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Abstract—We have recently presented SAFE—Solution And
Fitness Evolution—a commensalistic coevolutionary algorithm
that maintains two coevolving populations: a population of
candidate solutions and a population of candidate objective
functions. We showed that SAFE was successful at evolving
solutions within a robotic maze domain. Herein we present an
investigation of SAFE’s adaptation and application to multiob-
jective problems, wherein candidate objective functions explore
different weightings of each objective. Though preliminary, the
results suggest that SAFE, and the concept of coevolving solutions
and objective functions, can identify a similar set of optimal
multiobjective solutions without explicitly employing a Pareto
front for fitness calculation and parent selection. These findings
support our hypothesis that the SAFE algorithm concept can not
only solve complex problems, but can adapt to the challenge of
problems with multiple objectives.

Index Terms—evolutionary computation, coevolution, novelty
search, objective function, multiobjective optimization

I. INTRODUCTION

We have recently highlighted a fundamental problem recog-
nized to confound algorithmic optimization, namely, conflating
the objective with the objective function [1]. Even when the
former is well defined, the latter may not be obvious. We
presented an approach to automate the means by which a good
objective function may be discovered, through the introduc-
tion of SAFE—Solution And Fitness Evolution (SAFE)—a
commensalistic coevolutionary algorithm that maintains two
coevolving populations: a population of candidate solutions
and a population of candidate objective functions [2]. We
showed that SAFE successfully evolved solutions within a
robotic maze domain, simultaneously with the objective func-
tions needed to measure solution quality during evolution.

In this paper we perform a preliminary investigation into
SAFE’s efficacy in solving multiobjective problems, targeting
the well-known ZDT benchmark suite. With multiobjective
problems the evolutionary algorithm is tasked with optimiz-
ing more than one objective simultaneously. The objective
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function—which, as noted above, should not be conflated with
the objective(s)—thus needs to perform a “juggling act” that
balances the (multiple) objectives in an efficacious manner,
producing viable solutions. SAFE, with its inherent ability to
devise its own objective functions on the fly (as we shall see
below), is thus a good option to try out in the domain of
multiobjective optimization.

Ultimately, our goal is to employ this SAFE algorithm
concept as a machine learning (ML) algorithm for the model-
ing and discovery of complex patterns of associations, which
manifest themselves as problems with a deceptive fitness
landscape. ML has been defined as computer programs (i.e.,
algorithms) where the performance (P) on some task (T) is
improved with experience (E) [3]. However, this makes the
assumption that the P metric is both fixed and it has been
correctly selected a priori to represent T optimality. This
assumption is often violated in real-world problems leading
to bias and overfitting.

In the next section we provide a précis of multiobjective
optimization. Section III discusses coevolutionary algorithms.
Section IV presents the SAFE algorithm and describes how it
can be applied to the current domain of interest. Note that, as
opposed to many other multiobjective optimizers, SAFE does
not rely on measures of the Pareto front (i.e., a Pareto front
is not employed to calculate solution fitness, or as a standard
for selecting parent solutions to generate offspring solutions).
Experiments and results are provided in Section V, followed
by concluding remarks in Section VI.

II. MULTIOBJECTIVE OPTIMIZATION

A multiobjective optimization problem involves two or more
objectives all of which need to be optimized. For example,
think of buying a car, where the objectives are to optimize
both cost and fuel efficiency. Applications of multiobjective
optimization abound in numerous domains [4].

Consider the 2-objective ZDT problems, defined in Table I
[5], [6]. The two objectives are to minimize both f1(x) and
f2(x). This classic benchmark suite epitomizes the basic setup
of multiobjective optimization. The utility of this suite is



that the ground-truth optimal Pareto front can be computed
and used to determine and compare multiobjective algorithm
performance.

With a multiobjective optimization problem there is usually
no single-best solution, but rather the goal is to identify a set
of ‘non-dominated’ solutions that represent optimal tradeoffs
between multiple objectives. This set of solutions is also
known as the Pareto optimal set. Usually, a representative
subset will suffice.

Reviewing the state of the art, Zhou et al. [4] noted
several types of multiobjective algorithms: 1) those based on
decomposition, where the problem is decomposed into a num-
ber of scalar objective optimization problems; 2) preference-
based algorithms, where the user provides information about
preferred solutions; 3) indicator-based algorithms, where the
quality of an approximated Pareto front is measured by a
scalar indicator such as generational distance or hypervolume,
which is used to guide the search; 4) hybrid algorithms, which
hybridize different search methods; 5) memetic multiobjective
algorithms, which incorporate local search; and 6) coevolu-
tionary methods, which is the category our method fits in.

