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rent engineering capabilities. Nature is the grandest engineer known to man-though

a blind one at that: her designs come into existence through the slow process, over mil-

lions of years, known as evolution by natUral selection [2]. As put forward by Charles

Darwin in his 1859 masterpiece, On the Origin of Species, evolution is based on "...one

general law, leading to the advancement of all organic beings, namely, multiply, vary, let

the strongest live and the weakest die." [1].
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hemer one looks outside the window or stands in

&ont of a mirror, nature's work is evident in all its

glory. Be it a pine tree, a flea, or a human being,

nature has designed highly complex machines, the

construction of which is still well beyond our cur-
Draf
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The evolutionary p~ is based on four basic
principles:

. Individual organisms vary in viability in the envi-
ronments that they occupy.. This variation is heritable.

. Individuals tend to produce mole offspring than
can survive on the limited resources available in the
environment.. In the ensuing struggle for survival, the
individuals best adapted to the environment are
the ones mat will survive to reproduce.

The continual workings of this process over
the millennia cause populations of organisms to
~ge. generally becoming better adapted to their
enVIronments.

Evolution has not only produced ingenious solu-
tions to specific problems--for example. structUral
designs such as eyes or wing.t-but indeed has found
(and founded) entirely new processes to aid in the
emergence of complex organisms. Two of the most
important ones are ontogmy and /earning.

Most natural organisms consist of nwnerous ele-
mental units called cells (for example. a human
being is composed of

approximately sixty
trillion cells). Each
and every cell con-
tains the entire plan of the
organism. known as the gmoml': a
one-dimensional chain of deoxyribonu-
cleic acid (DNA) that contains the
instructions necessary for the making of the
individual. Known also as multicellular organisms.
they develop through the process of ontogeny.
which involves the successive divisions of a fertilized
mother cell, ultirnatdy resulting in a complete
being. The genome--or gmolypt'--mus gives rise to
the so-called phmotypl': the mature organism that
emerges from the ontogenetic process. The geno-
type-phenotype distinction is fundamental in
nature: while it is the phenotype that is subjected to
the survival battle. it is the genotype that retains the
evolutionary benefits.

Ontogeny can be viewed as one of nature's
tricks for combating the information explosion
inherent in. the definition of a complex design:
rather than de6ne a one-to-one plan (a homuncu-
lus). nature uses a compressed definition that is
more akin to a recipe or a construction program.
Further compression can be attained by introduc-
ing the process of learning. The organism that

emerges from the ontogenetic process is not fully
equipped to handle every aspect of its daily exis-
tence, but rather proceeds to improve its behavior
by learning how to cope with new sitUations as
r;bey are encountered (this is most notable among
mammals). The introduction of learning reduces
the amount of information that needs to be
encoded in the genome.

Over the past few years a growing number of
computing scientists and engineers have been turn-
ing to natUre, seeking inspiration to augment the
capabilities of their artificial systems. In a recent
paper [10], Sipper et al. noted that such bio-inspirrJ
systems can be partitioned along three axes, corre-

sponding to the three processes mentioned
previously: phylogeny (evolution),
ontogeny, and epigenesis (learning); they
dubbed this the POE model. While
research in this area can be traced back to
dte 1950s, when the first computers
were used to carry out simulations
based on these ideas, much of the

recent work is centered on the con-
struction of actual hardware
devices.

The ultimate goal of
bio-inspired system engineers is
to create more adaptive systems,
in which .adaptive" refers to a

system's ability to undergo modifi-
cations according to changing circum-

stances, thus ensuring its continued
functionality. One often speaks of an envi-

ronment and of a system's adjustment to changing
environmental conditions. The fact that hardware
evolves is perhaps not surprising in and of itself,
after all, the Intel 80x86 .species" evolved from a
mere 29,000 transistors in 1978 (the 8086) to
7 ,500,000 transistors in 1997 (the Pentium II), not
to mention the many funaionalities that have been
added over the years. I Thus, the processor has

