. It consists of a fully con- 
nected m-neuron topology. The similarity sub- 
net is feedforward whereas the WTA subnet is 
iterative. 

The initialization phase of the Hamming net- 
work consists of assigning weights in the follow- 
ing manner [lo]: 

In the lower subnet: 
wij = xj/2 
15 i 5 n , l <  j 5 m 
wij is the connection weight from node i to 

node j in the lower subnet. 

~j = n/2 

0 j  is the threshold in that node. 
xi is element i of exemplar j. 

In the upper subnet: 
WTA 

1 k = l  
tr' = { -e k # I ,  e < l / m  

tkl is the connection weight from node k to 

All thresholds are zero in this subnet. 

The total complexity of this phase is O(mn + 

node 1 in the upper subnet. 
im i~ i l  
a. 

m2). 

The Run phase consists of iterating until con- 
vergence: 

15 j , k l m  
u,(t) is the output of node j in the upper net- 

work, at time t .  
ft is a threshold logic function. 
The process is repeated until convergence. At 

this time only one node remains positive. 

The total worst case parallel running time has 
been shown to be O(mln(mn)) [5]. The serial 
complexity is therefore O(m3 ln(mn)) and thus 
the total serial run time complexity is O(mn + 
m3 In( mn)). 

The total serial complexity (initialization 
phase + run phase ) of the Hamming network 
is therefore O(mn + m3 ln(mn)). 

B. The Hopfield network 
The Hopfield network ([7]) is among the most 
commonly researched neural networks and has 
been analyzed in depth. We examined an n- 
neuron, fully connected network. The initializa- 
tion phase consists of assigning synaptic weights 
[lo]: 
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D. A second order network 
High order networks, which replace the linear 
neuron with a polynomial of the form {w i  + 
object of research in recent years. It was demon- 
strated that such networks achieve improved 
learning rates ([6, 131) and increased storage ca- 
pacity ([14,3]). In many cases i t  is easier to train 
a high order network than a multi-layer network 
since training the hidden layers is more difficult 

We examined a second order, fully connected, 
two layer network composed of an n-neuron in- 
put layer and an m-neuron output layer. The ini- 
tialization phase consists of a 'one-shot' Hebbian 
rule [6] and its complexity is O(Smn2) where S 
is the size of the sample set. The run phase 
consists of a single feedforward sweep and is 
O(mn2). Thus the total complexity of the net- 
work is O(Smn2). 

111. CONCLUSIONS 
Table 1 summarizes our findings of the previous 
section. We can compare the complexities of the 
backpropagation network, for a given learn time 
of, say TIbap, with that of the second order net- 
work. Thus, O(Smn2) < O(TlaapInm) yields: 

E, W i j X j  E,k wijkxjxk + . . .} have been an 

([131). 

S is the sample set size. 
1 5 i , j  5 n 
ti, is the synaptic weight from node i to node 

xf is element i of class s exemplar and is bi- 
j. 

nary valued ("1" or "-1"). 

The complexity of this phase is O(Sn2). 

The Run phase consists of iterating until con- 
vergence: 

l < j l n  
u i ( t )  is the output of node i a t  time t .  
f h  is the hard limiter function. 
The process is repeated until convergence. 

Convergence is defined as the time at which node 
outputs remain unchanged. 

The parallel running time has been shown to 
be O(log(1ogn)) [9]. Thus the total serial com- 
plexity of the run phase is: O(n2 log(1ogn)). 

The total serial complexity of the Hopfield net- 
work is therefore O(Sn2 + n2 log(1ogn)). 

C. A multi-layer, back-propagation trained 
percepiron 

One of the most common models of neural net- 
works is that of a multi-layer back-propagation 
trained perceptron ([15]). This model has re- 
ceived wide attention ([8, 11, lo]) and has been 
studied extensively. We consider a three layer 
perceptron with n neurons in the input layer, 1 
neurons in the hidden layer and m neurons in 
the output layer. 

The complexity of the backpropagation net- 
work is due entirely to the learn phase, which 
is iterative. A forward pass is of complexity 
O(l(n + m)) while a backward pass which in- 
volves the error computations is O(1nm) and 
thus the total complexity is O(1nm) for a sin- 
gle forward and backward pass. As of yet there 
is no formal result as to the convergence rate. 

O(1) > O( *) 
TIbap 

Such a comparison reveals the point at which it 
is more efficient to use a twdayered second or- 
der network instead of a three-layered first order 
network. This point occurs when the number of 
hidden layers exceeds the number given by the 
above expression. 

It is also possible to compare the Hopfield 
model and the Hamming model. In an opti- 
mal setting (i.e. where the network's memory 
capacity is not exceeded) n = O(1ogm) for the 
Hamming network [4] and n = O(m), S = O(m) 
for the Hopfield network [9]. Thus the Hamming 
serial complexity is O(m3 log(m1ogm)) and the 
Hopfield serial complexity is O(m3), so that the 
Hopfield network's serial complexity is lower (i.e. 
better). 

The main motivation of the analysis carried 
out in this paper has been to derive a formal 
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The Hopfield network O(SnZ + nz log(1og n ) )  

Back-propagation network 
(one pass) O(1nm) 

A second order network 

Table 1: Analysis results of the networks in the 
previous section 

O(Smnz)  

computational complexity measure of neural net- 
works. Although in essence we measure the com- 
plexity of the serial implementation we feel that 
insight is gained as to the computational require- 
ments of the various networks. I t  is hoped that 
other measures will be devised which will be used 
in the formal analysis of neural networks. 
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