
Future Generation Computer Systems 16 (1999) 291–305

Generating high-quality random numbers in parallel by cellular automata

Marco Tomassinia,∗, Moshe Sipperb, Mosé Zollaa, Mathieu Perrenouda
a Institute of Computer Science, University of Lausanne, 1015 Lausanne, Switzerland

b Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens, CH-1015 Lausanne, Switzerland

Accepted 17 March 1999

Abstract

Many important computer simulation methods rely on random numbers, including Monte Carlo techniques, Brownian
dynamics, and stochastic optimization methods such as simulated annealing. Several deterministic algorithms for producing
random numbers have been proposed to date. In this paper we concentrate on generating pseudo-random sequences by using
cellular automata, which offer a number of advantages over other methods, especially where hardware implementation is
concerned. We study both hand-designed random number generators as well as ones produced by artificial evolution. Applying
an extensive suite of tests we demonstrate that cellular automata can be used to rapidly produce high-quality random number
sequences. Such automata can be efficiently implemented in hardware, can be used in such applications as VLSI built-in
self-test, and can be applied in the field of parallel computation. ©1999 Elsevier Science B.V. All rights reserved.

Keywords:Cellular automata; Random number generators; Evolutionary Computing; Parallel computation

1. Introduction

Several important computer simulation methods
rely on random numbers, including Monte Carlo tech-
niques, Brownian dynamics, and stochastic optimiza-
tion methods such as simulated annealing. The quality
of the results of these methods critically depends on
the quality of the random sequence as measured by
suitable statistical tests. Computational efficiency is
also an important aspect when very long sequences of
random numbers have to be produced. Random num-
bers are also needed in another important application
area: built-in self-test devices for VLSI circuits. In
this case, as well as for fine-grained massively parallel

∗ Corresponding author. Tel.: +41-21-692-3589; fax: +41-21-692-
3585
E-mail address:marco.tomassini@iismail.unil.ch (M. Tomassini)

computers and for on-board applications, it is essential
that the random number generator also be amenable
to hardware implementation in terms of area, number
of gates, and complexity of the interconnections.

Several deterministic algorithms for producing
random numbers have been proposed to date. A
short review of the principal pseudo-random num-
ber generator methods (RNG) is given in Section 2.
In the present study we concentrate on generating
pseudo-random sequences by using cellular automata
(CA), a short account of which is given in Section 3.
Cellular automata offer a number of advantages over
other methods, especially where hardware implemen-
tation is concerned. Among the beneficial features of
CA for VLSI implementation one can cite simplicity,
regularity, and locality of interconnections. Cellular
automata for random number generation can be con-
structed by hand essentially by looking at the structure

0167-739X/99/$ – see front matter ©1999 Elsevier Science B.V. All rights reserved.
PII: S0167-739X(99)00053-9

Draf
t

292 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

of the bit patterns generated over time, with some
theoretical results offering guidance. Another possi-
bility is to let the CA generator be artificially evolved
by a genetic algorithm. Here a measure of adequacy
or fitnessis used in order to drive the population of
candidate generators towards better and better per-
formance over time (see Section 4). A first step in
the latter direction was taken in [12]. In this work it
was demonstrated that good CA-based random num-
ber generators could be evolved. The present work
confirms and extends these results by using much
longer pseudo-random sequences and by subjecting
them to a more stringent and elaborate set of ran-
domness tests (discussed in Section 5). Moreover, we
have carried out many more evolutionary simulations,
strengthening our confidence in the repeatability and
overall stability of the dynamics of the evolutionary
process. Our results, presented in Section 6, show that
CA-based RNGs can yield long-period, high-quality
random number sequences, possibly rivaling those
obtained by well-known congruential generators. We
conclude that with their advantageous hardware prop-
erties, CA random number generators offer a realistic
alternative to other methods; this is especially true
in the case of VLSI implementation, fine-grained
massively parallel machines for statistical physics
simulation, and built-in self-test circuits.

2. An overview of random number generators

Random numbers are needed in a variety of ap-
plications, yet finding good random number gener-
ators is a difficult task [10]. All practical methods
for obtaining random numbers are based on deter-
ministic algorithms, which is why such numbers
are more appropriately calledpseudo-random, as
distinguished from true random numbers resulting
from some natural physical process. In the following
we will limit ourselves touniformly distributedse-
quences of pseudo-random numbers; however, there
are well-known ways for obtaining sequences dis-
tributed according to a different distribution starting
from uniformly distributed ones.

Random number generators must possess a num-
ber of properties if they are to be useful in lengthy
stochastic simulations such as those used in compu-
tational physics. The most important properties from

this point of view are good results on standard statis-
tical tests of randomness, computational efficiency, a
long period, and reproducibility of the sequence.

There exist many ways for generating random
numbers on a computer, the most popular one being
the linear congruential generators. Linear congruen-
tial generators are based on the following recurrent
formula:

Xn+1 = (aXn + c) modm, n ≥ 0, m > 0,

0 < a < m.

The valuem > 0 is called themodulus, a is themulti-
plier, andc is an additive constant. Ref. [4] describes
in great detail how to pick suitable values for these pa-
rameters. The sequence clearly has a maximum pos-
sibleperiodof m, after which it starts to repeat itself.
The linear congruential generators are very popular
among researchers and most mathematical software
packages include one (or more).

So-called lagged-Fibonacci generatorsare also
widely used. They are of the form:

Xn = (Xn−r op Xn−p) mod m.

The numbersr and p are calledlags and there are
methods for choosing them appropriately (see [4]).
The operator op can be one of the following binary
operators: addition, subtraction, multiplication, or ex-
clusive or.

However, it should be noted that from the point of
view of hardware implementation both congruential
and lagged-Fibonacci RNGs are not very suitable: they
are inefficient in terms of silicon area and time when
applied to fine-grained massively parallel machines,
for built-in self-test, or for other on-board applications.