adapted to its environment, which is, ultimately, the
users. This evolutionary process involves what is
sometimes referred to as the "hand of God": the
engineer who designs the chip. WIth bio-inspired
hardware the aim is to reduce the amount of human
design necessary. The ultimate goal is to build a sys-
tem that will evolve, develop (in an ontogenetic
sense). and learn-in short, adapt~n its own, that
is, with no human intervention. As an example,
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imagine some future chip family that evolves on its
own from the "8086" epoch to the "Pentium"
epoch. Obviously, it will need to be equipped with
the ability to accrue additional material resources (as
with natural evolution); what is far from obvious at
this point is how to induce this kind of ability. In
summary, we want to replace the human engineer
with a blind yet potentially more powerful one.

There is still a long road to travel before we can
create an autonomously evolving system. Our intent
in this article is to describe a number of current
milestones, and to trace some of the possible devel-
opments of the near future.

From Carbon to Silicon:
Configurable Circuits
Within the field of bio-inspired hardware, a major
enabling technology is that of configurable circuits,
and especially field-programmable gate arrays, or
FPGAs. FPGAs, which have been coming of age
over the past few years, are large, fast integrated cir-
cuits that can be modified or configured at almost
any point by the end user [12].

The primary distinction that this technology
brings about is that between programmabk circuits
and configurabk ones [7]. A programmable circuit
ceasdessly iterates through a three-phase loop, where
an instruction is first fttched from memory, after
which it is decoded, then to be passed on to the final
execute phase. The execute phase may require several
clock cycles; the process is then repeated for the next
instruction, and so on. A configurable circuit, on the
other hand, can be regarded as having a single, non-
iterative fetch phase: the so-called configuration
string, fetched from mem-
ory, requires no further
interpretation, and is
directly used to configure
the hardware. No further
phases or iterations are
needed, as the circuit is now
configured for the task at
hand. The ability to control
the hardware in such a direct
manner is a double-edged
sword: the user is able to

der range
with the

price to be paid being a
more arduous design task.

Within the domain of
configurable computing
one can distinguish between
two types of configuration
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strings: static and dynamic [7]. A static configura-
tion string, aimed at configuring the circuit to per-
form a given function, is loaded once at the outset,
after which it does not change during the execution
of "the task at hand. Static applications are mainly
aimed at attaining the classic goal in computing:
that of improving performance, either in terms of
speed, resource utilization, or area usage. Dynamic
configurability involves a configuration string that
can change during execution of the task at hand.
Dynamic systems are able to undergo modifications
according to changing circumstances, thus continu-
ing to function within their dynamic environments.
As such, they represent an excellent substrate for
implementing the adaptive systems discussed in this
article.

Figure I. The Firefly evolware board. The system is an evolv-
ing. one-dimensional. non-uniform cellular automaton. Each of
the S6 cells contains a genome that represents Iu rule table;
these genomes are initialized randomly. to be subjected to
evolution. The board contains the following components: (I)
LED indicators of cell states (top), (2) switches for manually
setting the initial states of cells (top, below LEOs), (3) Xilinx
FPGA chips (below switches), (~) display and knobs for con-
trolling two parameters ('time sups' and 'configurations') of
the cellular programming algorithm (bottom left). (S) a syn-
chronization indicator (middle left), (6) a dock pulse genera-
tor with a manually adjustable frequency from 0.1 Hz to I MHz
(bottom middle), (7) an LCD display of evolved rule tables
and fitness values obtained during evolution (bottom right).
and (8) a power-supply cable (extreme left). (Note that the
latter is the system's sole external connection.)



The ultimate
system engineers is to create more adaptive systems, in

which "adaptive" refers to a system's ability to undergo

modifications according to changing circumstances,

thus ensuring its continued functionality.

Two Examples of Current-Day
Bio-inspired Hardware
In the following section we will describe two
dynamic systems inspired by two of the processes
outlined previously: evolution and ontogeny. Learn-
ing hardware, as well as more in-depth expositions of
the systems discussed herein can be found in the
recent book by Mange and Tomassini [4].

