Chapter 1

Programming Cellular
Machines by Cellular
Programming

Moshe Sipper

1.1 Introduction

The idea of applying the biological principle of natural evolution to artifi-
cial systems, introduced more than three decades ago, has seen impressive
growth in the past few years. Usually grouped under the term evolution-
ary algorithms or evolutionary computation, one finds such diverse domains
as genetic algorithms, evolution strategies, evolutionary programming, and
genetic programming. Central to all these different methodologies is the
idea of solving problems by evolving an initially random pool of possible
solutions, through the application of “genetic” operators, such that in time
“fitter” (i.e., better) solutions emerge (Chapter 77).

Research in these areas has traditionally centered on proving theoreti-
cal aspects, such as convergence properties, effects of different algorithmic
parameters, and so on, or on making headway in new application domains,
such as constraint optimization problems, image processing, neural network
evolution, and more. The implementation of an evolutionary algorithm,
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an issue which usually remains in the background, is quite costly in many
cases, since populations of solutions are involved, possibly coupled with
computation-intensive fitness evaluations. One possible solution is to paral-
lelize the process, an idea which has been explored to some extent in recent
years (Chapter 77). While posing no major problems in principle, this may
require judicious modifications of existing algorithms or the introduction of
new ones in order to meet the constraints of a given parallel machine.

In this chapter a different approach is taken; rather than ask ourselves
how to better implement a specific algorithm on a given hardware platform,
we pose the more general question of whether machines can be made to
evolve. While this idea finds its origins in the cybernetics movement of the
1940s and 1950s, it has recently resurged in the form of the nascent field of
bio-inspired systems and evolvable hardware [19]. The field draws on ideas
from evolutionary computation as well as on recent hardware developments.

Our evolving machines are based on the cellular automata model (Chap-
ter 7?7). Cellular automata (CA) are dynamical systems in which space
and time are discrete. A cellular automaton consists of an array of cells,
each of which can be in one of a finite number of possible states, updated
synchronously in discrete time steps according to a local, identical interac-
tion rule. The state of a cell at the next time step is determined by the
previous states of a surrounding neighborhood of cells. This transition is
usually specified in the form of a rule table, delineating the cell’s next state
for each possible neighborhood configuration. The cellular array (grid) is
n-dimensional, where n = 1,2, 3 is used in practice (in this chapter we shall
concentrate on n = 1 and n = 2). A one-dimensional CA is illustrated in
Figure 1.1 (based on [15]).

CAs exhibit three notable features, namely, massive parallelism, locality
of cellular interactions, and simplicity of basic components (cells). As such
they are naturally suited for hardware implementation, with the potential
of exhibiting extremely fast and reliable computation that is robust to noisy
input data and component failure. A major impediment preventing ubiqui-
tous computing with CAs stems from the difficulty of utilizing their complex
behavior to perform useful computations. Designing CAs to exhibit a spe-
cific behavior or to perform a particular task is highly complicated, thus
severely limiting their applications. This results from the local dynamics of
the system, which renders the design of local rules to perform global com-
putational tasks extremely arduous. Automating the design (programming)
process would greatly enhance the viability of CAs [16, 25].

The model investigated in this chapter is an extension of the CA model,



Rule table:

neighborhood: 111 110 101 100 011 010 001 000
output bit: 1 1 1 0 1 0 0 0

Grid:

Figure 1.1: Hlustration of a one-dimensional, 2-state CA. The connectivity
radius is » = 1, meaning that each cell has two neighbors, one to its imme-
diate left and one to its immediate right. Grid size is N = 15. The rule
table for updating the grid is shown on top. The grid configuration over one
time step is shown at the bottom. Spatially periodic boundary conditions
are applied, meaning that the grid is viewed as a circle, with the leftmost
and rightmost cells each acting as the other’s neighbor.

termed non-uniform cellular automata [20] (see Chapter ??). Such automata
function in the same way as uniform ones, the only difference being in the
cellular rules that need not be identical for all cells. Our main focus is on
the evolution of non-uniform CAs to perform computational tasks, using
the cellular programming approach. As noted in Chapter 7?7, the input
to the computation is encoded as an initial configuration and the output
is the configuration after a certain number of time steps. We shall first
introduce the algorithm, followed by several problems to which it has been
applied. We then study a number of related issues, including the evolution
of connectivity architectures, asynchronous CAs, evolving ware (evolware),
and faulty CAs.

