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Abstract—We focus on finding a consensus motif of a set of homologous or functionally related RNA molecules. Recent approaches

to this problem have been limited to simple motifs, require sequence alignment, and make prior assumptions concerning the data set.

We use genetic programming to predict RNA consensus motifs based solely on the data set. Our system—dubbed GeRNAMo

(Genetic programming of RNA Motifs)—predicts the most common motifs without sequence alignment and is capable of dealing with

any motif size. Our program only requires the maximum number of stems in the motif and, if prior knowledge is available, the user can

specify other attributes of the motif (e.g., the range of the motif’s minimum and maximum sizes), thereby increasing both sensitivity and

speed. We describe several experiments using either ferritin iron response element (IRE), signal recognition particle (SRP), or

microRNA sequences showing that the most common motif is found repeatedly and that our system offers substantial advantages over

previous methods.

Index Terms—Genetic Programming (GP), RNA, common motif, microRNA.
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1 INTRODUCTION

RECENT research in molecular biology has discovered
novel RNA functions which are responsible for

mediating the synthesis of proteins, regulating cellular
activities, and exhibiting enzyme-like catalysis and post-
transcriptional activities. It is commonly agreed upon that
the RNA’s secondary structure is crucial to its function-
ality. For example, microRNA molecules take part in
translational regulation. As part of the regulation process,
their secondary structure plays an important role in the
degradation of the microRNA precursor to its final
regulating form, which in turn hybridizes to the 30 UTR
of a matching mRNA sequence and thus reduces protein
synthesis [16], [17].

The importance of the secondary structure presents a
need for tools that rely on searching for common structures
rather than searching for a common alignment of se-
quences. Finding common motifs can provide information
on RNA functionality [4], [6] and help us classify RNA
families. Usually, motif finding is limited to specific parts in
the RNA’s structure (up to 100 nt) rather than trying to find
a common structure for the complete RNA molecule, which
is less conserved. This is because, sometimes, the RNA’s

functionality is based on a specifically conserved element
that it contains and not on its global structure. Therefore,
searching for a global common structure might lead to the
loss of important information.

Several methods aimed at predicting RNA secondary
structure have been devised over the years. Some methods try
to predict the structure based on a single RNA sequence [23],
[32], [49], while others are based on information gained from
multiple sequences [22], [45], culminating in the comparative
modeling approach [20]. Multiple sequence-based techni-
ques for finding common motifs can be divided into three
categories: those that perform a multiple sequence alignment
prior to the structure predictions, e.g., SLASH [15] (SLASH
combines COVE [5], a stochastic context-free grammar RNA
secondary structure prediction method, and FOLDAlign
[14], which is based on Sankoff’s algorithm [37]), those that
do not use multiple sequence alignment, e.g., comRNA [26],
and those that align the sequences during the computation,
e.g., RNAProfile [35] and CMFinder [47]. Alignment-
dependent methods fail in case no similarity is found
between the multiple sequences. In the nonalignment
category, there are recent approaches that use evolutionary
computation [9], [10], [42] because of the difficulty of the
problem. One example is GPRM [24], [25], a genetic
programming-based method that predicts a common motif
while folding the input sequences. Another example is the
approach developed by Fogel et al. [11], which takes
RNAMotif’s [31] output1 as input and uses evolutionary
computation to narrow down the list of structures. This
method is powerful as it finds the correct solution in a very
small fraction of the time it would have taken to scan the
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1. RNAMotif searches a database for RNA sequences that fold according
to a given descriptor (motif). The output is a list of the structures that
conform to the secondary structure specified by the descriptor, along with
additional information (e.g., base pairing, position in the sequence).

1545-5963/07/$25.00 � 2007 IEEE Published by the IEEE CS, CI, and EMB Societies & the ACM

Draf
t



entire output of RNAMotif. Furthermore, Fogel et al.
performed extensive experiments in order to tune the
evolutionary algorithm process by investigating the effects
of population settings and selection parameters on the
convergence of the algorithm [12].

Evolutionary computation was previously used for RNA
structure folding [2], [8], [18], [19], [38], [39], [40], [44] and
the prediction of common structures [3] using free energy
calculations. Furthermore, evolutionary algorithms were
applied to the identification of conserved regulatory RNA
structures in prokaryotic metabolic pathway genes [29].

We believe that the problem of finding a common motif
of RNA sequences, without aligning them first, is at the
level of difficulty for which evolutionary computation can
offer a substantial contribution in practice.

In this paper, we present GeRNAMo (Genetic program-
ming of RNA Motifs), an evolutionary computation system
that searches for a motif which is common to a given data set
of RNA sequences. GeRNAMo does not perform any
sequence alignment. Furthermore, the use of genetic pro-
gramming enables the system to explore the search space of
motif structures in a reasonable amount of time. We tested
GeRNAMo on various data sets with a known common motif,
as well as on RNA data sets that do not have any known
relations among them. Moreover, we compared our approach
to another genetic programming-based technique that tries to
solve motif-finding problems: GPRM [24].

In the next section, we describe the basic methods related
to RNA folding and motifs. Section 3 describes our
algorithm, followed by a presentation of experimental
results in Section 4. Finally, conclusions and future work
are summarized in Section 5.