A third widespread type of generator is the so-called
linear feedback shift register(LFSR) generators. A
pseudo-random sequence is generated by the linear
recursion equation

Xn = (c1Xn−1 + c2Xn−2 + · · · + ckXn−k) mod 2.

Linear feedback shift registers are popular generators
among physicists and computer engineers. There exist
forms of LFSR that are suitable for hardware imple-
mentation. However, it turns out that, when compared
with equivalent cellular automata-based generators,
they are of lesser quality; furthermore, they are less
favorable in terms of connectivity and delay, although

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 293

the area needed by a CA cell is slightly larger than
that of an LFSR cell [3]. This is so because a LFSR
with a large number of memory elements and feed-
back has an irregular interconnection structure which
makes it more difficult to modularize in VLSI. More-
over, different sequences generated by the same CA
are much less correlated than the analogous sequences
generated by a LFSR. This means that CA-generated
bit sequences can be used in parallel, which offers
clear advantages in applications. Our measurements
(see Section 6) confirm this view.

3. Cellular automata for random number
generation

Cellular automata (CA) are dynamical systems in
which space and time are discrete. A cellular automa-
ton consists of an array of cells, each of which can
be in one of a finite number of possible states, up-
dated synchronously in discrete time steps, accord-
ing to a local, identical interaction rule. Here we will
only consider Boolean automata for which the cellu-
lar states ∈ {0, 1}. The state of a cell at the next time
step is determined by the current states of a surround-
ing neighborhood of cells. The cellular array (grid)
is d-dimensional, whered = 1, 2, 3 is used in prac-
tice; in this paper we shall concentrate ond = 1, i.e.,
one-dimensional grids. The identical rule contained in
each cell is essentially a finite state machine, usually
specified in the form of a rule table (also known as
the transition function), with an entry for every possi-
ble neighborhood configuration of states. The cellular
neighborhood of a cell consists of itself and of the sur-
rounding (adjacent) cells. For one-dimensional CAs, a
cell is connected tor local neighbors (cells) on either
side wherer is referred to as the radius (thus, each
cell has 2r + 1 neighbors). For two-dimensional CAs,
two types of cellular neighborhoods are usually con-
sidered: five cells, consisting of the cell along with its
four immediate nondiagonal neighbors (also known
as the von Neumann neighborhood), and nine cells,
consisting of the cell along with its eight surrounding
neighbors (also known as the Moore neighborhood).
When considering a finite-sized grid, spatially periodic
boundary conditions are frequently applied, resulting
in a circular grid for the one-dimensional case, and a
toroidal one for the two-dimensional case.

Non-uniform (also know as inhomogenous) cellular
automata function in the same way as uniform ones,
the only difference being in the cellular rules that need
not be identical for all cells. Note that non-uniform
CAs share the basic “attractive” properties of uniform
ones (simplicity, parallelism, locality). From a hard-
ware point of view we observe that there is a slight
loss in homogeneity although the resources required
by non-uniform CAs are identical to those of uniform
ones since a cell in both cases contains a rule.

A common method of examining the behavior of
one-dimensional CAs is to display a two-dimensional
space-time diagram, where the horizontal axis depicts
the configuration at a certain timet and the vertical
axis depicts successive time steps (e.g., Fig. 1). The
term ‘configuration’ refers to an assignment of ones
and zeros at a given time step (i.e., a horizontal line
in the diagram).

Using one-dimensional, two-state CAs as a source
of random bit sequences was first suggested by Wol-
fram [14]. In particular, he extensively studied rule
30. (Rule numbers are given in accordance with Wol-
fram’s convention.1) In Boolean form rule 30 can be
written as

si(t + 1) = si−1(t) XOR (si(t) OR si+1(t)),

where the radius isr = 1 andsi(t) is the state of cell
i at time t . The formula gives the state of celli at
time stept + 1 as a Boolean function of the states of
the neighboring cells at timet . Random bit sequences
are obtained by sampling the values that a particu-
lar cell (usually the central one) attains as a function
of time. Often, in order to further decorrelate bit se-
quences,time spacingandsite spacingare used. Time
spacing means that not all the bits generated are con-
sidered as part of the random sequence. For instance,
one might keep only one bit out of two, referred to as
a time space value of 1, which means that sequences
will be generated at half the maximal rate. Obviously,
other values of the time interval can be used with an
increasing loss of clock cycles. In site spacing, one
considers only certain sites in a row, where an integer

1 Wolfram’s numbering scheme for one-dimensional,r = 1 rules
represents in decimal format the binary number encoding the rule
table. For example,f (1 1 1) = 1, f (1 1 0) = 0, f (1 0 1) = 1,
f (1 0 0) = 1, f (0 1 1) = 1, f (0 1 0) = 0, f (0 0 1) = 0,
f (0 0 0) = 0, is denoted rule 184.

294 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

Fig. 1. A one-dimensional random number generator: CA rule 30. Grid size isN = 150, radius isr = 1. White squares represent cells
in state 0, black squares represent cells in state 1. The pattern of configurations is shown through time (which increases down the page).
The initial configurations were generated by randomly setting the state of each grid cell to 0 or 1 with uniform probability. (a) No time
spacing. (b) Time spacing of 2.

number indicates how many sites are to be ignored
between two successive cells. In practice, a site spac-
ing of one or two is common, which means that half
or two thirds of the output bits are lost. Fig. 1 demon-
strates the workings of a rule-30 CA, both with and
without time spacing.

A non-uniform CA randomizer was presented in
Ref. [2,3], consisting of two rules, 90 and 150, ar-
ranged in a specific order in the grid. In Boolean form
rule 90 can be written as

si(t + 1) = si−1(t) XOR si+1(t),

and rule 150 can be written as:

si(t + 1) = si−1(t) XOR si(t) XOR si+1(t).

The performance of this hybrid (non-uniform) CA in
terms of random number generation was found to be
superior to that of rule 30. It is interesting in that it
combines two rules, both of which are simple linear
rules, to form an efficient, high-performance generator.
An example application of such CA randomizers was
demonstrated in Ref. [1], which presented the design

of a low-cost, high-capacity associative memory. Sip-
per and Tomassini [12] showed that good non-uniform
CA randomizers can be evolved, rather than being de-
signed; this evolutionary approach is described in the
next section.