1.2 The cellular programming algorithm

We study 2-state, non-uniform CAs, in which each cell may contain a dif-
ferent rule. A cell’s rule table is encoded as a bit string (the “genome”),
containing the next-state (output) bits for all possible neighborhood config-
urations, listed in lexicographic order; e.g., for CAs with r = 1, the genome



consists of 8 bits, where the bit at position 0 is the state to which neighbor-
hood configuration 000 is mapped to and so on until bit 7, corresponding
to neighborhood configuration 111. Rather than employ a population of
evolving, uniform CAs, as with genetic algorithm approaches, our algorithm
involves a single, non-uniform CA of size N, with cell rules initialized at
random. Initial configurations are then generated at random, in accordance
with the task at hand, and for each one the CA is run for M time steps.
Each cell’s fitness is accumulated over C' = 300 initial configurations, where
a single run’s score is 1 if the cell is in the correct state after M iterations,
and 0 otherwise. After every C configurations evolution of rules occurs by
applying crossover and mutation. This evolutionary process is performed
in a completely local manner, where genetic operators are applied only be-
tween directly connected cells. It is driven by nf;(c), the number of fitter
neighbors of cell ¢ after ¢ configurations. The pseudo-code of the algorithm
is delineated in Figure 1.2.

Crossover between two rules is performed by selecting at random (with
uniform probability) a single crossover point and creating a new rule by
combining the first rule’s bit string before the crossover point with the second
rule’s bit string from this point onward. Mutation is applied to the bit string
of a rule with probability 0.001 per bit.

There are two main differences between the cellular programming al-
gorithm and the standard genetic algorithm (Chapter ??): (a) The latter
involves a population of evolving, uniform CAs; all CAs are ranked accord-
ing to fitness, with crossover occurring between any two individuals in the
population. Thus, while the CA runs in accordance with a local rule, evo-
lution proceeds in a global manner. In contrast, the cellular programming
algorithm proceeds locally in the sense that each cell has access only to its
locale, not only during the run but also during the evolutionary phase, and
no global fitness ranking is performed. (b) The standard genetic algorithm
involves a population of independent problem solutions; the CAs in the pop-
ulation are assigned fitness values independent of one another, and interact
only through the genetic operators in order to produce the next genera-
tion. In contrast, our CA coevolves since each cell’s fitness depends upon
its evolving neighbors. This may also be considered a form of symbiotic
cooperation, which falls, as does coevolution, under the general heading of
“ecological” interactions (see [15], pages 182-183).

This latter point comprises a prime difference between our algorithm
and parallel genetic algorithms, which have attracted attention over the
past few years. These aim to exploit the inherent parallelism of evolution-



for each cell i in CA do in parallel
initialize rule table of cell ¢
fi = 0 { fitness value }
end parallel for
¢ =0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell ¢ do in parallel
if cell i is in the correct final state then

fi=fi+1
end if
end parallel for
c=c+1

if ¢ mod C' = 0 then { evolve every C configurations}
for each cell i do in parallel
compute nf;(c) { number of fitter neighbors }
if nf;(c) = 0 then rule 7 is left unchanged
else if nf;(c) = 1 then replace rule ¢ with the fitter neighboring rule,
followed by mutation
else if nf;(c) = 2 then replace rule ¢ with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf;(c) > 2 then replace rule ¢ with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)
end if
Ji=0
end parallel for
end if
end while

Figure 1.2: Pseudo-code of the cellular programming algorithm.



ary algorithms, thereby decreasing computation time and enhancing per-
formance (Chapter ??). A number of models have been suggested, among
them coarse-grained, island models [4, 37, 38], and fine-grained, grid models
[14, 39]. The latter resemble our system in that they are massively parallel
and local; however, the coevolutionary aspect is missing. As we wish to
attain a system displaying global computation, the individual cells do not
evolve independently as with genetic algorithms (be they parallel or serial),
i.e., in a “loosely coupled” manner, but rather coevolve, thereby comprising
a “tightly coupled” system.

1.3 Applications of cellular programming

In this section we study six computational tasks: density, synchronization,
ordering, rectangle-boundary, thinning, and random number generation;
these are summarized in Table 1.1. Minimal cellular spaces are used: 2-
state, r = 1 for the one-dimensional case and 2-state, 5-neighbor for the
two-dimensional one. Spatially periodic boundary conditions are applied,
resulting in a circular grid for the one-dimensional case, and a toroidal one
for the two-dimensional case. The total number of initial configurations per
evolutionary run was in the range [10?,10%]. Performance values reported
hereafter represent the average fitness of all grid cells after C configura-
tions, normalized to the range [0, 1]; these are obtained during execution of
the cellular programming algorithm.