2 METHODS

2.1 Motif Representation

We use two types of basic elements to describe a motif: a
complementary segment (i.e., Watson-Crick base-pairing of
A-U and C-G or the wobble interaction G-U), represented
by “h5” and “h3” (“h” represents a double helix, i.e.,
complementary segment, and the values 5 and 3 represent
the 50-end and 30-end, respectively). A single-strand is
represented by “ss.” An element is composed of one of
these symbols accompanied by (x:y), where x and y are the
minimum and maximum lengths of the elements, respec-
tively. Different combinations of these elements generate
different motifs. An example is given in Fig. 1.

2.2 RNAsubopt

In order to make predictions based on an RNA secondary
structure, we used RNAsubopt, a program that predicts all
suboptimal secondary structures of a given sequence based
on thermodynamics and base-pairing rules [46].

RNAsubopt, like many other RNA folding approaches,
uses a Gibbs free energy2 minimization procedure. It is
hoped that the native fold of the sequence is close to the
minimum free energy (mfe) structure. We are interested in
all suboptimal solutions because, in nature, RNA folds into

a suboptimal structure (and also because of limitations of
thermodynamic models), which may cause the mfe struc-
ture to be different from the native fold.

RNAsubopt is part of the Vienna-RNA package [21], [23].
For a given sequence, RNAsubopt calculates all suboptimal
secondary structures within an energy range above the
minimum free energy. It outputs the suboptimal structures
—sorted by mfe—in a dot-bracket notation, followed by the
energy in kcal/mol. A different method for calculating
suboptimal solutions, used in [48], was described in Zuker’s
seminal work.

Under dot-bracket notation, a dot represents an unpaired
base and a parenthesis represents a paired base. The
returned dot-brackets are then compressed to new strings
which represent the structures and consist of the different
elements in these structures.

For example, the structure in Fig. 1b is the optimal
solution (the first of RNAsubopt’s output structures) for the
sequence AAACGUAAACGUUUACGUCCACGU. Its dot-
bracket notation is:

::ðððð::ððð::::ÞÞÞ::ÞÞÞÞ

and its compressed string is similar to a motif’s representa-
tion, with each element having a specific length:

ssð2Þ h5ð4Þ ssð2Þ h5ð3Þ ssð4Þ h3ð3Þ ssð2Þ h3ð4Þ:

2.3 Naive Folding

In addition to RNAsubopt, we used a naive folding
algorithm, according to [7], [34]. We implemented a simple
dynamic programming algorithm and used two versions
that assign different scores to wobble interactions. The
naive folding algorithm scheme is:

For a pair of nucleotides (i, j) choose the maximum
among three options:

. i and j pair with each other according to the score
function Score(i, j); try to solve for ði� 1; jþ 1Þ.

. i and j do not pair; try to solve for ði; jþ 1Þ.

. i and j do not pair; try to solve for ði� 1; jÞ.
Score(i, j) is based on one of two scoring methods: 1) A-U
and G-C are assigned two points and G-U is assigned one
point or 2) G-U is also assigned two points (as in the
Nussinov algorithm). The output of this algorithm is in dot-
bracket notation.
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Fig. 1. The common motif of the sequences (a) CGCGGAGCGU-
CUCCUCGA, (b) AAACGUAAACGUUUACGUCCACGU, and
(c) GGUGGGGCUGCCCCUCCA contains an internal loop and a
hairpin, and is represented by: ss(0:2) h5(2:4) ss(1:2) h5(3:4) ss(3:4)
h3(3:4) ss(1:2) h3(2:4) ss(0:1).

2. Gibbs free energy is defined as the energy portion of a thermodynamic
system available to do work. G ¼ H� TS.



2.4 Finding a Motif Occurrence in a Sequence

Finding a motif usually requires aligning it with the sequence
in a manner that results in the best score and includes spaces
and gaps. We present a different approach where no such
alignment is required. Initially, we break down every
sequence into segments of variable lengths. A subset of
segments in the range of the motif minimum and maximum
lengths is chosen. We then iteratively go through this subset
to find segments that fold under the motif constraints. When a
motif is being compared to the segment, there is no need for
scanning or aligning—we simply compare the corresponding
elements of the motif and the compressed string representing
the segment. When elements do not match, we move on to the
next suboptimal structure of the segment or to the next
segment of the sequence until a match is found or until there
are no more segments.

For example, suppose we are looking for the hairpin
motif, ss(0:5) h5(4:6) ss(2:6) h3(4:6) ss(1:2), and we wish to
know if the sequence AAAGUUCCAGGAAGUGACUUG
CUGCGACAGUGCUCGUGUAG contains it. Fig. 2 shows
two segments of length 20. When comparing the motif with
Fig. 2a, a segment starting at position 2 of the sequence,
there is no single-strand element, a condition which satisfies
the motif’s first-element constraint (namely, ss(0)). The
second and third elements also match (h5 of length 4 and ss
of length 2), but the fourth element, h3, does not match and,
therefore, this segment cannot fold to the aforementioned
boldfaced motif. In Fig. 2b, which starts at position 3, all of
the elements match the motif constraints, indicating that the
sequence contains our hairpin motif. This procedure is used
to evaluate individuals in the evolutionary run (more
specifically, it is used to assign fitness to an individual),
as will be discussed later.

2.5 ECJ

ECJ is a freely available evolutionary computation and
genetic programming system written in Java [30]. It is
highly flexible and nearly all classes and settings can be
changed by the user. All structures in the system are
arranged to be easily modifiable. We used this package to
run the evolutionary simulation and added classes to
support our preprocessing and main algorithm.