4. Evolving cellular automata: cellular
programming

The idea of applying the biological principle of nat-
ural evolution to artificial systems, introduced more
than three decades ago, has seen impressive growth
in the past few years. Among artificial evolutionary
techniques,genetic algorithmsare very popular nowa-
days. A genetic algorithm [9] is an iterative procedure
that consists of a constant-size population of individu-
als, each one represented by a finite string of symbols,
known as thegenome, encoding a possible solution in
a given problem space. This space, referred to as the
search space, comprises all possible solutions to the
problem at hand. The algorithm sets out with an initial

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 295

population of individuals that is generated at random
or heuristically. Every evolutionary step, known as a
generation, the individuals in the current population
aredecodedandevaluatedaccording to some prede-
fined quality criterion, referred to as thefitness, or
fitness function. To form a new population (the next
generation), individuals areselectedaccording to their
fitness, and then transformed via genetically inspired
operators, of which the most well known arecrossover
andmutation. Iterating this procedure, the genetic al-
gorithm may eventually find an acceptable solution,
i.e., one with high fitness.

We study one-dimensional, 2-state,r = 1 non-
uniform CAs, in which each cell may contain a differ-
ent rule. Spatially periodic boundary conditions are
used, resulting in a circular grid. A cell’s rule table is
encoded as a bit string (the “genome”), containing the
next-state (output) bits for all possible neighborhood
configurations, listed in lexicographic order; e.g., for
CAs with r = 1, the genome consists of 8 bits, where
the bit at position 0 is the state to which neighborhood
configuration 000 is mapped to and so on until bit
7, corresponding to neighborhood configuration 111.
An evolutionary approach for obtaining random num-
ber generators was taken by Koza [5], who applied
genetic programming to the evolution of a symbolic
LISP expression that acts as a rule for a uniform CA
(i.e., the expression is inserted into each CA cell,
thereby comprising the function according to which
the cell’s next state is computed). He demonstrated
evolved expressions that are equivalent to Wolfram’s
rule 30. The fitness measure used by Koza is the
entropyEh: let k be the number of possible values
per sequence position (in our case CA states) andh a
subsequence length.Eh (measured in bits) for the set
of kh probabilities of thekh possible subsequences of
lengthh is given by:

Eh = −
kh∑

j=1

phj
log2phj

,

where h1, h2, . . . , hkh are all the possible subse-
quences of lengthh (by convention, log20 = 0 when
computing entropy). The entropy attains its maximal
value when the probabilities of allkh possible sub-
sequences of lengthh are equal to 1/kh; in our case
k = 2 and the maximal entropy isEh = h.

Rather than employ apopulationof evolving, uni-
form CAs, as with genetic algorithm approaches, our
algorithm involves asingle, non-uniform CA of size
N , with cell rules initialized at random [11]. Initial
configurations are then randomly generated and for
each one the CA is run forM = 4096 time steps.2

Each cell’s fitness, fi , is accumulated overC = 300
initial configurations, where a single run’s score equals
the entropyEh of the temporal sequence of celli.
Note that we do not restrict ourselves to one desig-
nated cell, but consider all grid cells, thus obtaining
N random sequences in parallel, rather than a single
one. After everyC configurations evolution of rules
occurs by applying the genetic operators of crossover
and mutation in a completelylocal manner, driven by
nfi(c), the number of fitter neighbors of celli afterc
configurations. The pseudo-code of our algorithm is
delineated in Fig. 2. Crossover between two rules is
performed by selecting at random (with uniform prob-
ability) a single crossover point and creating a new
rule by combining the first rule’s bit string before the
crossover point with the second rule’s bit string from
this point onward. Mutation is applied to the bit string
of a rule with probability 0.001 per bit.

There are two main differences between our evo-
lutionary algorithm and a standard genetic algorithm:
(a) A standard genetic algorithm involves a popula-
tion of evolving, uniform CAs; all CAs areranked
according to fitness, with crossover occurring between
any two CA rules. Thus, while the CA runs in accor-
dance with a local rule, evolution proceeds in aglobal
manner. In contrast, our algorithm proceedslocally in
the sense that each cell has access only to its locale,
not only during the run but also during the evolution-
ary phase, and no global fitness ranking is performed.
(b) The standard genetic algorithm involves a popu-
lation of independentproblem solutions; each CA is
run independently, after which genetic operators are
applied to produce a new population. In contrast, our
CA coevolvessince each cell’s fitness depends upon
its evolving neighbors. A thorough examination of cel-
lular programming is provided by Sipper [11] and a
shorter review can be found in Ref. [6].

2 A standard, 48-bit, linear congruential algorithm proved suffi-
cient for the generation of random initial configurations.

296 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

Fig. 2. Pseudo-code of the cellular programming algorithm

5. Testing random number generators

When generating a sequence of random numbers
one often tends to forget that these numbers are not
truly random (whatever this may mean), but only
pseudo-random. Once we admit the inevitability of
this assertion, we would still like to obtain sequences
that behave as if they were random. But who is to
decide if the numbers are random enough? Statistical
theory helps us in this respect. If the sequence passes
a number of quantitative statistical tests for random-
ness then we can affirm with some confidence that the
sequence is random at least for practical purposes. Of
course, no amount of statistical testing can guarantee
that a given sequence is truly random since one can
always find a new test that the sequence fails to pass.

A classical exposition of statistical tests for random-
ness is Ref. [4], which has been recently updated.