1.3.1 The density task

The one-dimensional density task is to decide whether or not the initial con-
figuration contains more than 50% 1s, relaxing to a fixed-point pattern of all
1s if the initial density of 1s exceeds 0.5, and all Os otherwise. As noted by
[16], the density task comprises a non-trivial computation for a small-radius
CA (r < N, where N is the grid size). Density is a global property of a
configuration whereas a small-radius CA relies solely on local interactions.
Since the 1s can be distributed throughout the grid, propagation of informa-
tion must occur over large distances (i.e., O(N)). The minimum amount of
memory required for the task is O(log N) using a serial-scan algorithm, thus
the computation involved corresponds to recognition of a non-regular lan-
guage. Note that the density task cannot be perfectly solved by a uniform,
two-state CA, as proven by [13]. (This result applies to the above statement
of the problem, where the CA’s final pattern (i.e., output) is specified as a



Task Description Grid

Density Decide whether the initial configuration 1D, r=1
contains a majority of Os or of 1s 2D, 5-neighbor

Synchronization Given any initial configuration, relax to an | 1D, r=1
oscillation between all Os and all 1s 2D, 5-neighbor

Ordering Order initial configuration so that Os are 1D, r=1
placed on the left and 1s are placed
on the right

Rectangle- Find the boundaries of a randomly placed, | 2D, 5-neighbor

Boundary random-sized non-filled rectangle

Thinning Find thin representations of rectangular 2D, 5-neighbor
patterns

Random Number | Generate “good” sequences of pseudo- 1D, r=1

Generation random numbers

Table 1.1: List of computational tasks for which cellular machines were
evolved via cellular programming.

fixed-point configuration. Interestingly, it has recently been proven that by
changing the output specification, namely, the final pattern toward which
the system should converge, a two-state, r = 1 uniform CA exists that can
perfectly solve the density problem [3].)

We studied this task in [23, 25, 29, 30] using non-uniform, one-dimensional,
minimal radius r = 1 CAs of size N = 149. The search space involved is
extremely large; since each cell contains one of 2% possible rules this space
is of size (28)'9 = 21192, In contrast, the size of uniform, » = 1 CA rule
space is small, consisting of only 28 = 256 rules. This enabled us to test
each and every one of these rules on the density task, a feat not possible
for larger values of r. One of our major results is that evolved non-uniform,
r = 1 CAs outperform any possible uniform, » = 1 CA [23] (for details on
the performance comparison see [23, 25]).

For the cellular programming algorithm we used randomly generated
initial configurations, uniformly distributed over densities in the range [0, 1],
with the CA being run for M = 150 time steps (thus, computation time is
linear with grid size). We found that non-uniform CAs had coevolved that
exhibit performance values as high as 0.93 (in comparison, the maximal
performance of uniform r = 1 CAs is 0.83 [23, 25]). Furthermore, these
consist of a grid in which one rule dominates, a situation referred to as



quasi-uniformity [21, 25]. Basically, in a quasi-uniform CA the number of
distinct rules is extremely small with respect to rule-space size; furthermore,
the rules are distributed such that a subset of dominant rules occupies most
of the grid.

" time
7 . |

Figure 1.3: One-dimensional density task: Operation of a coevolved, non-
uniform, r = 1 CA. Grid size is N = 149. White squares represent cells in
state 0, black squares represent cells in state 1. The pattern of configurations
is shown through time (which increases down the page). Initial configura-
tions were generated at random. Top figures depict space-time diagrams,
bottom figures depict rule maps. (a) Initial density of 1s is 0.40. (b) Initial
density of 1s is 0.60. The CA relaxes in both cases to a fixed pattern of all
0Os or all 1s, correctly classifying the initial configuration.

Figure 1.3 demonstrates the operation of one such coevolved CA along
with a rules map, depicting the distribution of rules by assigning a unique
gray level to each distinct rule. In this example the grid consists of 146
cells containing rule 226, 2 cells containing rule 224, and 1 cell containing
rule 234.2 The non-dominant rules act as “buffers,” preventing information

2Rule numbers are given in accordance with Wolfram’s convention [40, 42], representing
the decimal equivalent of the binary number encoding the rule table. For example, the



from flowing too freely, and making local corrections to passing signals. A
detailed investigation of the application of cellular programming to the one-
dimensional density task can be found in [23, 25, 30].