2.6 Base-Pairing Distance

In order to compare two secondary structures, we used
RNAdistance, which is also part of the Vienna-RNA
package. It reads RNA secondary structures and calculates
a “base-pair distance” given by the number of base pairs
present in one structure—but not the other.

This method reports a difference for secondary structures
that are included in each other. For example, :::::ððð:::ÞÞÞ::::: is

included in :::ððððð:::ÞÞÞÞÞ:::, but RNAdistance reports that
the base-pairing distance is 4. We acknowledge the fact
that the two bases flanking both ends may not be counted
as base-pairing differences, but we use this method as a
measure of success in identifying the correct occurrences
of the predicted motif in the data set.

3 THE GERNAMO SYSTEM

GeRNAMo is based on genetic programming [1], [27], [28],
an evolutionary methodology inspired by biological evolu-
tion. Genetic programming (GP) is a machine-learning
technique—an evolutionary algorithm that seeks to pro-
gressively improve a population of candidate solutions. The
entire process is driven by a user-defined fitness function
that assigns a score to an individual solution in the
population in accordance with its ability to solve the
problem at hand. In genetic programming, we evolve a
population of individual LISP expressions,3 each comprised
of functions and terminals. Since LISP programs may be
readily represented as program trees, the functions are
internal nodes and the terminals are leaves. In GeRNAMo
an individual in the population is a common motif.

The genetic programming process begins by creating an
initial random set of individuals (a random population of
programs referred to as generation zero). Next, each
individual is tested for its ability to solve the problem and
assigned a fitness score accordingly. Individuals with a high
score are more likely to survive and pass on their “genetic”
material to the next generation. New individuals for the
next generation are created from the selected high-fitness
parents by applying the pseudogenetic operators of cross-
over, combining the genomes of two parents, and mutation,
randomly effecting a small change to a single parent. Over
many generations, this stochastic process often yields good
solutions. The pseudocode of the genetic programming
algorithm is given in Fig. 3.

The GeRNAMo algorithm is composed of three parts:
preprocessing, evolutionary run, and output generation.

3.1 System Parameters

In addition to the GP-related parameters, which will be
discussed later on, the system has several other parameters.
These are shown in Table 1. Except for the maximum
number of stems in the motif, all parameters are optional
and have default values.

3.2 Preprocessing

The system receives as input a data set containing RNA
sequences that are suspected of sharing a common motif. It
then performs the following actions prior to the commence-
ment of the evolutionary run:

. Each sequence is allocated to a slot in an array of
size N (N is the size of the data set).

. Each sequence is then broken down into all possible
subsequences ranging between a user-defined mini-
mum and maximum motif length (the default is
between 15 to 100 nt).
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3. Languages other than LISP have been used, although LISP is still by
far the most popular within the genetic programming community.

Fig. 2. Two segments of length 20 of the sequence AAAGUUCCAG-

GAAGUGACUUGCUGCGACAGUGCUCGUGUAG.



. A query is sent to RNAsubopt (or other external
RNA structure prediction programs), which is
capable of predicting all suboptimal secondary
structures for every subsequence. RNAsubopt’s
output includes the dot-bracket notation and free
energy value for each of the structures. This
information is stored for additional runs using an
efficient filing system.

. In addition to the external folding program, the
naive folding algorithm described in Section 2.3 can
also be used (this is a user option; see Table 1). We
recommend using this option for very short se-
quences (where the basic base-pairing rules give a
better fold than the thermodynamic model).

. RNAsubopt’s (and the naive folding’s, if selected)
output is then parsed in order to build a data
structure containing the secondary structures’ in-
formation in an efficient, compressed, and easily
comparable form. The output of RNAsubopt and the
data structure that is built using it were described in
Section 2.2.

The preprocessing stage forms an array containing all

compressed strings, ranging between the defined minimum

and maximum lengths of the given input sequences.
This idea of applying a single RNA structure predictor as a

preprocessor was also introduced in MARNA [41]. MARNA

makes a multiple alignment of RNAs by taking into

consideration both the sequence and its secondary structure

(a different problem than the one discussed in this paper), but,

whereas MARNA uses the secondary structure only to aid in

the calculations, our approach relies on the preprocessor

folding program in order to find the common motif.

3.3 Evolutionary Algorithm

To set up a genetic programming run, one needs to define

the individual representation, function and terminal sets,

fitness function, and genetic operators and parameters. The

rest of the implementation is based on ECJ. In addition, we

expanded ECJ’s classes, added classes of our own, and set

up the required parameters.

3.3.1 Individual Representation

An individual in the population is a motif, much like the

one described in Section 2.1. The representation of a motif in

the simulation is a tree, where “h5,” “h3,” and “ss” are used

as functions (i.e., internal nodes of the tree) and the element

lengths are terminals (i.e., tree leaves).
The terminal set includes:

. The end of the motif: “no element.”

. Length: “no length constraints.” The default is a
random range, proportional to the expected motif
length.

. Numerical values: “0,” “1,” “2,” “3.”

The function set includes:

. Complementary segments: “h3,” “h5”; and nonpair-
ing segments: “ss.”

. Lengths: “min length” and “max length.”

. Numerical values: “0,” “1,” “2,” “3.”

Note that numerical values are considered functions as

well as terminals since an integer number is represented as

the sum of values in the binary tree of small numbers (0-3).

This was done to increase sensitivity and diversity (for

example, a mutation of such a value will change a subtree

and not the whole number).
The tree is made up of two types of basic trees:

. A motif starting with h5 can contain a submotif (or
elements) which ends with h3 and can be followed
by a submotif, as shown in Fig. 4a.