Our aims in this work are the following:
• to test the performance of some well-known CA

RNGs;
• to test the performance of CAs found by artificial

evolution;
• to compare the performance of CA-based RNGs

with those of some good standard generators;
• and, to study the correlation between different se-

quences generated from the same CA or from dif-
ferent CAs.
For the tests we have used the Diehard [8] battery

of tests developed by Marsaglia [7]. A visual test has
also been used as a quick way of discarding obvi-
ously unsuitable CA generators. The chi-square test
and the correlation factor have been used to study the

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 297

correlation between sequences. Since the chi-square
test is limited to discrete distributions, it is often com-
plemented by the Kolmogorov–Smirnof (KS) test in
the continuous case, such as random numbers uni-
formly distributed between 0 and 1. The chi-square,
Kolmogorov–Smirnov, and correlation tests are stan-
dard statistical tests, the full explanation of which can
be found in [4].

5.1. Cross-correlation

This test is used to detect the existence of corre-
lations between sequences generated from the same
CA. It is interesting because if there are no correla-
tions, we can use different sequences from the same
CA for parallel stochastic calculations. We have stud-
ied the cross-correlation between sequences generated
by the same CA with different initial conditions. In
other words, the same automaton is initialized with
two different random configurations of states and two
sequences of the same length and equal time spac-
ing are thus obtained. The correlation between the
two sequences is then measured. A second correlation
measure involves the extraction of sequences from the
same automaton with a given time spacing parame-
ter. We did this with a time spacing value of 2 (see
Section 3), which means that the bits of time steps
0, 3, 6, . . . belong to the first sequence while those of
time steps 1, 4, 7, . . . belong to the second one. The
latter sequence sampling is obviously more favorable
in terms of parallel random bit generation since it only
makes use of a single CA, while the first one would
be preferable in a multi-processor machine.

5.2. The test suite

Diehard is a battery of tests that analyzes 17 differ-
ent properties of RNGs. The tests are only briefly de-
scribed herein since the corresponding programs and
documentation are freely available on the web [8]. Al-
though there do exist a few other test suites for assess-
ing the randomness of a sequence, the Diehard battery
of tests is recognized worldwide as being the most
exhaustive.

The overlapping 5-permutation test.Consider a
sample composed of one million 32-bit integers. Each
series of five consecutive integers could be in one of

120 possible states. After collecting many thousands
of state transitions, cumulative counts are made of the
number of occurrences of each state and compared
with the theoretical distribution of the frequencies.

Binary rank tests forn×m matrices.These are three
tests depending upon the number of integers tested(n)

and the corresponding number of bits(m). Matrices
are constructed in various ways from the given se-
quences and the rank of each matrix is calculated for
a large number of cases. The frequencies are placed in
different categories and then a chi-square test is per-
formed between the rank’s empirical matrix and the
rank’s theoretical matrix frequencies.

Count the ones test.Consider a sequence of bytes.
Each byte could contain between zero and eight ones.
Theoretical frequencies for the different categories are
1,8,28,56,70,56,28,8,1 (the total sum of which is 256).
We group bytes containing zero to two ones in one
category, and bytes containing six to eight ones in an-
other one. The new theoretical distribution becomes
37,56,70,56,37. We call the different categories “let-
ters”, from A to E. There are 55 possible five-letter
words, and from a string of 256,000 (overlapping)
five letters words, counts are made on the frequen-
cies of each word. The quadratic form in the weak in-
verse of the covariance matrix of cell counts provides
a chi-square test.

Squeeze test.Random integers are transformed into
floating-point numbers in the range [0, 1). Consider
k = 231 and the functionk = ceiling(k × U), where
U is a number in our sequence;j is the number of
iterations necessary to reducek to one. The value ofj
is measured 100,000 times and the frequencies are then
compared to the theoretical ones through a chi-square
test.

Missing words tests.The structure of these tests is
the following: we consider a string of 32-bit integers.
The alphabet is composed of all different combina-
tions of zeros and ones in the sequence of bits. For ex-
ample, a two-bit alphabet is composed of four letters
((0,0),(0,1),(1,0),(1,1)). We consider a word as being
a string composed ofn letters, and we traverse the en-
tire sequence as a series of words (with overlapping).
The test counts the words that do not appear in the
sequence and compares the result with the theoretical
distribution for the missing words. If the value for a
missing word is too far from the mean of the theoret-
ical distribution we will consider that the series is not

298 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

random. In these tests the string is always 221 words
long. The tests are:
• Bitstream test.The file under test is viewed as a

stream of bits. Consider an alphabet with two let-
ters 0 and 1; this is called a one-bit alphabet (0,1).
The words are 20 letters long (with overlapping).
The theoretical distribution of missing words is nor-
mally distributed with mean 141,909 and standard
deviation equal to 428.

• OPSO (Overlapping-Pairs-Sparse-Occupancy) test.
A 10-bit alphabet (1024 letters) is used. The words
are two letters long (with overlapping). The theoret-
ical distribution of missing words is normally dis-
tributed with mean 141,909 and standard deviation
equal to 290.

• OQSO (Overlapping-Quadruples-Sparse-Occu-
pancy) test.A 5-bit alphabet (32 letters) is used.
The words are four letters long (with overlapping).
The theoretical distribution of missing words is nor-
mally distributed with mean 141,909 and standard
deviation equal to 295.

• DNA test.A 2-bit alphabet is employed here. The
words are 10 letters long (with overlapping). The
theoretical distribution of missing words is normally
distributed with mean 141,909 and standard devia-
tion equal to 339.
Birthday spacing test.Choosem birthdays in a year

of n days. Count the number of days between two
birthdays and construct a class for each value of such
birthday intervals. The distribution of intervals should
be asymptotically that of Poisson with meanm3/4n. In
this test we usen = 224 or n = 218 and thus the mean
equals 2. Each sample is composed of 500 intervals,
each one giving ap-value. We use the ninep-values
to do the Kolmogorov–Smirnof test.

Parking lot test.Imagine a square parking of 100×
100 cells of side 1 where a car, is represented by a cir-
cle of radius 1. Then park randomly each successive
car trying to avoid bumping into already parked cars.
The number of attempts versus the number of success-
fully parked cars should be random. After 12,000 at-
tempts the theory shows that the number of successes
is normally distributed with mean= 3523 and a stan-
dard deviation= 21.9. The values obtained are com-
pared with the theoretical distribution, and the distance
of the experimental one from the mean gives us the
p-value. The set of tenp-values thus obtained is used
to perform a KS test.