The density task can be extended in a straightforward manner to two-
dimensional grids, an investigation of which we have carried out, attaining
notably higher performance than the one-dimensional case, with values of
0.99; furthermore, computation time, i.e., the number of time steps taken
by the CA until convergence to the correct final pattern, is shorter (we shall
elaborate upon these improved results in Section 1.4). Figure 1.4 demon-
strates the operation of one such coevolved CA. Qualitatively, we observe
the CA’s “strategy” of successively classifying local densities, with the local-
ity range increasing over time; “competing” regions of density 0 and density
1 are manifest, ultimately relaxing to the correct fixed point.

1.3.2 The synchronization task

The one-dimensional synchronization task was introduced by [5] and stud-
ied by us in [7, 24, 25, 26, 27| using non-uniform CAs. In this task the
CA, given any initial configuration, must reach a final configuration, within
M time steps, that oscillates between all Os and all 1s on successive time
steps. As with the density task, synchronization also comprises a non-trivial
computation for a small-radius CA.

We studied non-uniform, one-dimensional, minimal radius » = 1 CAs
of size N = 149. As for the density task, all possible uniform, r = 1 CAs
were first tested on this task. For the cellular programming algorithm we
used randomly generated initial configurations, uniformly distributed over
densities in the range [0, 1], with the CA being run for M = 150 time steps.
We found that quasi-uniform CAs had coevolved that exhibit near-perfect
performance, which surpasses any possible uniform, r = 1 CA. Figure 1.5
depicts the operation of two CAs: a high-performance uniform CA and a co-
evolved, non-uniform CA. We have also experimented with two-dimensional
grids obtaining highly successful results as with the one-dimensional case.

1.3.3 The ordering task

In this task, the one-dimensional CA, given any initial configuration, must
reach a final configuration in which all Os are placed on the left side of the
grid and all 1s on the right side (thus the final density equals the initial one,

rule depicted in Figure 1.1 is rule 232.
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Figure 1.4: Two-dimensional density task: Operation of a coevolved, non-
uniform, 2-state, 5-neighbor CA. Grid size is N = 225 (15 x 15). Initial
density of 1s is 0.51, final density is 1. Numbers at bottom of images denote

time steps.

however the configuration consists of a block of Os on the left followed by a
block of 1s on the right). It is interesting in that the output is not a uniform
configuration of all Os or all 1s as with the density and synchronization tasks.
Cellular programming yielded quasi-uniform CAs with fitness values as high
as 0.93, one of which is depicted in Figure 1.6. As with the previous tasks we
were able to ascertain that this performance level is better than any possible
uniform, r = 1 CA.
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Figure 1.5: One-dimensional synchronization task: Operation of two r = 1
CAs. Grid size is N = 149. Initial configurations were generated at random.
Top figures depict space-time diagrams, bottom figures depict rule maps. (a)
Uniform rule 31 (one of the best-performance uniform CAs for this task).
(b) A coevolved, non-uniform, r = 1 CA.

1.3.4 The rectangle-boundary task

The possibility of applying CAs to perform image processing tasks arises
as a natural consequence of their architecture. In a two-dimensional CA, a
cell (or a group of cells) can correspond to an image pixel, with the CA’s
dynamics designed so as to perform a desired image processing task. Earlier
work in this area, carried out mostly in the 1960s and the 1970s, was treated
in [18], with more recent applications presented in [1, 9].

The next two tasks involve image processing operations. In this sec-
tion we discuss a two-dimensional boundary computation: given an initial
configuration consisting of a non-filled rectangle, the CA must reach a final
configuration in which the rectangular region is filled, i.e., all cells within
the confines of the rectangle are in state 1, and all other cells are in state 0.
Initial configurations consist of random-sized rectangles placed randomly on
the grid (in our simulations, cells within the rectangle in the initial config-

11
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Figure 1.6: One-dimensional ordering task: Operation of a coevolved, non-
uniform, r = 1 CA. Top figures depict space-time diagrams, bottom figures
depict rule maps. (a) Initial density of 1s is 0.315, final density is 0.328. (b)
Initial density of 1s is 0.60, final density is 0.59.

uration were set to state 1 with probability 0.3; cells outside the rectangle
were set to 0). Note that boundary cells can also be absent in the initial con-
figuration. This operation can be considered a form of image enhancement,
used, e.g., for treating corrupted images. Using cellular programming, non-
uniform CAs were evolved with performance values of 0.99, one of which is
depicted in Figure 1.7.