. A motif starting with ss can only be followed by a
submotif, as shown in Fig. 4b.
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TABLE 1
System Parameters

Fig. 3. Pseudocode of the genetic programming algorithm. PopSize:

Population size, MaxGen: Maximal number of generations, and Gen:

Generation counter.



Each basic tree has a minimum and a maximum length

which makes up its “Length” property (i.e., (x:y) in

Section 2.1). The values are calculated as the sum of the

numbers in the binary tree that compose the minimum or

the maximum branch of “Length.”
An individual is a tree made up of a combination of these

two basic trees, where each basic tree is an element in the

motif representation. An example is given in Fig. 5.

3.3.2 Genetic Operators and Parameters

We experimented with different parameter settings and

evaluated the convergence rate of the algorithm as a

function of these parameters (mainly Pm, Pc, K, and

population size). We finally settled on those shown in

Table 2. The population was generated using the ramped-

half-and-half method, with minimum and maximum sizes

proportional to the motif size (the default settings were 4

and 7, respectively), and grow probability of 0.5 (these

parameters are further described in [27]).
Genetic operators are applied as follows:

. Selection: Individuals are chosen from the popula-
tion by tournament selection, which picks the
individual with the highest fitness value out of a
small group of randomly chosen individuals (in our
case, seven). It is efficient since the competing
individuals are randomly chosen and, therefore,
the algorithm is able to prevent domination of one

individual. At the same time, it allows individuals
that are not optimal in relation to the whole
population to survive, thereby enriching the genetic
diversity in the population and increasing the ability
of the population solving the given problem.

. Crossover is performed between two individuals
with probability Pc. The crossover is done in STGP
(Strongly Typed Genetic Programming [33]) style,
thus allowing only compatible parts to be crossed
over.

. Mutation is applied to each individual with prob-
ability Pm by choosing a random node in the tree
representing the individual. The subtree stemming
from that point is deleted and a new one is grown
instead.

. The offspring are inserted into the population,
thereby comprising the next generation.

3.3.3 Fitness Function

The fitness function assigns a score to an individual based
on how well it solves the problem. In our case, a high score
is given to a motif common to the majority of the
sequences in the data set. Higher fitness leads to a higher
probability of the individual’s being selected for reproduc-
tion. Our goal is to find the motif that is the most common
and preferably has the most elements. At the end of the
evolutionary run, the individual with the highest fitness
encountered throughout the run is returned as the result.

The fitness for a motif m is assigned according to the
following formulas:

FitnessðmÞ ¼MainðmÞ þ SupplementsðmÞ; ð1Þ

MainðmÞ ¼
PN

i¼1 Majorðm; iÞ
N

; ð2Þ

SupplementsðmÞ ¼
XN

i¼1

Minorðm; iÞ þMCðm; iÞ
TSðiÞ ; ð3Þ

Majorðm; iÞ ¼ModifierðmÞ � Lengthði; j; k; lÞ; ð4Þ

ModifierðmÞ ¼ ElementsðmÞ � StemsðmÞ �GeneralðmÞ;
ð5Þ

600 IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 2007

Fig. 4. (a) An “h5” basic tree. (b) An “ss” basic tree.

Fig. 5. An example individual in the evolving population, representing the

motif h5(3:6) ss(5:9) h3(3:6) ss(1:3). Note that the h3 range implicitly

equals the h5 range; otherwise, they cannot base-pair with each other.

TABLE 2
Genetic Programming Parameters



where

. i: The index of the sequence.

. j: The length of a subsequence of sequence i.

. k: The position of a subsequence of length j in
sequence i.

. l: The index of the suboptimal secondary structure
(in RNAsubopt’s output) of a subsequence in
position k and length j of the sequence i.

. Majorðmotif; iÞ: The most meaningful occurrence of
the motif in sequence i. An occurrence is discovered
using the method described in Section 2.4. We define
the most meaningful occurrence as the longest
subsequence of sequence i that folds according to
the motif constraints, with the most negative free
energy. Special cases, like a motif that is only a single
strand or a very general motif, are given a penalty.
The formulas for the calculation of Major(motif, i)
are given in (4) and (5).

. Minorðmotif; iÞ: Number of all other occurrences of
the motif in all segments of all positions in sequence i.

. MCðmotif; iÞ: Length of the longest consecutive
segment of the motif that is contained in sequence i.
This score is used in the early stages of the
evolutionary run, where it is unlikely that ran-
domly generated motifs will be common to all of
the sequences in the data set. It prevents the
situation where most of the individuals in the
population receive zero fitness, thereby hampering
evolution.

. Elements: Number of elements in a motif.

. Stems: Number of complementary segments in a
motif. We can provide a bonus to motifs containing
specific numbers of stems when we have prior
knowledge of the common motif.

. Lengthði; j; k; lÞ: Length of segment checked (the
lth suboptimal solution of a segment in position k
and length j of sequence i).

. General: Reflects the generality of the motif. The
user can specify the level of generality and, accord-
ing to the level chosen, a different penalty function is
calculated. We currently support four levels:

1. maximum generality: no penalty is given,
2. moderate generality 1: the penalty is calculated

based on the differences between the motif’s
range and the lengths of the sequences in which
it occurs, by calculating the minimum and
maximum length over all of the occurrences,

3. moderate generality 2: the penalty is calculated
based on the differences between the motif’s
range and the lengths of the sequences in which
it occurs, by calculating the average length over
all of the occurrences, and

4. high specificity: the penalty is calculated based
on the lengths of the elements in the motif.