E'I1ol11ing htmlwlIre: The Firefly mAChine. The
idea of applying the biological principle of natural
evolution to anificial systems, introduced more than

four decades ago, has experienced impressive growth
in the past few years. Usually grouped under the term
evolutionary algorithms or roolutionary computation,
are the domains of genetic algorithms, evolution
strategies, evolutionary programming, and genetic
programming [6]. As a generic example of artificial

evolution we consider genetic algorithms.
A genetic algorithm is an iterative procedure that

involves a constant-size population of individuals,
each one represented by a finite string of symbols-
the genome--encoding a possible solution in a given
problem space. This space, referred to as the search
space, comprises all possible solutions to the prob-
lem at hand. The algorithm sets out with an initial
population of individuals that is generated at ran-

dom or heuristically. In every evolutionary step,
known as a generation, the individuals in the current
population are decoded and evaluated according to
some predefined quality criterion, referred to as the
fitness function. To form a new population (the next
generation), individuals are selected according to
their fitness and transformed via genetically inspired
operators, of which the most well known are
cross~ ("mixing" two or more genomes to form

novel offspring) and mutation (randomly flipping
bits in the genomes). Iterating this evaluation-selec-
tion-crossover-mutation procedure, the genetic alg0-
rithm may eventually find an acceptable solution,
that is, one with high fitness.

goal iredof bio-insp

Evolutionary algorithms are common nowadays,
having been successfully applied to numerous prob-
lems from different domains. including optimiza-
tion, automatic programming, circuit design,
machine learning, economics, immune systems,
ecology, and population genetics, to mention a few.

One of the recent uses of evolutionary algorithms
is in the burgeoning fidd of evolvable hardware.
which involves, among others, the use of FPGAs as
a platform on which evolution takes place [8, 10].
The Firefly machine is one such example; our goal in
constructing it was to demonstrate a system in which
all evolutionary operations (fitness evaluation, selec-
tion, crossover, and mutation) are carried out online,
that is, in hardware [9, 10].

Firefly is based on the cellular automata model, a
discrete dynamical system that performs computa-
tions in a distributed fashion on a spatially extended
grid [9]. A cellular automaton consists of an array of
cells, each of which can be in one of a finite number
of possible states, updated synchronously in discrete
time steps according to a local. idmtical interaction
rule. The state of a cell at the next time step is deter-
mined by the current states of a surrounding neigh-
borhood of cells. This transition is usually specified
in the form of a rule table, ddineating the cell's next

state for each possible neighborhood configuration.
The cellular array (grid) is n-dimensional, where
n= 1, 2, 3 is used in practice. Here, we consider a
one-dimensional grid, in which each cell can be in
one of two states (0 or 1). and has three neighbors
(itsdf, and the cells to its immediate left and right);
the rule table thus comprises eight bits since there

are eight possible neighborhood configurations.
Non-uniform cellular automata have also been con-
sidered; for these the local update rule need not be
identical for all grid cells [9].

Based on the cellular programming evolutionary
algorithm [9], we implemented an evolving, one-
dimensional. non-uniform cellular automaton. Each
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organization of the BioWatch.

Figure 2b. Cellular differentiation of me BioWatch.

Figure 3. Self-repair of me BioWatch. Old coordinates are
shown in parenmeses.

of the system's 56 binary-state cells contains a
genome that represents its rule table. These genomes
are initialized at random, to be subjected to evolu-
tion. The system must evolve to resolve a global syn-
chronization task: upon presentation of a random
initial configuration of cellular states, the cellular
automaton must reach, after a bounded number of
time steps, a configuration whereupon the states of
the cells oscillate between all Os and all1s on succes-
sive time steps (this may be compared to a swarm of
fireflies, which evolve over time to flash on and off
in unison). Due to the local connectivity of the sys-
tem, this global behavior-which involves the entire
grid-represents a difficult task. Nonetheless, by
applying cellular programming, the system evolves
(that is, the genomes change) such that the task is
solved. The machine is depicted in Figure 1.