Upon studying the (two-dimensional) rules map of the coevolved, non-
uniform CA, we found that the grid is quasi-uniform, with one dominant
rule present in most cells. This rule maps the cell’s state to zero if the
number of neighboring cells in state 1 (including the cell itself) is less than
two, otherwise mapping the cell’s state to one;? thus, growing regions of 1s

3This is referred to as a totalistic rule, in which the state of a cell depends only on the
sum of the states of its neighbors at the previous time step, and not on their individual
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Figure 1.7: Two-dimensional rectangle-boundary task: Operation of a coe-
volved, non-uniform, 2-state, 5-neighbor CA. Grid size is N = 225 (15 x 15).
Numbers at bottom of images denote time steps.

are more likely to occur within the rectangle confines than without.

1.3.5 The thinning task

Thinning (also known as skeletonization) is a fundamental preprocessing
step in many image processing and pattern recognition algorithms. When
the image consists of strokes or curves of varying thickness it is usually desir-
able to reduce them to thin representations located along the approximate
middle of the original stroke or curve. Such “thinned” representations are
typically easier to process in later stages, entailing savings in both time and
storage space [8].

While the first thinning algorithms were designed for serial implementa-
tion, current interest lies in parallel systems, early examples of which were
presented in [18]. The difficulty of designing a good thinning algorithm using
a small, local cellular neighborhood, coupled with the task’s importance had
motivated us to explore the possibility of applying the cellular programming
algorithm.

states [40, 42].
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Guo and Hall [8] considered four sets of binary images, two of which
consist of rectangular patterns oriented at different angles. The algorithms
presented therein employ a two-dimensional grid with a 9-cell neighborhood,
each parallel step consisting of two sub-iterations in which distinct opera-
tions take place. The set of images considered by us consists of rectangular
patterns oriented either horizontally or vertically. While more restrictive
than that of [8], it is noted that we employ a smaller neighborhood (5-cell)
and do not apply any sub-iterations.

Figure 1.8 demonstrates the operation of a coevolved CA performing
the thinning task. Although the evolved grid does not compute perfect
solutions, we observe, nonetheless, good thinning “behavior” upon presen-
tation of rectangular patterns as defined above (Figure 1.8a). Furthermore,
partial success is demonstrated when presented with more difficult images
involving intersecting lines (Figure 1.8b).

] I
B 2 e—
0 1

(b)

Figure 1.8: Two-dimensional thinning task: Operation of a coevolved, non-
uniform, 2-state, 5-neighbor CA. Grid size is N = 1600 (40 x 40). Numbers
at bottom of images denote time steps. (a) Two separate lines. (b) Two
intersecting lines.
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1.3.6 Random number generation

Random numbers are needed in a variety of applications, yet finding good
random number generators is a difficult task [17]. To generate a random
sequence on a digital computer, one starts with a fixed length seed, then
iteratively applies some transformation to it, progressively extracting as long
as possible a random sequence. Such numbers are usually referred to as
pseudo-random, as distinguished from true random numbers resulting from
some natural physical process. In the last decade cellular automata have
been used to generate random numbers [10, 12, 41].

In [25, 32, 33] we applied the cellular programming algorithm to evolve
random number generators. Essentially, the cell’s fitness score for a single
configuration (refer to Figure 1.2) is the entropy of the temporal bit sequence
of that cell, with higher entropy implying better fitness. This fitness measure
was used to drive the evolutionary process, after which standard tests were
applied to evaluate the quality of the evolved CAs. The results obtained
suggest that good generators can indeed be evolved; these exhibit behavior
at least as good as that of previously described CAs, with notable advantages
arising from the existence of a “tunable” algorithm for obtaining random
number generators (Figure 1.9).

1.4 Coevolving cellular architectures

In the previous section we presented the cellular programming approach, by
which non-uniform CAs can be coevolved to perform computational tasks.
Such CAs comprise a generalization of the original CA model, by removing
the uniformity-of-rules constraint. In this section we generalize on a second
aspect of CAs, namely, their standard, homogeneous connectivity.

In Section 1.3.1 we noted that the density task can be extended in
a straightforward manner to two-dimensional grids, resulting in markedly
higher evolved performance coupled with shorter computation times, in com-
parison to the one-dimensional case. This finding is intuitively understood
by observing that a two-dimensional, locally connected grid can be embed-
ded in a one-dimensional grid with local and distant connections. This can
be achieved, for example, by aligning the rows of the two-dimensional grid so
as to form a one-dimensional array; the resulting embedded one-dimensional
grid has distant connections of order /N, where N is the grid size. Since the
density task is global it is likely that the observed superior performance of
two-dimensional grids arises from the existence of distant connections that

15



enhance information propagation across the grid.