. Modifier: The number of elements in the motif
multiplied by the number of stems minus the
penalty (if one exists) for the generality of the motif,
according to the generality level.

. N : Total number of sequences in the data set.

. TSðiÞ: Total number of segments of all lengths and
all indexes of a sequence.

3.4 Output

At the end of the evolutionary run, when the best solution

(a motif) has evolved, the system returns every occurrence

of the motif in all the sequences of the data set. When the

data set contains many sequences or very long sequences,

or when the motif is very general, we use the following

filters to reduce the size of the output file:

. When an occurrence is returned, the surrounding
occurrences within several nt are not returned. This
is because, had they indeed been folded according to
the motif, they would have had the same secondary
structure and very similar sequences.

. Using thermodynamics as a filter, return only
occurrences with free energy below a certain value.

4 RESULTS

We experimented with four data sets. The first was used in

SLASH [15] and GPRM [24], the second was used by Fogel

et al. [11], the third was used in RNAProfile [35], and the

fourth was constructed by us. GeRNAMo’s results were

compared to GPRM in all cases, in addition to a comparison

with the work from which the data set was taken. All of our

experiments were done using the default system para-

meters, except for the parameter “Maximum number of

stems in the motif,” which was set to four for the microRNA

data set and two for all other data sets. We specifically

mention any other parameter change (e.g., use of naive

folding) in the appropriate section.
Two aspects of the results are presented:

. The evolved common motif, found by GeRNAMo.

. The occurrence of the evolved motif in each
sequence in the data set. Each sequence contains a
segment (or more) that folds according to the motif
constraints (in terms of element types and lengths).
The occurrence is the secondary structure of this
segment.

Supplemental data is available at http://www.cs.bgu.

ac.il/~mshaha/GeRNAMo.html.

4.1 Ferritin IRE-Like 1

This data set contains 56 Ferritin IRE-like (Iron Response

Element [13], [43]) sequences, as described in [15], [24]. The

motif presented in [15] is h5(5:5) ss(1:1) h5(5:5) ss(6:7)

h3(5:5) h3(5:5) and it will be regarded as the known motif.

The corresponding secondary structures in dot-bracket

notation are given in Fig. 6.
We ran a total of 50 runs, of which most produced good

common motifs, representing the IRE-like motif. The best
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Fig. 6. IRE consensus structure motif of the IRE-like data set.



motif predicted by GeRNAMo is: h5(4:6) ss(1:2) h5(4:6)

ss(6:7) h3(4:6) h3(4:6).
Out of the 56 sequences in the data set, this motif occurs

in 43 sequences in the right positions (i.e., the occurrence is
the IRE motif segment). According to RNAsubopt and
Mfold, the other 13 sequences do not contain the segments
with the secondary structure that was described in [15], [24]
(the IRE consensus structure motif). Because we used
RNAsubopt as our folding program, these occurrences
were not found, but the evolved motif is correct. A sample
output is given in Fig. 7 and a typical secondary structure of
IRE is given in Fig. 8.

Because of the simplicity of IRE, we used the naive
folding algorithm described in Section 2.3 in addition to
RNAsubopt. With the added folding possibilities of the
sequences, the motif occurred (in the correct positions) in all
sequences but two.

We compared the base-pairing distances (as described in
Section 2.6) of the occurrences of the motif predicted by
GeRNAMo with the correct occurrences of the known motif
(from [15]). We also compared the base-pairing distances of
GPRM’s [24] results to the occurrences of the known motif.
The motif predicted by GPRM is: h5(5,8) ss(1,1) h5(5,5)

ss(6,7) h3(5,5) ss(0,0) h3(5,8).
As can be seen from Table 3, our results are closer to the

known occurrences than GPRM results (despite the fact that
the base-pairing distance measure reports a difference for
included structures, it still reflects how similar our occur-
rences are to known occurrences versus GRPM’s results).
Table 4 displays the average base-pairing distances of both
GPRM and GeRNAMo versus the known secondary
structure of the IRE motif (note that GPRM has only one
set of results that is compared to both sets of GeRNAMo—
with and without naive folding).

4.2 Signal Recognition Particle (SRP)

This data set was used in experiment 5 in Fogel et al. [11]. It
contains five full-length sequences for 4.5S/7S rRNA
(obtained from GenBank) from the following species, with
the indicated NCBI “gene-info” (gi) sequence identifiers:
Archaeoglobus fulgidus (38795), Bacillus subtilis (216348),
Escherichia coli, (42758); H.sapiens, (177793); Methanococcus
voltae (150042).

The problem addressed by Fogel et al. is different than
the one addressed in this paper. Unlike RNA secondary
structure predictors, given a descriptor, RNAMotifs aims at
identifying all RNA structure elements that comply with
the descriptor’s constraints. Fogel et al.’s method was
designed to screen the numerous candidate motifs pro-
duced by RNAMotifs and to find the correct solution in a
fraction of the time it would have taken for exhaustive
comparisons. This method does not perform any prediction,
whereas GeRNAMo predicts the common motif based on
the sequences in the data set.

To test our approach we used GeRNAMo to discover the
common motif in the data set and compared it to the
descriptor that was used by Fogel et al. The goal was to use
GeRNAMo to predict the descriptor used by Fogel et al.—a
predesigned motif—without any prior knowledge (other
than the maximum number of stems: two).