III. COEVOLUTION

Coevolution refers to the simultaneous evolution of two or
more species with coupled fitness [7]. Strongly related to the
concept of symbiosis, coevolution can be mutualistic, parasitic,
or commensalistic [8]: 1) In mutualism, different species exist
in a relationship in which each individual (fitness) benefits
from the activity of the other; 2) in parasitism, an organism of
one species competes with an organism of a different species;
and 3) in commensalism, members of one species gain benefits
while those of the other species neither benefit nor are harmed.
The idea of coevolution originates (at least) with Darwin—
who spoke of “coadaptations of organic beings to each other”
[9] (Figure 1).

A cooperative (mutualistic) coevolutionary algorithm in-
volves a number of independently evolving species, which
come together to obtain problem solutions. The fitness of an
individual depends on its ability to collaborate with individuals
from other species [7], [10]–[12].

In a competitive (parasitic) coevolutionary algorithm the
fitness of an individual is based on direct competition with
individuals of other species, which in turn evolve separately
in their own populations. Increased fitness of one of the species
implies a reduction in the fitness of the other species [13].

To the best of our knowledge, SAFE is the first coevolu-
tionary algorithm to employ a form of commensalism [2].

IV. SAFE

SAFE is a coevolutionary algorithm that maintains two
coevolving populations: a population of candidate solutions
and a population of candidate objective functions (Figure 2).
The evolution of each population is identical to a standard,
single-population evolutionary algorithm—except where fit-
ness computation is concerned. Below we describe the various
components of the system, which includes: (1) population

composition, (2) initialization, (3) selection, (4) elitism, (5)
crossover, (6) mutation, and (7) fitness computation.

Populations. SAFE maintains two coevolving populations.
An individual in the solutions population is a list of 30 real
values, each in the range given in Table I and defined by the
respective ZDT problems. .

An individual in the objective-functions population is a
list of 2 real values [a, b], each in the range [0, 1], whose
usage is described under fitness below. Population sizes and
other parameters are given in Table II (Sipper et al. [14]
provide interesting insights into parameters in evolutionary
computation).

Initialization. For every evolutionary run: both populations
are initialized to random (fixed-length) lists, wherein each
component value is in the appropriate range.

Selection. Tournament selection with tournament size 5, i.e.,
choose 5 individuals at random from the population and return
the individual with the best fitness as the selected one.

Elitism. The 2 individuals with the highest fitness in a
generation are copied (“cloned”) into the next generation
unchanged.

Crossover. Standard single-point crossover, i.e., select a
random crossover point and swap two parent genomes beyond
this point to create two offspring. The crossover rate is the
probability with which crossover between two selected parents
occurs. (Note that for an objective-function individual, which
comprises two values, if crossover occurs, it will always be,
ipso facto, at the same position.)

Mutation. Mutation is done with probability 0.4 (per indi-
vidual in the population) by selecting a random gene (of the 30
or 2, respectively) and replacing it with a new random value
in the appropriate range.

Fitness. Fitness computation is where SAFE dynamics
come into play. In SAFE, each solution individual, Si, i ∈
{1, . . . , n} is scored by every candidate objective-function
individual, Oj , in the current population, j ∈ {1, . . . ,m}
(Figure 2A). This is in contrast with a standard evolutionary
algorithm, where a population of solutions is evolved but the
objective function is fixed (Figure 2B).

A candidate SAFE objective-function individual describes a
candidate set of weights, balancing the two objectives of the
ZDT functions. The best (highest) of all calculated objective
function scores (out of the set of all individual objective
functions in the objective-function population) is then assigned
to the individual solution as its fitness value.

As noted above, an objective-function individual is a pair
[a, b]; specifically, a determines f1’s weighting and b deter-
mines f2’s weighting. Oj(Si) is the fitness score that objective
function Oj assigns to solution Si. Algorithm 1 details fitness
computation of solutions.

As for the objective-functions population, determining the
quality of an evolving objective function places us in uncharted
waters. Such an individual is not a solution to a problem, but
rather the “guide”—or “path”—to a solution. As such, it is not
clear what comprises a good measure of success. As in [2],
we turned to a commensalistic coevolution strategy, where the



(a) (b) (c)
Fig. 1. Coevolution: (a) cooperative: Purple-throated carib feeding from and pollinating a flower (credit: Charles J Sharp, https://commons.wikimedia.org/wiki/
File:Purple-throated carib hummingbird feeding.jpg); (b) competitive: predator and prey—a leopard killing a bushbuck (credit: NJR ZA, https://commons.
wikimedia.org/wiki/File:Leopard kill - KNP - 001.jpg); (c) commensalistic: Phoretic mites attach themselves to a fly for transport (credit: Alvesgaspar,
https://en.wikipedia.org/wiki/File:Fly June 2008-2.jpg).
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Fig. 2. A single generation of SAFE vs. a single generation of a standard evolutionary algorithm. The numbered circles identify sequential steps in the
respective algorithms. The objective function can comprise a single or multiple objectives. Recall, also, that we advocate not conflating objective and objective
function.
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TABLE I
TWO-OBJECTIVE BENCHMARK ZDT PROBLEMS. THE TWO OBJECTIVES ARE TO MINIMIZE BOTH f1(X) AND f2(X). THE DIMENSIONALITY OF THE