Minimum distance test.One chooses 8000 points in
a square of side= 10, 000 units. Find d, the minimum
distance between the(n2 −n)/2 pairs of points. If the
points are independent thend2 has to be exponentially
distributed with mean= 0.995. Transformed by 1−
exp(−d2/0.995),d should be uniformly distributed in
the range [0, 1). A KS test on the 100 values obtained
serves as a test for the uniformity of the points in the
square. The test is repeated 100 times on 8000 different
sets of points.

3D sphere test.Choose 4000 random points in
a cube of side 1000 units. At each point center a
sphere large enough to reach the next closest point.
The radius cubed (radius3) of the smallest sphere
is exponentially distributed with mean= 30. The
test generates 4000 spheres 20 times. Each minimum
radius3 leads to a uniform variable in the range [0, 1)

by applying the transformation 1− exp(−r3/30). A
Kolmogorov–Smirnof test is done on the 20p-values.

Overlapping sum test.Random integers are trans-
formed into floating-point numbers in the range [0, 1),
thus giving a new seriesu1, u2, Then, the over-
lapping sumss1 = u1+· · ·+u100, u2+· · ·+u101, · · ·
are formed. The sums are normal with a certain co-
variance matrix. A linear transformation of the sums
converts them to a sequence of independent standard
normals, which are converted to uniform variables for
a KS test. Thep-values resulting from the ten KS tests
undergo another KS test.

Runs test.This test analyzes the trend of a sequence
of numbers. The random integers are transformed into
floating-point numbers in the range [0, 1). We want
to control the randomness of ascending and descend-
ing sub-sequences. The runs-up and runs-down covari-
ance matrices lead to a chi-square test for quadratic
forms using the weak inverse of the matrices. Runs
are counted for sequences of length 10,000. This test
is done ten times, then repeated. It is done both for
the up and down series.

Craps test.One plays 200,000 games of craps, finds
the number of wins and the number of throws neces-
sary to end a game. The integers are first transformed
into floating-point numbers in the range [0, 1), then
they are multiplied by 6 and 1 is added to the integer
part of the result, giving the value for a throw of a
die. The number of wins should exhibit a normal dis-
tribution with mean 110,556 and standard deviation
95.6962. To test the number of throws necessary to

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 299

win, a chi-square test is done. The number of throws
giving values larger than 21 are grouped in one cat-
egory. These values are compared to the theoretical
ones and a chi-square test is done.

According to Marsaglia [8], a generator fails to pass
a test if thep-value scores are very close to zero or
to one, to six or more decimal places. (Thus ap <

0.025 orp > 0.975 should not be interpreted, as is
customary in statistics, as having failed the test at the
0.05 confidence level.)

The visual test.This test permits a rough selection
among all conceivable CAs of radiusr = 1, both
uniform and non-uniform. One looks at the space-time
diagram (see Section 3) of the CA and if one detects
symmetries, triangles, or something else possessing
a structure then one can be sure that the CA is not
a good RNG. The opposite is false: random-looking
CAs could give bad results as far as RNG is concerned.
For instance, Fig. 1(a) shows the dynamical evolution
of CA rule 30. Although this rule does not provide a
very good RNG, it is already random enough so as to
pass a number of Diehard tests. Note that Fig. 1(b), in
which a time spacing of 2 is employed, seems visually
better – a factthat is confirmed by the tests.

Cross-correlation tests.The random number se-
quences are coded in hexadecimal form. We used two
tests: the correlation coefficient and the uniformity of
the distribution of pairs of sequence values. The clas-
sical method is to calculate the correlation coefficient
R, i.e., the correlation between a variablex andy =
f (x) in a linear regression. We consider two sequences
of the same lengthl. The first sequence contains the
x values and the second one contains they values. If
there is no correlation between these two sequences,
the R value will be very close to zero, andlR2 has
to be less than 4 in order to attain a 95% probability
that the sequences are not first-order correlated. To im-
prove the quality of our results we have added a new
test. Consider the sequencesS1 = S1(1), S1(2), . . .

andS2 = S2(1), S2(2), We create a new sequence
by pairing corresponding values of the two sequences:
(S1, S2) = (S1(1), S2(1)), (S1(2), S2(2)), If the
sequences are random, the frequencies of the differ-
ent pairs (0,0),(0,1). . . (E,F),(F,F) are equal tol/256
wherel is the number of values contained in the se-
quence. A chi-square test measures the differences be-
tween the empirical frequencies and the theoretical
ones, and the result must be close to 255. The more

the value deviates from 255, the worse is the result. A
measure of this distance is given by the standard de-
viation. If the chi-square value (v-value) does not fall
between 209.834 and 300.166 (at a 95% confidence
interval) it means that the sum of the deviations is
not caused by randomness in the data. These two tests
were performed on files of 80MB. We have tested the
eight sub-sequences of 10MB, the two sub-sequences
of 40MB, and the entire 80MB sequence.

6. Results

6.1. Evolution of RNG cellular automata

In order to evolve RNG CAs we applied the cellu-
lar programming evolutionary algorithm of Section 4.
We observed that in over 100 experiments, four rules
tended to dominate the final evolved grids: 90, 105,
150, and 165; interestingly, rule 30 had never emerged.
In some cases a non-uniform grid was obtained, while
other simulations saw the appearance of uniform CAs.
Fig. 3 shows the workings of rule 105.

Previously, Sipper and Tomassini [12] had evolved
a 50-cell CA with a melange of rules 90, 150, and
165, and applied a small number of randomness tests
to it. Herein, we verified this CA using our extended
battery of tests. Furthermore, we constructed a novel
CA – demonstrated in Fig. 4 – by building upon our
observations of the evolutionary process: each cell of
the 50-cell CA is assigned one of the four “good” rules
at random – 90, 105, 150, or 165. (These two CAs are
referred to henceforth as Sipper and Tomassini, and
Tomassini et al., respectively.)