We ran a total of 50 runs, of which most produced good
common motifs, representing the SRP motif. The best motif
predicted by GeRNAMo is:

h5ð3 : 4Þ ssð4 : 5Þ h5ð3 : 4Þ ssð4 : 5Þ h3ð3 : 4Þ ssð4 : 5Þ
h3ð3 : 4Þ:

The descriptor that was used by Fogel et al. is given in Fig. 9
and, in our representation,

h5ð3 : 3Þ ssð3 : 5Þ h5ð3 : 3Þ ssð4 : 6Þ h3ð3 : 3Þ ssð3 : 5Þ
h3ð3 : 3Þ:

One can easily see that the motif and the descriptor are
very similar.

We also compared Fogel et al.’s top bin structures with
GeRNAMo’s output—the occurrences of the motif. As can
be seen from Table 54 and Fig. 10, the results are identical.

In addition, we submitted this data set to GPRM, with
the default parameters which should allow discovery of the
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4. The results described in Table 5 are identical to the results described in
Fogel et al. for the SRP data set. The original table is given in the
supplemental data.

Fig. 7. A sample output of the occurrences of the motif predicted by

GeRNAMo for the IRE-like data set. (a) seqM60170.1 (no. 3).

(b) seqAF161708.4 (no. 47). (c) seqJ04716.4 (no. 49).

Fig. 8. A typical secondary structure of IRE (seq D28463.1 in the data

set).



motif described above (Pair number: 2; Base pairing size:

min 3, max 8; Nonpairing size: min 0, max 10). The motif

that was predicted by GPRM is: h5(3,5) ss(0,3) h5(7,9)

ss(0,3) h3(3,5) ss(5,7) h3(7,9). This motif is very different

from both the descriptor of the SRP motif (from Fogel et al.)

and GeRNAMo’s predicted motif. Furthermore, GPRM’s

results (given in Fig. 11) are very different from Fogel et al.’s

and GeRNAMo’s top occurrences.
We also used Mfold to predict the secondary structure of

the sequences in GPRM’s results and these structures do not

comply with the SRP motif or with GPRM’s predicted motif

(full structures are given in the supplemental data). These

results indicate that GPRM fails to discover the SRP motif in

this data set.

4.3 Ferritin IRE 2

This data set was used in RNAProfile [35] in the discovery
test. It was built by retrieving the full mRNA sequences of
human ferritin (light and heavy chain) and of aminolevu-
linate synthase 2, as well as their mouse homologs from
GenBank. In addition, the mRNA sequences of three human
ferritin pseudogenes were added to the data set. The
sequence lengths ranged between 800-2,000 nt.

Fig. 12 shows the highest-scoring motif occurrences
output by RNAProfile on the IRE data set. These results
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TABLE 3
Base-Pairing Distances

The occurrences of the motif predicted by GeRNAMo and GPRM were compared to the known secondary structures of the segments containing the
IRE motif. This table shows a comparison of the base-pairing distances, where results in boldface indicate a smaller base-pairing distance, which
are, hence, favorable to the method. (The sequences AF068224.2 and D28463.4, not shown in the table, do not contain our motif according to
RNAsubopt and our naive folding algorithm implementation. The naive method used by GPRM apparently discovers these occurrences, but, as will
be discussed later, at the expense of failing to find logical motifs in more complicated data sets (see Fig. 17).)

TABLE 4
Base-Pairing Average Distances

Fig. 9. The descriptor used by Fogel et al. [11] to screen the SRP data

set for structures using RNAMotif.



show that RNAProfile was capable of identifying the IRE in
the correct sequences. Moreover, the motif instances
reported in the pseudogenes have a much lower score
and are thus very unlikely to be real IRE instances.

We ran a total of 50 runs, of which most produced good
common motifs, representing the IRE motif. The best motif
predicted by GeRNAMo is: ss(0:1) h5(3:4) ss(0:1) h5(4:5)
ss(3:6) h3(4:5) h3(3:4) ss(0:1). A full output is given in Fig. 13.
The results for all six real genes are identical between
GeRNAMo and RNAProfile. These results show that GeR-
NAMo, like RNAProfile, found the IRE in all six genes.

Regarding the pseudogenes, GeRNAMo did not find
occurrences of the predicted motif in these sequences
because of the specificity of the motif (for instance, the
motif’s constraints do not allow a single unpaired base
between the h3s, as in the last two sequences in the data set;
see Fig. 12). This is a reasonable result because a functional
IRE motif may not occur in these particular pseudogene
sequences as the RNAProfile results also suggest.

In addition, we submitted this data set to GPRM for several
runs, with the default parameters which should allow
discovery of the motif described above (Pair number: 2; Base
pairing size: min 3, max 8; Nonpairing size: min 0, max 10).
Because GPRM only accepts sequences with length smaller
than 1,000 nt., we shortened the original input at the end of
each sequence at a position far beyond the occurrence of the
motif (each sequence still contained the motif) and removed
the three pseudogenes. Therefore, the input given to GPRM

was less complicated (shorter, no noise from the pseudo-
genes). We also tested this input with GeRNAMo and our
results were unchanged from the full input case.

GPRM predicted two types of different motifs over these
runs, represented by the following motifs:

1. h5(5,9) ss(4,8) h5(5,6) ss(2,6) h3(5,6) ss(0,4) h3(5,9),
2. h5(5,10) ss(2,7) h3(5,10) ss(6,10) h5(4,8) ss(0,2)

h3(4,8).