Motivated by this observation concerning the effect of connection lengths
on performance, we set out in [29, 30] to quantitatively study the relationship
between performance and connectivity on the global density task, in one-
dimensional CAs; the results are summarized below (for a detailed account
the reader is referred to the aforementioned papers).

We use the term architecture to denote the connectivity pattern of CA
cells. In the standard one-dimensional model a cell is connected to r local
neighbors on either side (in addition to a self-connection), where r is the
radius (Chapter ??). The model we consider is that of non-uniform CAs
with non-standard architectures, in which cells need not necessarily contain
the same rule nor be locally connected; however, as with the standard CA
model, each cell has a small, identical number of impinging connections.
In what follows the term neighbor refers to a directly connected cell. We
employed the cellular programming algorithm to evolve cellular rules for
non-uniform CAs whose architectures are fixed (yet non-standard) during
the evolutionary run, or evolve concomitantly with the rules; these are re-
ferred to as fixed or evolving architectures, respectively. Note that this bears
some resemblance to Kauffman’s N K model [11] in that connections as well
as rules are heterogeneous; however, in our case, while these are initially
assigned at random, they then evolve to perform a veritable computation,
whereas Kauffman used random boolean networks to study issues related
to fitness landscapes engendered by arbitrarily complex epistatic couplings.
Furthermore, the K parameter, denoting the number of connections per cell,
may vary from K =1 to K = N, the latter representing a fully connected
grid; in our case, the number of impinging connections per cell is kept small
(i.e., we concentrate on very small K values).

We considered one-dimensional, symmetrical architectures where each
cell has four neighbors, with connection lengths of a and b, as well as a
self-connection. Spatially periodic boundary conditions are used, resulting
in a circular grid. This type of architecture belongs to the general class of
circulant graphs [2], and is denoted by Cn(a,b), where N is the grid size,
a, b the connection lengths (Figure 1.10). The distance between two cells on
the circulant is the number of connections one must traverse on the shortest
path connecting them.

We surmised that attaining high performance on global tasks requires
rapid information propagation throughout the CA, and that the rate of
information propagation across the grid inversely depends on the average
cellular distance (acd). It is straightforward to show that every Cn(a,b)

16



architecture is isomorphic to a Cy(1,d’) architecture, for some d’, referred
to as the equivalent d’ [25, 29, 30]. We may therefore study the performance
of Cn(1,d) architectures, our conclusions being applicable to the general
Cn(a,b) case.

To study the effects of different architectures on performance, the cellular
programming algorithm was applied to the evolution of cellular rules using
fixed, non-standard architectures. We performed numerous evolutionary
runs using Cn(1,d) architectures with different values of d, recording the
maximal performance attained during the run. Our results showed that
markedly higher performance is attained for values of d corresponding to
low acd values and vice versa. While performance behaves in a rugged,
non-monotonic manner as a function of d, we have found that it is linearly
correlated with acd (with a correlation coefficient of 0.99, and a negligible p
value).

These results demonstrate that performance is strongly dependent upon
the architecture, with higher performance attainable by using different archi-
tectures than that of the standard CA model. As each C(a,b) architecture
is isomorphic to a Cn(1,d) one, and as we have found that performance is
correlated with acd in the Cn(1,d) case, it follows that the performance of
general Cy(a,b) architectures is also correlated with acd. As an example
of such an architecture, the operation of a coevolved, C149(3,5) CA on the
density task is demonstrated in Figure 1.11.

Having shown that cellular programming can be applied to the evolu-
tion of non-uniform CAs with fixed, non-standard architectures, we then
asked whether a-priori specification of the connectivity parameters (a,b or
d) is indeed necessary, or can an efficient architecture coevolve along with
the cellular rules. Moreover, can heterogeneous architectures, where each
cell may have different d; or (a;,b;) connection lengths, achieve high perfor-
mance? Below we denote by Cn(1,d;) and Cn(a;, b;) heterogeneous archi-
tectures with one or two evolving connection lengths per cell, respectively.
Note that these are the cell’s input connections, on which information is re-
ceived; as connectivity is heterogeneous, input and output connections may
be different, the latter specified implicitly by the input connections of the
neighboring cells.