6.2. Results of randomness tests

Classical RNGs.Before examining CA RNGs let
us take a look at two classical, well-known ones. The
first is a linear congruential RNG, known as CGL,
which was tested by Vattulainen [13]. Its formula is
the following: Xi+1 = (16807 Xi) mod (231 − 1).
This RNG was employed on IBM computers and it
is available in different commercial software pack-
ages (e.g., IMSL and MATLAB). Considered good
in the past, new empirical tests have revealed it to
be less so. The second RNG, known as RAN3, is

300 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

Fig. 3. A uniform one-dimensional random number generator: CA rule 105. (a) No time spacing. (b) Time spacing of 2.

Fig. 4. A non-uniform one-dimensional random number generator: Tomassini et al. (a) No time spacing. (b) Time spacing of 2. Note that
there is no marked visible difference between the two versions, though the tests prove otherwise.

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 301

Table 1
Diehardp-value results for the CGL and RAN3 random number
generators. A generator fails to pass a test if thep-value scores
are very close to zero or to one, to six or more decimal places
(see text)

Test name GGL RAN3

Birthday spacing 0.998 1.000
Overlapping permutation 1 0.422 0.578
Overlapping permutation 2 0.951 0.047
Binary rank 31*31 0.368 0.840
Binary rank 32*32 1.000 0.958
Binary rank 6*8 0.926 0.001
Count the ones 1.000 0.542
Parking lot 0.510 0.204
Minimum distance 1.000 0.911
3D sphere 0.546 0.663
Squeeze 0.228 0.579
Overlapping sum 0.849 0.722
Run up 1 0.838 0.123
Run up 2 0.003 0.638
Run down 1 0.504 0.057
Run down 2 0.886 0.045
Craps number of throws 0.219 0.281
Craps number of wins 0.481 0.250

of the lagged Fibonacci type. Its formula is:Xi =
(Xi−55−Xi−32) mod 109. It has a period of 255−1,
and 55 numbers (the seeds) are necessary in order to
initialize it. This generator was tested by Vattulainen
[13], and is considered rather good, though there exist

Table 2
Diehardp-value test results for uniform CAs without time spacing

Test name 30 90 105 150 165

Birthday spacing 1.000 1.000 1.000 1.000 1.000
Overlapping permutation1 1.000 1.000 1.000 1.000 1.000
Overlapping permutation 2 1.000 1.000 1.000 1.000 1.000
Binary rank 31*31 1.000 1.000 1.000 1.000 1.000
Binary rank 32*32 1.000 1.000 1.000 1.000 1.000
Binary rank 6*8 1.000 1.000 1.000 1.000 1.000
Count the ones 1.000 1.000 1.000 1.000 1.000
Parking lot 1.000 0.381 1.000 1.000 1.000
Minimum distance 1.000 1.000 1.000 1.000 1.000
3D sphere 1.000 0.631 0.395 0.034 0.109
Squeeze 1.000 1.000 0.531 0.278 0.999
Overlapping sum 0.511 0.181 0.396 0.597 0.337
Run up 1 0.880 0.078 0.995 1.000 0.517
Run up 2 0.121 0.940 0.875 0.988 0.274
Run down 1 0.976 0.602 0.659 1.000 0.638
Run down 2 0.703 0.730 1.000 0.988 0.568
Craps number of throws 1.000 0.021 0.827 1.000 0.112
Craps number of wins 1.000 0.328 0.952 0.857 0.836

nonetheless some correlations between bits. Table 1
shows the test results for these two RNGs.

Uniform CAs.We tested the following uniform CA
rules – without time spacing: 30, 90, 105, 150, 165.
Taking into account all the Diehard tests, including
some that are not are shown in Table 2 (the multiple
p-value tests), we can conclude the following: rule
105 is the best RNG (among the uniform rules), fol-
lowed by rules 165, 90, and 150, with rule 30 coming
in last. All these CAs failed the bitstream and OPSO
tests. With respect to the OQSO test, rule 30 had al-
ways failed, while the other rules sometimes produced
good (passing) strings. A periodicity of thep-values
was detected in all cases. The DNA test differentiated
between rules 105, 165, and 150 – which had gener-
ally passed it, and rules 30 and 90 – which had mostly
failed. We conclude that on the whole, uniform CAs
without time spacing comprise fairly good generators,
but they do not compare well with standard classical
ones (see previous paragraph).

Non-uniform CAs.Three non-uniform CAs were
tested (Table 3): Hortensius et al., Sipper and
Tomassini, and Tomassini et al. (see Section 3). Our
results show that, on the whole, non-uniform CAs
(without time spacing) are better RNGs than uniform
ones, although they are still somewhat inferior to clas-
sical generators; this confirms and extends the findings
of [2,3,12]. We observed no discernible differences

302 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

Table 3
Diehardp-value test results for non-uniform CAs without time spacing

Test name Hortensius et al. Sipper and Tomassini Tomassini et al.

Birthday spacing 1.000 1.000 1.000
Overlapping permutation 1 0.030 0.953 0.990
Overlapping permutation 2 0.028 0.956 0.546
Binary rank 31*31 1.000 1.000 1.000
Binary rank 32*32 1.000 1.000 1.000
Binary rank 6*8 0.425 0.168 0.763
Count the ones 1.000 1.000 1.000
Parking lot 0.900 0.089 0.478
Minimum distance 1.000 1.000 1.000
3D sphere 0.910 0.058 0.948
Squeeze 0.920 0.633 0.781
Overlapping sum 0.554 0.478 0.011
Run up 1 0.722 0.327 0.399
Run up 2 0.646 0.210 0.604
Run down 1 0.485 0.782 0.994
Run down 2 0.211 0.193 0.646
Craps number of throws 0.303 0.144 0.590
Craps number of wins 0.832 0.359 0.255

between the three non-uniform CAs tested, with all of
them failing to pass the same Diehard tests. We also
detected periodicity in thep-values, which means that
their generation of random sequences leaves some-
thing to be desired. Note, though, that they did pass
a number of hard tests, and can therefore serve as
RNGs in many applications. Their advantage is that
they produce more random numbers per time unit,
since no time spacing is used.

