
A Serial Complexity Measure of Neural Networks

Moshe Sipper
Department of Computer Science
School of Mathematical Sciences
Sackler Faculty of Exact Sciences

Tel Aviv University
69978, Tel Aviv, Israel

e-mail: moshes@math.tau.oc.il

Abatract-

The most common methodol-
ogy of neural network analysis
is that of simulation since as
of yet there is no common for-
mal framework. Towards this
end we adopt one measure of se-
rial algorithms, namely that of
serial computational complex-
ity and apply it to the analy-
sis of neural networks. We an-
alyze various networks and de-
rive their complexity, thus pro-
viding insight as to their com-
putational requirements.

I . INTRODUCTION
The most common methodology used for the
purpose of demonstrating a neural network’s ef-
fectiveness is that of simulation. This entails ver-
ifying the proposed network’s performance in an
empirical setting rather than from a theoretical
standpoint. More rigorous analysis’ have been
carried out, yielding improved results as to var-
ious aspects of neural networks such as conver-
gence rates and storage capacities. As of yet
there is no common framework for analyzing the
effectiveness of neural networks.

Towards this end we adopt one measure of se-
rial algorithms, namely that of serial computa-
tional complexity and apply it to the analysis

of neural networks. While such an analysis ig-
nores the parallelism issues inherent in neural
networks, it nevertheless provides us with a pic-
ture of the computational complexity of a given
model. Thus such a measure may serve as a
guideline for implementation and comparison.

We use the ubiquitous RAM (Random Access
Machine) model [l] which may be described in
simple terms as a Turing machine with a RAM
(Random Access Memory). The instructions in
this model are executed sequentially, unless con-
trol flow is altered by the execution of a branch.
A common instruction set is used [l] where addi-
tion, subtraction and multiplication are included
(among others) as elementary operations. Note
however that the weighted sum of the artificial
neuron requires a succession of such elementary
steps.

11. SERIAL COMPLEXITY OF NEURAL
NETWORKS

In this section we analyze various networks and
derive their serial computational complexity.

A. The Hamming network
The Hamming network calculates the Hamming
distance between the input pattern and each
memory pattern, and selects the memory with
the smallest distance, which is declared ‘the
winner’. This network is the most straightfor-
ward associative memory. Originally presented
in [16, 17, 181, it has received renewed attention

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on June 15,2025 at 10:22:01 UTC from IEEE Xplore. Restrictions apply.

sippe
Rectangle

'I '2

................................
%@J

" (0 , 0 0 0 0

..................................

.................................. P Y
0 ... 0

Figure 1: The Hamming network

in recent years [12, 2, 101. The Hamming net-
work operates on binary vectors of f l and is
depicted in Figure 1.

It is composed of two subnets. The lower sub-
net, denoted the similarity subnet calculates the
Hamming distance between the input vector and
each memory pattern. It consists of two layers:
An n-neuron input layer representing n-bit input
patterns, and an m-neuron memory layer where
each neuron represents one memory. Memory
storage is achieved via the connection weights
entering the neuron. The upper subnet, de-
noted as the winner-take-all (WTA), computes
the memory which is at minimum Hamming dis-
tance from the input. It consists of a fully con-
nected m-neuron topology. The similarity sub-
net is feedforward whereas the WTA subnet is
iterative.

The initialization phase of the Hamming net-
work consists of assigning weights in the follow-
ing manner [lo]:

In the lower subnet:
wij = xj/2
15 i 5 n , l < j 5 m
wij is the connection weight from node i to

node j in the lower subnet.

~j = n/2

0 j is the threshold in that node.
xi is element i of exemplar j.

In the upper subnet:
WTA

1 k = l
tr' = { -e k # I , e < l / m

tkl is the connection weight from node k to

All thresholds are zero in this subnet.

The total complexity of this phase is O(mn +

node 1 in the upper subnet.
im i~ i l
a.

m2).

The Run phase consists of iterating until con-
vergence:

15 j , k l m
u,(t) is the output of node j in the upper net-

work, at time t .
ft is a threshold logic function.
The process is repeated until convergence. At

this time only one node remains positive.