In order to evolve the architecture as well as the rules, the cellular
programming algorithm of Section 1.2 is modified, such that each cellu-
lar “genome” consists of two “chromosomes.” The first, encoding the rule
table, is identical to that delineated in Section 1.2, while the second chro-
mosome encodes the cell’s connections. The two-level dynamics engendered
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by the concomitant evolution of rules and connections markedly increases
the size of the space searched by evolution. Our results demonstrated that
high performance can be attained, nonetheless, surpassing, in fact, that of
the fixed-architecture CAs. Figure 1.12 demonstrates the operation of a
coevolved, Cia29(1,d;) CA on the density task.

In summary, our main findings concerning the coevolution of cellular
architectures are:

1. The performance of fixed-architecture CAs solving global tasks de-
pends strongly and linearly on their average cellular distance. Com-
pared with the standard Cx(1,2) architecture, considerably higher
performance can be attained at very low connectivity values, by se-
lecting a C'n(1,d) or Cn(a,b) architecture with a low acd value, such
that d,a,b < N.

2. High performance architectures can be coevolved using the cellular
programming algorithm, thus obviating the need to specify in advance
the precise connectivity scheme. Furthermore, as was shown in [25, 30],
it is possible to evolve such architectures that exhibit low connectivity
cost per cell as well as high performance (this cost is defined as d; for
the Cn(1,d;) case and a; + b; for Cy(a;, b;)).

1.5 Asynchronous CAs

One of the prominent features of the CA model is its synchronous mode of
operation, meaning that all cells are updated simultaneously. In [25, 35, 36]
we investigated the issue of evolving asynchronous CAs to perform the den-
sity and synchronization tasks. The grid is partitioned into blocks in which
synchronous updating takes place (i.e., all cells within a block are updated
simultaneously), while the blocks themselves are updated asynchronously
(rather than have all blocks updated at once); thus, intra-block updating
is synchronous while inter-block updating is asynchronous (a preliminary
investigation of a CA-derived model based on the “blocks” idea was carried
out in [22]). The number of blocks per grid, #p, is a tunable parameter,
entailing a scale of asynchrony, ranging from complete synchrony (#, = 1)
to complete asynchrony (#, = N). There are two main differences between
our investigation and previous ones: (1) rather than consider only complete
asynchrony (#, = N), we introduced the above scale; (2) asynchronous CAs
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were previously studied from a more abstract point of view, whereas we were
interested in evolving them to perform a veritable computation.

We introduced three models of asynchrony, previously unstudied in this
context, finding that asynchronous CAs can be evolved to perform the com-
putational tasks in question. We concluded that asynchrony presents a more
difficult case for evolution, though it is premature to draw any definitive
conclusions at this point, since we have only considered two problems, using
relatively small-size grids. We feel that successful asynchronous CAs can be
evolved, though this will probably entail larger grids (coupled with larger
blocks).

1.6 Evolware

Though the results described above were obtained through software simula-
tion, one of the goals is to attain truly evolving ware, evolware, with current
implementations centering on hardware, while raising the possibility of us-
ing other forms in the future, such as bioware [24, 25, 26]. In [7, 25, 28]
we described a hardware implementation of the cellular programming al-
gorithm, dubbed firefly, thus demonstrating that evolware can indeed be
attained (Figure 1.13).

The implementation is based on so-called field-programmable gate array
(FPGA) circuits. An FPGA is an array of logic cells, laid out as an intercon-
nected grid, with each cell capable of realizing a logic function (Chapter 77).
The cells, as well as the interconnections, are programmable “on the fly,”
thus offering an attractive technological platform for realizing, among oth-
ers, evolware. The features distinguishing this implementation from others
in the field of evolvable hardware [19, 25, 31] (see Chapter ?7) are: (1) an
ensemble of individuals (cells) is at work rather than a single one; (2) genetic
operators are all carried out on-board, rather than on a remote, offline com-
puter; (3) the evolutionary phase does not necessitate halting the machine’s
operation, but is rather intertwined with normal execution mode. These
features entail an online autonomous evolutionary process.

1.7 Fault tolerance

Most classical software and hardware systems, especially parallel ones, ex-
hibit a very low level of fault tolerance, i.e., they are not resilient in the face
of errors. Indeed, where software is concerned, even a single error can often
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bring an entire program to a grinding halt. Future computing systems may
contain thousands or even millions of computing elements (e.g., [6]). For
such large numbers of components, the issue of resilience can no longer be
ignored, since faults will be likely to occur with high probability.