Time spacing.Because of the observedp-value
periodicities in the above uniform and non-uniform
CAs, we applied a time-spacing parameter of 5,
obtaining very good results. However, such time
spacing implies that only one bit in six is retained,
thus markedly decreasing the rate at which random
numbers are produced. As an acceptable compro-
mise between bit rate and quality, we opted for a
time spacing of 2. Our results show highly improved
performance both for the uniform (Table 4) and the
non-uniform (Table 5) cases, with but a small degra-
dation with respect to a time spacing of 5. Indeed, it
can be seen that these CA generators are as good as
the standard ones (Table 1). The five uniform CAs all
exhibit roughly the same performance level. Among
the three non-uniform CAs, Sipper and Tomassini and
Tomassini et al. are roughly equivalent (though the
latter is slightly better, due to some multiplep-value

tests not shown here), while Hortensius is slightly
worse in this respect. In conclusion, if one seeks very
high-quality random number sequences, then time
spacing seems to be crucial. With time spacing, there
seems to be little difference between uniform and
non-uniform CAs.

Cross-correlation.
• Cross-correlation between different CAs.We tested

two pairs of CAs: the cross-correlation between the
rule-105 CA and the Tomassini et al. CA, and the
cross-correlation between the Sipper and Tomassini
CA and the Tomassini et al. CA. In both cases,
no correlations were found between the sequences
generated by each CA of the pair (for the entire
80MB file).

• Cross-correlation between sequences from the same
CA with different initial conditions.In this case
we use the same CA, but test for cross-correlation
between two sequences created from two differ-
ent initial state configurations. We tested uniform
rule 105, Sipper and Tomassini, and Tomassini et
al.. We detected cross-correlations between the se-
quences generated by the first two CAs, whereas
Tomassini et al. showed no such correlations. These
two cross-correlation tests are important where
parallel machines are concerned. They demonstrate
that one can use some of our CAs to generate

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 303

Table 4
Diehardp-value test results for uniform CAs with a time spacing of two

Test name 30 90 105 150 165

Birthday spacing 0.447 0.821 0.159 0.028 0.605
Overlapping permutation 1 0.818 0.176 0.322 0.523 0.143
Overlapping permutation 2 0.363 0.828 0.227 0.015 0.043
Binary rank 31*31 0.572 0.321 0.480 0.329 0.620
Binary rank 32*32 0.610 0.698 0.354 0.500 0.528
Binary rank 6*8 0.456 0.939 0.431 0.841 0.061
Count the ones 1.000 0.787 0.723 0.395 0.464
Parking lot 0.455 0.164 0.210 0.917 0.577
Minimum distance 1.000 0.100 1.000 0.995 0.988
3D sphere 0.054 0.891 0.749 0.870 0.242
Squeeze 0.620 0.846 0.502 0.478 0.285
Overlapping sum 0.165 0.519 0.261 0.132 0.300
Run up 1 0.775 0.755 0.131 0.385 0.904
Run up 2 0.424 0.711 0.176 0.000 0.407
Run down 1 0.361 0.880 0.749 0.558 0.861
Run down 2 0.414 0.842 0.807 0.295 0.719
Craps number of throws 0.167 0.715 0.979 0.484 0.551
Craps number of wins 0.786 0.192 0.312 0.225 0.484

Table 5
Diehardp-value test results for non-uniform CAs with a time spacing of two

Test name Hortensius et al. Sipper and Tomassini Tomassini et al.

Birthday spacing 0.997 0.287 0.647
Overlapping permutation 1 0.969 0.053 0.094
Overlapping permutation 2 0.971 0.944 0.373
Binary rank 31*31 0.649 0.353 0.958
Binary rank 32*32 0.481 0.368 0.928
Binary rank 6*8 0.213 0.768 0.721
Count the one’s 1.000 0.232 0.639
Parking lot 0.307 0.055 0.991
Minimum distance 1.000 0.974 1.000
3D sphere 0.121 0.391 0.977
Squeeze 0.281 0.256 0.557
Overlapping sum 0.677 0.304 0.231
Run up 1 0.615 0.856 0.186
Run up 2 0.505 0.335 0.374
Run down 1 0.149 0.003 0.777
Run down 2 0.760 0.539 0.557
Craps number of throws 0.623 0.429 0.698
Craps number of wins 0.681 0.081 0.452

uncorrelated sequences on different machines,
running in parallel (e.g., parallel Monte-Carlo
simulations).

• Cross-correlation between interleaved sequences
from the same CA with a given time spacing pa-
rameter.Here, the CA is used with a time spacing
of 2, which essentially creates three random num-

ber sequences, starting at time steps 0, 1, and 2,
respectively. Normally, with time spacing, only the
first one is retained, and our interest here was to
check whether two (or more) of these could be
used in parallel. This is important, e.g., for VLSI
built-in self-test (BIST) applications since one can
use the same CA to create two or more random

304 M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305

Table 6
Number of tests each RNG passed

Random number generator Number of
tests passed

Tomassini et al. with time spacing 18
Sipper and Tomassini with time spacing 18
Rule 165 with time spacing 18
Rule 90 with time spacing 18
RAN3 18
Rule 105 with time spacing 17
Rule 150 with time spacing 17
Hortensius with time spacing 16
Rule 30 with time spacing 16
GGL 16
Tomassini et al. 13
Hortensius 13
Sipper and Tomassini 13
Rule 90 9
Rule 165 9
Rule 105 8
Rule 150 6
Rule 30 5

sequences, which can be used by different parts of
the tested circuit.

