Artificial Life IV, R. A. Brooks and P. Maes (eds.), pages 394-399, 1994. copyright The MIT Press 1994.

Non-Uniform Cellular Automata: Evolution in Rule
Space and Formation of Complex Structures

Moshe Sipper
Department of Computer Science
School of Mathematical Sciences
Sackler Faculty of Exact Sciences

Tel Aviv University
Tel Aviv 69978, Israel

e-mail: moshes@math.tau.ac.il

Abstract

Cellular automata are dynamical systems in
which space and time are discrete, where each
cell obeys the same rule and has a finite number
of states. In this paper we study non-uniform
cellular automata, i.e. with non-uniform local
interaction rules. Two different models are de-
scribed. In the first a cell’s rule may be re-
garded as a genotype whose phenotypic effect
is achieved by rule application. Our focus is on
evolution in rule space starting from a random
gene pool, i.e. rule population. The second
model focuses on the study of complex struc-
tures formed by a small number of rules, where
the term ‘complex’ denotes a structure consist-
ing of simple grid cells, acting as a single “or-
ganism” .

1 Introduction

Cellular automata (CA) are dynamical systems in which
space and time are discrete. The states of cells in a
regular grid are updated synchronously according to a
local interaction rule. Each cell obeys the same rule and
has a finite (usually small) number of states (Toffoli and
Margolus 1987). The model was originally conceived by
John von Neumann in the 1950’s (von Neumann 1966).

In this paper we study non-uniform cellular automata,
i.e. with non-uniform local interaction rules, an area
which seems to have received modest attention (Gar-
zon 1990; Lee et al. 1990; Qian et al. 1990). Our ap-
proach 1is different than these works and is more in the
spirit of Artificial Life where cellular automata provide
us with “logical universes” (Langton 1986). These are:
“synthetic universes defined by simple rules ... One can
actually construct them, and watch them evolve.” (Tof-
foli and Margolus 1987). In this context our purpose is
to study non-uniform cellular automata with the intent
of preserving the three essential features of the original
uniform model:

1. Massive parallelism.
2. Locality of cellular interactions.

3. Simplicity of cells (finite state machines).

A major argument in favor of studying non-uniform
cellular automata is that due to features (1) and (2),
namely massive parallelism and locality of interactions,
each cell must retain a copy of the rule in its local
memory'. Thus we argue that in terms of resources
there is no essential difference between uniform and non-
uniform automata.

Two slightly different models are described in this pa-
per. In the first a cell’s rule may be regarded as a geno-
type whose phenotypic effect is achieved by rule appli-
cation. As we shall see a cell’s genotype is reproduced
if its phenotypic effect promotes fitness. Our focus in
this model is on evolution in rule space starting from a
random gene pool, i.e. rule population.

The second (non-uniform) model introduces a slightly
enhanced cellular automaton. We argue that this en-
hanced automaton is simple enough so that feature (3)
(above) is maintained. Our focus here is the study of
complex structures formed by a small number of rules.
The term ‘complex’ denotes a structure which consists
of simple grid cells, acting as a single “organism” .

2 Evolution in rule space

The first model studied is that of binary state, non-
uniform cellular automata with a nine cell neighborhood.
The initial set-up of each cell’s rule table is random
where the parameter A denotes the probability of an en-
try being one (this is in accordance with the A parame-
ter introduced by Langton (1986), denoting the percent-
age of all entries in a rule table which map to non-zero
states). Operation of the automaton then proceeds as in
the original uniform model, with one difference: evolu-
tion takes place not only in state space but also in rule
space by having a cell’s rule evolve each time the cell
is unsuccessful, where success may be defined in various
ways. Two success criteria discussed ahead are:

1. Lwve. A cell is considered to be successful if it attains
a state of one, i.e. “lives”. We use the terms alive
and dead to represent a state of one and a state of
zero, respectively, in accordance with the terminology
of the game of Life (Gardner 1970; Berlekamp et al.
1982), one of the best known cellular automata rules.

! Although simulations of cellular automata on serial com-
puters may optimize memory requirements by retaining a
single copy of the rule this in no way impairs our argument.



Figure 1: Territories formed when success crite-
rion Agree is employed, with random A.