PROBLEM IS k = 30, I.E., SOLUTION VECTOR X = x1, . . . , x30

Name Problem Parameter domain

ZDT1 f1(x) = x1 [0, 1]

g(x) = 1 + 9/(k − 1)
∑k

i=2 xi

f2(x) = 1−
√
f1/g

ZDT2 as ZDT1, except f2(x) = 1− (f1/g)2 [0, 1]

ZDT3 as ZDT1, except f2(x) = 1−
√
f1/g − (f1/g) sin(10πf1) [0, 1]

ZDT4 as ZDT1, except g(x) = 1 + 10(k − 1) +
∑k

i=2(x
2
i − 10 cos(4πxi)) x1 ∈ [0, 1], x2, . . . , xn ∈ [−5, 5]

TABLE II
EVOLUTIONARY PARAMETERS

Description Value

Number of evolutionary runs 50

Maximal number of generations 3000

Size of solutions population 500

Size of objective-functions population 150

Type of selection Tournament

Tournament size 5

Type of crossover single-point

Crossover rate 0.8

Probability of mutation (solutions) 0.4

Probability of mutation (objective functions) 0.4

Number of top individuals copied (elitism) 2

Algorithm 1 Compute fitness values of solutions population
1: n ← size of solutions population
2: m ← size of objective-functions population
3: for i← 1 to n do
4: compute f1(Si), f2(Si)

5: for i← 1 to n do
6: for j ← 1 to m do
7: a′j ← aj/(aj + bj)
8: b′j ← bj/(aj + bj)
9: Oj(Si)← 1/(a′j × f1(Si) + b′j × f2(Si))

10: solutionFitnessi ← maxj Oj

objective functions’ fitness does not depend on the population
of solutions. Instead, it relies on genotypic novelty.

Novelty search was introduced by [15], the key idea being
that instead of rewarding closeness to objective, individual so-
lutions would be considered valuable if their behavior diverged
from prior solutions. Effectively, novelty search is identical
to a standard evolutionary algorithm, with the fitness function
replaced by the novelty metric. We seek novel behaviors rather
than the objective, hoping that the former will ultimately lead
to the latter.

In our case, the novelty metric is based on the objective-
function individual’s two-valued genome, [a, b]. The dis-

tance between two objective functions—[a1, b1], [a2, b2]—
is simply the Euclidean distance of their genomes, given
as:

√
(a1 − a2)2 + (b1 − b2)2. Note that this is a genotypic

novelty metric, defined by referring to the genome, as opposed
to phenotypic, behavioral novelty, used elsewhere [2].

Each generation, every candidate objective function is com-
pared to its cohorts in the current population of objective
functions and to an archive (of size 1000) of past individuals
whose behaviors were highly novel when they emerged. The
novelty score is the average of the distances to the k (= 15)
nearest neighbors, and is used in computing objective-function
fitness (Algorithm 2).

Algorithm 2 Compute fitness values of objective-functions
population

1: m ← size of objective-functions population
2: for i← 1 to m do
3: compute noveltyScoreObji
4: objectiveFitnessi ← noveltyScoreObji

Every generation each new solution is examined and added
to a Pareto front if appropriate, this front being the algorithm’s
final desired output. Note, however, that while the front is
continually updated for tracking and analysis purposes, it is
not used in any way by SAFE in fitness calculation.

V. EXPERIMENTS AND RESULTS

We performed 50 replicate runs of SAFE for each of the
four ZDT problems, ZDT1, ZDT2, ZDT3, ZDT4, recording
the evolving Pareto front as evolution progressed. In particular,
we were interested in the inverted generational distance (igd)
of the Pareto fronts evolved.

The igd is one of the leading measures used in recent
years to asses the success of a multiobjective optimizer. It
measures the distance between the true Pareto front and the
front produced by an algorithm [16]. The metric is defined as:

igd =

∑
v∈TF d(v,PF )

|TF |
where TF is the true Pareto front, PF is the front found by the
algorithm, and d(v,PF ) is the minimum Euclidean distance
(measured in objective space) between v and the solutions in



TABLE III
RESULTS OF 50 EVOLUTIONARY REPLICATE RUNS PER EACH PROBLEM.