The Firefly machine exhibits complete online
evolution; all its operations are carried out in hard-
ware with no reference to an external computer.
This demonstrates that evolving ware, or t'VOlW4rt',
can be constructed [9]. Such evolware systems per-

mit enormous gains in execution speed (for exam-
ple, Firefly runs 1000 times Mer than a simulation
on a high-performance workstation). While the
synchronization taSk is not a real-world application
~d was selected to act as a benchmark problem for
our evolware demonstration, Firefly does open up
interesting avenues for future research. Evolware
machines that operate in an autonomous manner

can be used to construct autonomous mobile robots,
as well as for the construction
of controllers for noisy,
changing environments [10].

Ontogenetic htlrtlware:
11Je Bio Watch. The Bio Watch
is one of the applications
designed as part of the Embry-
onics (embryonic electronics)
project, whose final objective is
the devdopment of very large-
scale integrated circuits, which
are capable of self-repair and
self-replication [3, 4]. These
two bio-inspired properties,
characteristic of the living
world, are achieved by trans-

posing cert3in features of cellu-
lar organization in nature onto
the tWO-dimensional world of
integrated circuits in silicon.is an artificial "organism" .

to count (&om 00 to 59) and
00 to 59); it is thus a modulo-3600 counter. This

The Bio Watch
mInutes

organism is one-dimensional and is comprised of
four cdls with identical physical connections and an
identical set of resources. The organization is multi-
cellular (as with living beings), with each cell realiz-
ing a unique function, described by its gene (see
Figure 2a).

The genome is the set of all the genes of the
Bio Watch, and each gene is a sub-program, charac-
terized by a set of instructions and by its horizontal
coordinate X Storing the whole genome in each cell
renders the cell universal, that is, capable of realizing
any gene of the genome. This is another bio-
inspired property: each of our (human) cells also
contains the entire genome, though only part of it is
used (for example, liver cells do not use the same
genes as muscle cells). Depending on its position in
the organism, each cell interprets the genome,
extracting and executing the gene that configures it.
The Bio Watch thus performs what is known in biol-
ogy as cellular differentiation (see Figure 2b).

Self-repair of an artificial organism allows partial
reconstruction of the original device in case of a



4. Self-replication of me BioWatch.Figure

Flsure 5. An eight-cell BioWatCh. (Note: while our long-
term objective is me design of very large-scale Integrated cir.
cuits, each BioWatCh cell is currendy Implemented in an ActeI
1020 FPGA orcutt and embedded wlmln a smail plasdc box

mat serves as a d.nonstration module.)

minor fault. In the Bio Watch, each cell performs one
of two specific tasks: a modul0-6 or a modulo-IO
count (see Figure 2a). Self-repair can be attained by
dynamically reconfiguring the task executed by some
of the cells. In order to implement this process, the
Bio Watch must have as many spare cells to the right
of the array as there are faulty cells to repair (there
are four spare cells in the example of Figure 3). Self-
repair is achieved by bypassing the faulty cell and
shifting to the right all or part of the original cellu-
lar array. The new coordinates, thus defined, lead to
the dynamic reconfiguration of the task performed
by the cell (modulo-6 or modulo-tO count).

Self-replication of an artificial organism com-
pletdy reconstructs the original device in case of a
major fault. In the Bio Watch, the self-replication
process rests on two assumptions: (I) there exists a
sufficient number of spare cells to the right of the
array (four in our example), and (2) the calculation
of the coordinates produces a cycle (X=I -+2 -+3-+
4 -+ 1 in Figure 4). As the same pattern of coordi-
nates produces the same pattern of genes, sdf-repli-
cation can be easily accomplished if the
microprogram of die genome, associated with the
homogeneous network of cells. produces several
instances of the basic pattern of coordinates.

, counter With a larger number of-- ~c, celIs it becomes possible to

m add the ~tensions needed for

mr n;r a practIcal use of the

. Bio Watch: preserving the cur-
J . rent time while self-repair is

, being effected, and setting
and resetting the time (see

Figure 5). It is also quite easy to introduce additional
functions such as computing the dare, keeping track
of mc day of the week, and handling leap years.