Networks of automata exhibit a certain degree of fault tolerance. As an
example, one can cite artificial neural networks, many of which show graceful
degradation in performance when presented with noisy input (Chapter ?7?).
Moreover, the malfunction of a neuron or damage to a synaptic weight causes
but a small change in the system’s overall behavior, rather than bringing
it to a complete standstill. Cellular computing systems, such as CAs, may
be regarded as a simple and convenient framework within which to study
the effects of such errors. Another motivation for studying this issue derives
directly from the work presented in the previous section concerning the firefly
machine. We wish to learn how robust such a machine is when operating
under faulty conditions.

In [25, 34, 35] we performed a study of fault-tolerance in our evolved
CAs, asking how they perform in the face of errors. The CAs in question
were those that had evolved to solve either the density or synchronization
tasks, with our fault-tolerance investigation picking up upon termination
of the evolutionary process. We focused on one type of error where a cell
updates its state in a non-deterministic manner: at each time step, the cell’s
next state is that specified in the rule table, with probability 1 — py, or the
complementary one with probability ps; py is denoted the fault probability,
representing the probability that a cell will incorrectly update its state.
Figure 1.14 depicts the operation of two faulty CAs.

Our results showed that the evolved systems exhibit graceful degradation
in performance, able to tolerate a certain level of faults. Furthermore, we
identified a fault-tolerant range of py values, where “good” computational
behavior is exhibited, and introduced a number of measures to fine-tune our
understanding of the faulty CAs’ operation. We studied the error level as
a function of time and space, as well as the recuperation time needed to
recover from faults.

1.8 Concluding remarks

In this chapter we described the cellular programming approach used to
evolve parallel cellular machines, and demonstrated its viability by applying
it to the solution of six computational problems. We then studied a num-
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ber of related issues, including the evolution of connectivity architectures,
asynchronous CAs, evolving ware (evolware), and faulty CAs.

Evolving cellular machines hold potential both scientifically, as vehicles
for studying phenomena of interest in areas such as complex systems and
artificial life, as well as practically, showing a range of potential future appli-
cations ensuing the construction of adaptive systems. This chapter has shed
light on the possibility of computing with such machines, and demonstrated
the feasibility of their programming by means of coevolution.
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Figure 1.9: One-dimensional random number generator: Operation of a
coevolved, non-uniform, r = 1 CA. Grid size is N = 50. Top figure depicts
space-time diagram, bottom figure depicts rules map. Essentially, each cell’s
sequence of states through time is a pseudo-random bit stream.
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Figure 1.10: A Cg(2,3) circulant graph. Each node is connected to four
neighbors, with connection lengths of 2 and 3.

(a) (b)

Figure 1.11: The density task: Operation of a coevolved, non-uniform,
C149(3,5) CA. (a) Initial density of 1s is 0.48. (b) Initial density of 1s
is 0.51. Note that computation time, i.e., the number of time steps until
convergence to the correct final pattern, is shorter than that of the CA of
Figure 1.3. Furthermore, it can be qualitatively observed that the compu-
tational “behavior” is different, as is to be expected due to the different
connectivity architecture.
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Figure 1.12: The density task: Operation of a coevolved, non-uniform,
Ci29(1,d;) CA. (a) Initial density of 1s is 0.496. (b) Initial density of 1s
is 0.504. Note that computation time is shorter than that of the fixed-
architecture CA and markedly shorter than that of the CA of Figure 1.3.
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Figure 1.13: The firefly evolware board. The system is an evolving, one-
dimensional, non-uniform cellular automaton. Each of the 56 cells contains
a genome that represents its rule table; these genomes are randomly ini-
tialized, thereupon to be subjected to evolution. The board contains the
following components: (1) LED indicators of cell states (top), (2) switches
for manually setting the initial states of cells (top, below LEDs), (3) Xil-
inx FPGA chips (below switches), (4) display and knobs for controlling two
parameters (‘time steps’ and ‘configurations’) of the cellular programming
algorithm (bottom left), (5) a synchronization indicator (middle left), (6) a
clock pulse generator with a manually adjustable frequency from 0.1 Hz to 1
MHz (bottom middle), (7) an LCD display of evolved rule tables and fitness
values obtained during evolution (bottom right), and (8) a power-supply ca-
ble (extreme left). (Note that this is the system’s sole external connection.)
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(a)

Figure 1.14: One-dimensional synchronization task: Operation of a coe-
volved, non-uniform, » = 1 CA, with probability of fault p; > 0. Grid size is
N = 149. Initial configurations were generated at random. (a) py = 0.0001.
(b) py = 0.001.
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