Both of GPRM’s predicted motifs are very different from
the IRE motif discovered by RNAProfile and predicted by
GeRNAMo; GPRM fails to discover this motif. Fig. 14
displays an example of GPRM’s results (corresponding to
the second motif; GPRM’s full results are given in the
supplemental data).

4.4 microRNA

The fourth data set contains 25 microRNA precursor
sequences from the human genome. This data set was
derived from the Sanger microRNA database [16], [17], [36].
The database was searched for human microRNA pre-
cursors and reduced to 25 precursors containing four
double-stranded elements. Each sequence in the data set
is the microRNA surrounded by its flanking genomic
sequence. Although containing the same number of
complementary segments, the range of the elements’
lengths is very large, a fact that leads to a general common
motif. This was done in order to make it difficult for
GeRNAMo to find a common motif. The sequences are
given in Table 6.

The motif of the data set is:

ssð0:4Þ h5ð2:15Þ ssð0:4Þ h5ð1:24Þ ssð0:3Þ h5ð1:23Þ
ssð0:3Þ h5ð2:11Þ ssð3:14Þ h3ð2:11Þ ssð0:9Þ
h3ð1:23Þ ssð0:3Þ h3ð1:24Þ ssð0:5Þ h3ð2:15Þ ssð0:5Þ:

We ran a total of 50 runs, of which most produced good
common motifs. The best motif predicted by GeRNAMo is:
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TABLE 5
Fogel et al.’s Top Bin Structures of the SRP

(Signal Recognition Particle) Motif

Fig. 10. GeRNAMo’s results of the SRP data set.

Fig. 11. GPRM’s results for the SRP data set.
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Fig. 13. GeRNAMo’s results for the IRE(2) data set (results for the three pseudogenes are not shown).

Fig. 12. RNAProfile’s results for the IRE(2) data set.



ssð0:16Þ h5ð1:15Þ ssð0:5Þ h5ð2:17Þ ssð1:3Þ h5ð3:23Þ
ssð0:16Þ h5ð3:11Þ ssð3:14Þ h3ð3:11Þ ssð0:6Þ h3ð3:23Þ
ssð0:6Þ h3ð2:17Þ ssð0:6Þ h3ð1:15Þ ssð0:20Þ:

This motif has the same structure as the known motif and

similar elements’ length ranges (the main differences are in

the length of the single strand elements and the length of

the third stem).
Out of the 25 sequences in the data set, this motif occurs

in 20 sequences at the correct positions. The reason that the

motif does not occur in all of the sequences is that this data

set contains sequences with a very wide range of lengths

and GeRNAMo tries to reduce the generality of the motif

(general individuals are penalized by the fitness function).

As a consequence, it misses some marginal sequences with

extreme length values. Out of the 20 occurrences, 17 occur-

rences completely match the known secondary structure (in

terms of exact position in the sequence, element types, and

lengths equal to those in the data set) and three occurrences

have a base-pairing distance of 4. A sample output with

comparison to the known secondary structure is given in

Fig. 15 (for more detailed results, see the supplemental

data). A typical secondary structure of four complementary

segments is given in Fig. 16.
When we reduced the penalty for the motif’s generality,

GeRNAMo predicted a more general motif that occurred

correctly in all 25 sequences. In the reduced-penalty case,

GeRNAMo predicted the correct motif:
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Fig. 14. GPRM’s results for the reduced IRE(2) data set.

TABLE 6
MicroRNA Data Set, Taken from the Sanger MIRbase [36]

aGenomic coordinates are the location of each sequence in the genome.



ssð0:15Þ h5ð1:21Þ ssð0:15Þ h5ð2:25Þ ssð0:13Þ
h5ð0:25Þ ssð0:16Þ h5ð0:13Þ ssð2:24Þ h3ð0:13Þ
ssð0:22Þ h3ð2:25Þ ssð0:15Þ h3ð2:25Þ ssð0:10Þ
h3ð1:21Þ ssð0:20Þ:

This motif retains the same secondary structure as the more

specific motif, but it varies in the length ranges of its
elements, thus allowing it to occur at the correct position in
all of the sequences in the data set.

We submitted this data set to GPRM, trying several
parameter combinations to achieve good performance. Two

of the motifs that were generated by GPRM were:

. h5(3:20) ss(2:12) h5(9:20) ss(0:14) h3(3:20) ss(0:15)
h5(3:7) ss(0:13) h5(3:6) ss(0:13) h3(9:20) ss(0:7)
h3(3:7) ss(0:6) h3(3:6).

. h5(6:14) ss(0:19) h3(6:14) ss(0:15) h5(16:35) ss(0:20)
h5(6:13) ss(0:16) h3(16:35) ss(0:5) h5(5:14) ss(6:15)
h3(6:13) ss(0:2) h3(5:14).

These motifs represent a pseudoknot secondary struc-

ture, which is a false positive. Fig. 17 shows a secondary

structure of a pseudoknot, according to the first result
generated by GPRM. These results show that GPRM fails to
detect a common motif in the microRNA data set, whereas
GeRNAMo succeeds convincingly.

In addition, we submitted this data set to RNAProfile
[35]. We used several sets of parameters which included the
default parameters and length parameters that comply with
the microRNA motif length (maximum 100 nt.). RNAProfile
was not successful at building a profile of the microRNA
motif and the profiles it returned were of much smaller
length. RNAProfile’s results on this data set can be found in
the supplemental data.