The total worst case parallel running time has
been shown to be O(mln(mn)) [5]. The serial
complexity is therefore O(m3 ln(mn)) and thus
the total serial run time complexity is O(mn +
m3 In(mn)).

The total serial complexity (initialization
phase + run phase) of the Hamming network
is therefore O(mn + m3 ln(mn)).

B. The Hopfield network
The Hopfield network ([7]) is among the most
commonly researched neural networks and has
been analyzed in depth. We examined an n-
neuron, fully connected network. The initializa-
tion phase consists of assigning synaptic weights
[lo]:

963

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on June 15,2025 at 10:22:01 UTC from IEEE Xplore. Restrictions apply.

sippe
Rectangle

D. A second order network
High order networks, which replace the linear
neuron with a polynomial of the form {w i +
object of research in recent years. It was demon-
strated that such networks achieve improved
learning rates ([6, 131) and increased storage ca-
pacity ([14,3]). In many cases i t is easier to train
a high order network than a multi-layer network
since training the hidden layers is more difficult

We examined a second order, fully connected,
two layer network composed of an n-neuron in-
put layer and an m-neuron output layer. The ini-
tialization phase consists of a 'one-shot' Hebbian
rule [6] and its complexity is O(Smn2) where S
is the size of the sample set. The run phase
consists of a single feedforward sweep and is
O(mn2). Thus the total complexity of the net-
work is O(Smn2).

111. CONCLUSIONS
Table 1 summarizes our findings of the previous
section. We can compare the complexities of the
backpropagation network, for a given learn time
of, say TIbap, with that of the second order net-
work. Thus, O(Smn2) < O(TlaapInm) yields:

E, W i j X j E,k wijkxjxk + . . .} have been an

([131).

S is the sample set size.
1 5 i , j 5 n
ti, is the synaptic weight from node i to node

xf is element i of class s exemplar and is bi-
j.

nary valued ("1" or "-1").

The complexity of this phase is O(Sn2).

The Run phase consists of iterating until con-
vergence:

l < j l n
u i (t) is the output of node i a t time t .
f h is the hard limiter function.
The process is repeated until convergence.

Convergence is defined as the time at which node
outputs remain unchanged.

The parallel running time has been shown to
be O(log(1ogn)) [9]. Thus the total serial com-
plexity of the run phase is: O(n2 log(1ogn)).

The total serial complexity of the Hopfield net-
work is therefore O(Sn2 + n2 log(1ogn)).

C. A multi-layer, back-propagation trained
percepiron

One of the most common models of neural net-
works is that of a multi-layer back-propagation
trained perceptron ([15]). This model has re-
ceived wide attention ([8, 11, lo]) and has been
studied extensively. We consider a three layer
perceptron with n neurons in the input layer, 1
neurons in the hidden layer and m neurons in
the output layer.

The complexity of the backpropagation net-
work is due entirely to the learn phase, which
is iterative. A forward pass is of complexity
O(l(n + m)) while a backward pass which in-
volves the error computations is O(1nm) and
thus the total complexity is O(1nm) for a sin-
gle forward and backward pass. As of yet there
is no formal result as to the convergence rate.

O(1) > O(*)
TIbap

Such a comparison reveals the point at which it
is more efficient to use a twdayered second or-
der network instead of a three-layered first order
network. This point occurs when the number of
hidden layers exceeds the number given by the
above expression.

It is also possible to compare the Hopfield
model and the Hamming model. In an opti-
mal setting (i.e. where the network's memory
capacity is not exceeded) n = O(1ogm) for the
Hamming network [4] and n = O(m), S = O(m)
for the Hopfield network [9]. Thus the Hamming
serial complexity is O(m3 log(m1ogm)) and the
Hopfield serial complexity is O(m3), so that the
Hopfield network's serial complexity is lower (i.e.
better).