SHOWN IS THE AVERAGE INVERTED GENERATIONAL DISTANCE (igd ) AND
STANDARD DEVIATION

Problem Inverted generational distance
ZDT1 2.06E-04 (2.12E-05)
ZDT2 2.65E-04 (3.82E-05)
ZDT3 3.81E-02 (2.48E-02)
ZDT4 1.23E-03 (4.53E-04)

TABLE IV
COMPARING SAFE’S AVERAGE igd RESULTS WITH THE BEST VALUES

REPORTED IN [17] AND [22]

Problem SAFE Cheng et al. [17] Han et al. [22]
ZDT1 2.06E-04 3.88E-03 2.81E-03
ZDT2 2.65E-04 3.85E-03 3.92E-03
ZDT3 3.81E-02 4.82E-03 4.45E-03
ZDT4 1.23E-03 3.99E-03 3.77E-03

PF ; |TF | is the cardinality of set TF . The igd measures both
the convergence and spread of the obtained Pareto solutions
along the true Pareto front [17].

Table III shows the average inverted generational distance
(igd ) of the four experiments carried out.

We compared our results with two very recent studies.
Cheng et al. [17] presented HTL-MOPSO, a novel hybrid
teaching learning based particle swarm optimization algorithm
(HTL-PSO) with circular crowded sorting (CCS). They com-
pared their algorithm to: NSGA-II [18], TV-MOPSO [19],
MOEA/D [20], and MOTLBO [21].

Han et al. [22] presented an improved multiobjective
quantum-behaved particle swarm optimization algorithm based
on double search strategy and circular transposon mecha-
nism (MOQPSO-DSCT). They compared their algorithm to:
MPSO/D [23], MOQPSO-AG [24], dMOPSO [25], SMPSO
[26], NSGA-II [18], and MOEA/D [20].

Table IV compares our average igd results with the best
values reported in these two recent works, showing the merits
of SAFE. Figure 3 shows four Pareto fronts produced by
SAFE, compared with the optimal ground truth Pareto fronts
as defined by the ZDT functions.

We find that by allowing objective function weights to
evolve in the SAFE framework, driven by ‘genotypic novelty’,
we are able to identify a Pareto optimal solution set that is
quite close to the ground-truth optimal solutions across the
full span of the front. This behavior makes sense since SAFE
evolutionary pressures for objective functions are driven by
genotypic novelty, which translates in the ZDT problems to
different objective weightings. This diverse set of objective
weightings in turn is likely to encourage the evolution of op-
timal solutions at different locations along the Pareto optimal
front.

VI. CONCLUDING REMARKS

Aiming to confront the optimization conflation problem—
where the objective is conflated with the objective function—
we separated these two entities into two populations, and

presented SAFE, a coevolutionary algorithm to evolve the two
simultaneously. Our previous work showed promising results
in a maze domain [2] and herein we presented preliminary
results that show promise in a multiobjective-optimization
domain while simultaneously demonstrating that the SAFE
concept of coevolving solutions with objective functions is
able to identify a range of Pareto optimal, non-dominated
solutions without adopting a Pareto front for fitness evaluation
or parent selection. This finding interestingly suggests that
SAFE can not only adapt to deceptive fitness landscapes but to
problems that demand multiple objectives be optimized. It also
presents an alternative strategy to generating non-dominated
multiobjective solutions outside of the Pareto front.

We realize that this work is preliminary and, hoping it leads
to new frontiers, have several avenues we wish to explore.
• The coevolutionary dynamics engendered by SAFE in

solving multiobjective problems are likely to be worthy
of study in and of themselves.

• We will adapt the SAFE concept to new problem do-
mains, particularly those that target the machine learning
modeling of complex pattens of association in biomedical
data mining. In general, we plan to identify those prob-
lems wherein the SAFE concept is not only competitive
but clearly advantageous. It is of particular interest to
demonstrate whether SAFE can adapt itself to problems
where little prior knowledge exists regarding either the
objective or the best path to said objective.

• We did not discuss computational cost herein, given
the preliminary investigative nature of this work, and
our interest in simply showing that SAFE is a viable
algorithm that produces satisfactory results. Of course,
computational cost needs to be addressed in the future.
Note that comparing multiobjective algorithms is often
far from trivial, since many exhibit various “hidden”
costs, e.g., hypervolume-based algorithms compute a
costly hypervolume measure [27] (e.g., Bezerra et al.
[28] recently noted that, “The drawback of indicator-
based approaches is the computational complexity of
some quality indicators such as the hypervolume, which
is exponential in the number of objectives in the worst
case”).

• We used a simple measure to drive objective-function
evolution in this problem domain—genotypic novelty.
Other, possibly better measures might be designed.

• Examine the incorporation of alternative, more sophisti-
cated evolutionary algorithm components into the SAFE
concept (e.g., selection, elitism, genetic operators, and
solution representation).
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