These results indicate that GPRM and RNAProfile are
not capable of identifying long motifs in microRNA.
GeRNAMo outperforms these methods in this regard,
although RNAProfile is successful at building a profile for
shorter motifs.

5 DISCUSSION AND FUTURE WORK

We described a genetic programming approach for finding
a motif that is common to a set of given RNA sequences.
Our experiments have shown that GeRNAMo is able to find
common motifs of any size for a given data set. We
compared our results with other approaches that deal with
the same problem on the same data sets. We also compared
our method with approaches that deal with a different
problem and explained how the comparison was made.

Section 4.1, involving the Ferritin IRE-like data set (that
was used in SLASH [15] and GPRM [24]), shows that the motif
predicted by our approach is similar to the known motif.
However, the motif occurs only in 43 out of 56 sequences
without naive folding. This is due to the fact that we use
RNAsubopt to fold the subsequences and the remaining
sequences’ secondary structure (according to RNAsubopt
and also according to Mfold [49]) are different from this
motif. RNAsubopt provides a good estimate for the best
folding of a sequence by giving suboptimal solutions in the
proximity of the minimum free energy, thereby providing a
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Fig. 16. The secondary structure of hsa-mir-30c-2 (MI0000254).

Fig. 17. A graphic presentation of the secondary structure given by:
h5(5) ss(9) h5(9) ss(0) h3(5) ss(0) h5(7) ss(12) h5(6) ss(10) h3(9)
ss(7) h3(7) ss(4) h3(6), which folds to the motif that was predicted by
GPRM (a single strand element that does not exist in the drawing, but
complies with the motif’s constraints—“ss(0:x)” is marked by “ss(0)” in
the above structure). This is a pseudoknot secondary structure which is
not known to exist in microRNAs.

Fig. 15. MicroRNA sample output. Comparison between 1) the known

secondary structure and 2) the occurrence of the evolved motif in the

sequence. (a) hsa-mir-1-1. (b) hsa-mir-155. (c) hsa-mir-378.



variety of candidates to choose from. Using thermodynamic
values is important because naive folding does not always
provide good estimates for the secondary structure. We
chose ViennaRNA’s RNAsubopt because it is a widely used
folding program that was easier for us to utilize. However,
our system is capable of using any folding program in the
preprocessing stage. For this data set, we used naive folding
in addition to RNAsubopt’s results. The results were better
with naive folding: 54 occurrences out of 56 in the Ferritin
IRE-like example because the motif is short and simple.

Section 4.2, involving the SRP motif, shows that
GeRNAMo was able to predict the motif that was designed
by Fogel et al. without prior knowledge except for the
maximum number of stems. Furthermore, GeRNAMo’s
results are identical to Fogel et al.’s top bin structures.
GPRM failed to discover this motif.

Section 4.3, involving the ferritin IRE data set that was
used in RNAProfile [35], shows that GeRNAMo was able to
discover the common motif of the six real genes in the data
set, despite the fact that this data set contained three more
sequences that did not contain the IRE motif. GeRNAMo’s
motif and motif occurrences in the six genes are identical to
RNAProfile’s results. The results obtained by GPRM are
very different from those of RNAProfile and GeRNAMo
and it failed to discover this motif.

Both Sections 4.2 and 4.3 show that short sequences do
not always fold according to the naive folding algorithm.
RNAsubopt provided the correct results while the naive
Watson-Crick base pairing—also used in GPRM—failed.

Section 4.4, involving the microRNAs data set, also
shows that the motif predicted by our approach is similar to
the known motif. Here, it is apparent that using a robust
folding program is necessary. RNAsubopt provided similar
results to the known secondary structure [36] and the
reason that not all occurrences of the motif were found is
that the data set contains a very broad range of stem-
lengths, while GeRNAMo tries to increase the specificity of
the motif. Despite the fact that not all occurrences were
found and that this data set is general, a correct motif was
found. When we reduced the penalty for the generality of
the motif, a more general motif was found which occurred
in all of the sequences in the data set. This demonstrates a
notable trade-off between a general and more common
motif and a less common but more specific motif.

In our present work, we have tried to improve upon
previous works, especially that of GPRM [24]. Although we
do not yet support pseudoknots, as does GPRM, GeRNAMo
has the following advantages:

. GPRM uses only Watson-Crick base pairing to fold
the sequences, while GeRNAMo can use any folding
prediction method, in addition to an internal
implementation of naive folding based on Watson-
Crick base pairing and wobble interaction. Section 4.4
illustrates the significance of thermodynamic con-
siderations in more complicated sequences as GPRM
fails in the microRNA motif prediction (as well as
the SRP and IRE2 motifs).

. GeRNAMo allows the user an option to choose
between levels of generality of the motif by using
different penalty functions for general motifs or not
using a penalty function at all.

. GeRNAMo does not restrict the length of the RNA
sequences in the data set. It does not limit the
number of stems or each element’s length in the
motif. Thus, we take advantage of the flexibility that
evolutionary computation allows.

. With regard to prior knowledge, both GPRM and
GeRNAMo use the maximum number of stems in
the motif. In addition, GPRM requires some knowl-
edge of the length of the complementary and
noncomplementary elements in the motif, while
GeRNAMo only requires the range of lengths of
the whole motif and uses the default of (15:100)
when such input is not given.

There are a number of avenues we propose to pursue in the
future for GeRNAMo’s extension. The first is to support
pseudoknots, which involves making some changes to the
representation. The second is to improve the filtering
methods made on the output, based on biological experience.
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