The Future of Bio-inspired Hardware
According to current evolutionary theory. life on
earth originated about 4 billion years ago. but
evolved slowly for about 3.5 billion years; this is
known as the pre-Cambrian period Then. in a rela-
tively shon span of a few million years. beginning
about 550 million years ago-the Cambrian
period-a vast array of multicellular life abrupdy
emerged. This period is also known as the Cambrian
explosion. The first advanced cell. which served as a
basis for all higher life forms (eukaryotes). came into
existence when some kind of host acquired as sym-
biotic parmer a number of smaller components;
these latter-known as organelles--originated as
&ee-living bacteria. The host and the organelles
entered into an endosymbiotic relationship. that is.
symbiosis in which a symbiont dwdls within the
body of its symbiotic panDer. (The endosymbiotic
theory was put forward by Lynn Margulis in the
early 1970s [5]; though controversial at the time. it
has gained acceptance during the intervening years.)

The evolution of microprocessors. as effected by
engineers (the "hand of Goo" discussed earlier in
this anicle). seems to have followed a similar path.
Units that were originally "free-~iving. .. situated out-

side the processor. were moved into it: the memory
management unit (MMU). the floating point unit
(FPU). and the cache memory. all of which were at
first separate units. are found today within the
processor itself. The latest development involves the
addition of reconfigurable on-chip surfaces; for
example. Triscend has recently announced a micro-
processor chip with a 65% reconfigurable surface.
with only 35% of the surface serving as a classical
controller to manage the chip's operation [11].

Docs this new "organelle" ponend the upcoming
"Cambrian explosion" of adaptive. bio-inspired
hardware? The trend toward a merger of the classi-
cal-processor industry with the configurable-com-
puting one will probably not only continue. but
intensify in the future. While FPGAs currendy rep-
resent only a small niche within the computer-hard-
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ware industry, this new development might elevate
them to ubiquity. These new processors will find
their way to every desktop, providing a base for
adaptive machines. This might lead to an explosion
of adaptive-hardware applications--computers that
can change not only their inner workings but indeed
their inner structure in response to changes in the
environment.

The environment in question includes everything
that the configurable processor contacts: other inter-
nal units within the computer, the user (or users),
and the network. Future computers might thus be
shipped only partially designed, to be then subjected
to evolution in the field-that is, on the desktop.
Furthermore, they might repair themsdves upon suf-
fering damage, as the Bio Watch does. Ultimately,
computers might evolve to improve their own per-
formance-mat is, they might go from the 8086
epoch to the 80286 epoch (as noted previously)
without the intervention of a human engineer.

The road ahead is, however, still fraught with
many obstacles. While the dectronic suppon for
increased adaptability might exist, there are still
major unresolved issues, some of which we discuss
here. For one thing, we have still not mastered this
technology: configuring a configurable processor is
at least as hard (if not harder) than programming a
classical processor, and the available tools for config-
uration are far behind those for programming.

The application of bio-inspired methodologies
might serve to offset this problem by obviating the
need for human design altogether. One must
remember, however, that natural evolution has
required a huge amount of resources (in terms of
time and space), and most of the avenues explored
have been dead ends (there are many more extinct
species than surviving ones). The ideal path might
thus be somewhere between complete design and
complete autonomy: initial human design followed
by funher autonomous adaptation.

Another major issue is that of hierarchy. Nature
has evolved demental building blocks, out of which
she constructs more complex systems: molecules
combine to form cells, cells combine to form tissues,
tissues combine to form organisms, and organisms
combine to form societies. Such a layered approach
has not escaped computing practitio~ers in th~ir

repair to take place within the cell as well as outside
it; the resulting system is more efficient in its use of
chip surface {only extracellular self-repair was delin-
eated earlier in this article; for a full account the
rader is referred to [4». Note that such hierarchies,
which are of major concern within the configurable-
computing community, are currendy engineered
into our artificial systems whereas in nature they
have emerged through evolution.

Despite these obstacles, the future seems pregnant
with possible applications for adaptive hardware. In
the end it will probably be the enabling technology
that furnishes the impetus for progress in this area.
The evolution of chip technology might well be the
ultimate harbinger of evolving chips. D
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