The main motivation of the analysis carried
out in this paper has been to derive a formal

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on June 15,2025 at 10:22:01 UTC from IEEE Xplore. Restrictions apply.

sippe
Rectangle

The Hopfield network O(SnZ + nz log(1og n))

Back-propagation network
(one pass) O(1nm)

A second order network

Table 1: Analysis results of the networks in the
previous section

O(Smnz)

computational complexity measure of neural net-
works. Although in essence we measure the com-
plexity of the serial implementation we feel that
insight is gained as to the computational require-
ments of the various networks. I t is hoped that
other measures will be devised which will be used
in the formal analysis of neural networks.

REFERENCES
G.S. Almasi and A. Gottlieb. Highly Par-
allel Computing. The Benjamin/Cummings
Publishing Company Inc., 1989.

E.E. Baum, J . Moody, and F. Wilczek. In-
ternal representations for associative mem-
ory. Biological Cybernetics, 59:217-228,
1987.

H.H. Chen, Y.C. Lee, G.Z. Sun, H.Y. Lee,
T . Maxwell, and C.L. Giles. High order cor-
relation model for associative memory. In
J.S. Denker, editor, AIP Conference Pro-
ceedings 151: Neural Networks for Comput-
ing, pages 86-99, Snowbird, Utah, 1986.

E. Domany and H. Orland. A maximum
overlap neural network for pattern recogni-
tion. Physics Letters A , 125(1):32-34, 1987.

P. Florken. The convergence of Hamming
memory networks. IEEE Trans. Neural
Networks, 2(4):449-457, July 1991.

[6] C.L. Giles and T. Maxwell. Learning, in-
variance, and generalization in high order
neural networks. Applied Optics, 26. No.
23:4972-4978,1987.

[7] J.J. Hopfield. Neural networks and physical
systems with emergent collective computa-
tional abilities. Proc. Natl. Acad. Sci. USA,
79:2554-2558, April 1982.

[SI T. Khanna. Foundations of Neural Net-
works. Addison-Wesley Publishing Com-
pany, 1990.

[9] J . Koml6s and R. Paturi. Effect of con-
nectivity in associative memory models. In
Proc. of the 29th IEEE Annual Symp. on
Foundations of Computer Science, pages
138-147, 1988.

[lo] R.P. Lippmann. An introduction to com-
puting with neural nets. IEEE A S P mag-
azine, pages 4-22, 1987.

[ll] R.P. Lippmann. Pattern classification us-
ing neural networks. IEEE Communications
Magazine, pages 47-64, November 1989.

[12] R.P. Lippmann, B. Gold, and M.L. Mal-
pass. A comparison of Hamming and
Hopfield neural nets for pattern classifica-
tion. Technical Report TR-769, MIT Lin-
coln Laboratory, 1987.

[13] T. Maxwell, C.L. Giles, Y.C. Lee, and H.H.
Chen. Nonlinear dynamics of artificial neu-
ral systems. In J.S. Denker, editor, A I P
Conference Proceedings 151: Neural Net-
works for Computing, pages 299-305, Snow-
bird, Utah, 1986.

[14] P. Peretto and J .J . Niez. Long term mem-
ory storage capacity of multiconnected neu-
ral networks. Biol. Cybern. , 54:53-63,1986.

[15] D.E. Rumelhart, G.E. Hinton, and R.J.
Williams. Learning internal representa-
tions by error propagation. In D.E. Rumel-
hart, J.L. McClelland, and the P D P Re-
search Group, editors, Parallel Distributed
Processing, Volume 1: Foundations, pages

965

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on June 15,2025 at 10:22:01 UTC from IEEE Xplore. Restrictions apply.

sippe
Rectangle

318-362. The MIT Press, Cambridge, MA.,
1986.

[16] K. Steinbuch. Dei lernmatrix. Kybernetic,
1~36-45, 1961.

[17] K . Steinbuch and U.A.W. Piske. Learn-
ing matrices and their applications. IEEE
lhnsact ions on Electronic Computers,
pages 846-862, 1963.

[18] W.K. Taylor. Cortico-thalamic organization
and memory. Proc. of the Royal Society of
London B, 159:466-478,1964.

%6

Authorized licensed use limited to: BEN GURION UNIVERSITY. Downloaded on June 15,2025 at 10:22:01 UTC from IEEE Xplore. Restrictions apply.

sippe
Rectangle