Before studying sequence cross-correlations, we
submitted each of the three sequences separately
to the Diehard test suite in order to assess their
randomness. The results were good and compara-
ble to the single-sequence ones described above.
Testing CAs 105, Tomassini et al., and Sipper and
Tomassini we found that the first two exhibited good
performance, whereas the latter one turned out to
be worse.

7. Concluding remarks

Table 6 summarizes our findings, ranking all tested
RNGs according to the quality of the random num-
bers they produce. In general, non-uniform CAs
are better than uniform CAs without time spacing.
Since this is the fastest method of producing random
numbers, such CAs are the RNG of choice. Though
they are somewhat inferior to linear congruential
and lagged-Fibonacci ones, the quality of the ran-
dom number sequences produced is nonetheless quite
high, and is sufficient for many applications. Thus,
non-uniform CAs with no time spacing provide for
good, fast RNGs.

Remember that the Tomassini et al. CA was created
by assigning to each cell one of the four “good” rules
(discovered by evolution) at random – 90, 105, 150, or
165. This suggests that good RNGs of any size might
be obtained using this simple procedure.

Time spacing improves the quality of the random
number sequences, both for uniform and non-uniform
CAs. Our findings show that a time spacing of 2 is
sufficient in order to match the quality of good classi-
cal RNGs (linear congruential and lagged Fibonacci).
Thus, one can trade off random bit generation rate
with sequence quality, reducing the former in order to
improve the latter.

The cross-correlation tests are important where par-
allel sequence generation is concerned. Our results
show that one can use some of our CAs to generate un-
correlated sequences on machines running in parallel.

In conclusion, our extensive suite of tests demon-
strates that CAs can be used to rapidly produce
high-quality random number sequences. Such CAs
can be efficiently implemented in hardware, can be
used in such applications as VLSI built-in self-test,
and can be applied in the field of parallel computation.

Acknowledgements

The authors would like to thank W. Peterson for
useful discussions.

References

[1] D.R. Chowdhury, I.S. Gupta, P.P. Chaudhuri, A low-cost
high-capacity associative memory design using cellular
automata, IEEE Trans. Comput. 44(10) (1995) 1260–1264.

[2] P.D. Hortensius, R.D. McLeod, H.C. Card, Parallel random
number generation for VLSI systems using cellular automata,
IEEE Trans. Comput. 38(10) (1989) 1466–1473.

[3] P.D. Hortensius, R.D. McLeod, W. Pries, D.M. Miller,
H.C. Card, Cellular automata-based pseudo-random number
generators for built-in self-test, IEEE Trans. Computer-Aided
Design 8(8) (1989) 842–859.

[4] D.E. Knuth, The Art of Computer Programming: Vol. 2,
Seminumerical Algorithms, Addison-Wesley, Reading, MA,
3rd ed., 1998.

[5] J.R. Koza, Genetic Programming, The MIT Press, Cambridge,
Massachusetts, 1992.

[6] D. Mange, M. Tomassini, editors. Bio-inspired Computing
Machines. Presses Polytechniques et Universitaires
Romandes, Lausanne, 1998.

M. Tomassini et al. / Future Generation Computer Systems 16 (1999) 291–305 305

[7] G. Marsaglia, A current view of random number generators,
in: L. Billard (Ed.), Computer Sciences and Statistics, pp.
3–10. Elsevier, Amsterdam, 1985.

[8] G. Marsaglia, Diehard. http://stat.fsu.edu/∼geo/diehard.html,
1998.

[9] Z. Michalewicz, Genetic Algorithms+ Data Structures=
Evolution Programs. Springer, Heidelberg, 3rd ed., 1996.

[10] S.K. Park, K.W. Miller, Random number generators: Good
ones are hard to find, Communications of the ACM 31(10)
(1988) 1192–1201.

[11] M. Sipper, Evolution of Parallel Cellular Machines: The
Cellular Programming Approach, Springer, Heidelberg, 1997.

[12] M. Sipper, M. Tomassini, Generating parallel random number
generators by cellular programming, Intl. J. Modern Phys. C
7(2) (1996) 181–190.

[13] I. Vattulainen, New test of random numbers for simulations
in physical systems. Technical Report HU-TFT-IR-94-4,
Research institute for theoretical physics, University of
Helsinki, 1994.

[14] S. Wolfram, Random sequence generation by cellular
automata, Adv. Appl. Mathematics 7 (1986) 123–169.

Marco Tomassini is professor of Com-
puter Science at the University of Lau-
sanne, Switzerland. His research interests
include bio-inspired techniques, such as
evolutionary algorithms and artificial neu-
ral networks, as well as heuristics, ma-
chine learning, and knowledge discovery.
He is also involved in the study of cellu-
lar automata and of complex systems of
agents in economics and in information
and communication webs. He has authored

and coauthored several scientific papers and books in these fields.

Moshe Sipper is a senior researcher in
the Logic Systems Laboratory at the Swiss
Federal Institute of Technology, Lausanne,
Switzerland. He received a B.A. in Com-
puter Science from the Technion-Israel In-
stitute of Technology, and M.Sc. and a
Ph.D. from Tel Aviv University. His chief
interests involve the application of bio-
logical principles to artificial systems, in-
cluding, cellular automata (with an em-
phasis on evolving cellular machines),

bio-inspired systems, evolving hardware, complex adaptive sys-
tems, artificial life, and neural networks. Dr. Sipper has authored
and coauthored several scientific papers in these areas, as well as
the book Evolution of Parallel Cellular Machines: The Cellular
Programming Approach(Springer, Heidelberg, 1997).

Mosè Zolla is a graduate student at the
Computer Science Institute of the Uni-
versity of Lausanne. After a diploma in
chemistry and computer science, he is
studying the statistical properties of cellu-
lar automata-based pseudo-random num-
bers. His main interests include statistical
methods such as bootstrap and computa-
tional statistics.

Mathieu Perrenoud is a graduate student
at the Computer Science Institute of the
University of Lausanne. He is studying
artificial evolution and cellular automata
and is interested in artificial intelligence
and the world wide web. He also enjoys
playing bridge and science fiction movies.