2. Agree. A cell is successful if it agrees (i.e. is in the
same state) with at least four of its neighbors.

Evolution of an unsuccessful cell’s rule is accomplished
by selecting one successful neighbor at random and copy-
ing its rule (if no successful neighbor exists then the
cell’s rule remains unchanged). An alternative approach
is to copy the most successful rule, a process which 1s
used for non-binary success criteria. Another parame-
ter of the model is whether the copying process is per-
fect or imperfect,where the latter case is said to involve
mutations. As noted the initial random population of
rules can be viewed as a gene pool, where phenotypic ef-
fects are achieved by rule application. In the paragraphs
ahead a qualitative presentation of simulation results 1s
given (due to lack of space the actual results are not
provided).

We first examine the model using constant A, i.e. the
initial population of rules is generated with the same
probability of ones. The success criterion is Live. Upon
studying the simulation results we observe that for all
values of A the rule grid converges?. Furthermore, two
interesting thresholds emerge, namely A = 0.8 and A =
0.6. The first value may be termed the “threshold of
life” | above which grid cells are guaranteed to attain a
state of one, 1.e. live. Life is attained not by one rule
(which is possible only for A = 1) but by a coalition of
rules, demonstrating an emergent behavior of the model.
The second threshold is that of A = 0.6, and may be
termed the “coalition threshold”, above which coalitions
of rules are formed, while below it one rule emerges as
the winner. We also experimented with a population of
rules generated with some constant probability A with a
small number of rules generated with a higher A. It was
observed that even a small number of higher A cell rules
is sufficient to induce proliferation of the entire rule grid.

The next case studied is one in which each cell rule
is created by first generating a random A with uniform
distribution in the range [0..1]. This A is then used to
generate the cell’s (random) rule. Here convergence of
the rule grid is much more rapid than the constant A
case and is actually logarithmic. When success criterion
Agree is employed (with random ) the surviving rules
form “territories” of live cells (see Figure 1).

What happens when the rule copying process is imper-
fect, 1.e. when mutations are involved? In a population

2The term rule grid denotes the grid of cell rules whereas
the term grid denotes the grid of cell states.

of rules with random A convergence is extremely rapid
and the final configuration is one where all cells are alive
(success criterion is Live). When constant A is used con-
vergence is much slower though the final configuration is
again one in which all cells are alive (unless the mutation
probability is too small).

The above criteria of success, namely Live and Agree
admit many local minima in rule space which are all
equally valid as far as the evolutionary process is con-
cerned. We noted that coalitions of rules are formed
which conform to one of these minima.

It is natural to inquire as to what happens when the
success criterion is such that a global minimum exists.
We examined one such criterion, namely Parity, where a
cell is successful if it is equal to the parity of its neighbors
in the previous time step (the parity of a cell is equal to
0 if it has an even number of live neighbors, 1 otherwise)
(Toffoli and Margolus 1987). Our results indicated that
a global minimum is indeed reached.

As a final example we consider a success criterion
which is non-binary. This is the Iterated Prisoner’s
Dilemma (TPD) discussed extensively by Axelrod (1984).
Each cell plays IPD with its neighbors where a value of
one represents cooperation and a value of zero repre-
sents defection. In this case a cell copies (with a small
probability of mutation) the rule of the neighboring cell
with the highest ranking total payoff (computed by sum-
ming the eight individual payoffs). In the trial runs of
IPD convergence to a single rule occurred , however each
time to a different one. Thus, 1t is evident that this cri-
terion admits many local minima. An interesting phe-
nomenon becomes apparent upon examining the winning
rules: the average percentage of ones is 60%, i.e. coop-
eration is preferred. This value is close to that of the
successful TIT-FOR-TAT strategy (Axelrod 1984) whose

percentage of ones is 64%3.

3 Formation of complex structures

The non-uniform automaton model considered in this
section is an enhancement of the first model. Each cell
is either wacant, containing no rule, or operational con-
sisting of a finite state automaton which can, in one time
step:

1. Access its own state and that of its immediate neigh-
bors.

2. Change its state, or the state of an immediate neigh-

bor. If a cell’s state is changed by more than one cell,
contention occurs which may be resolved either ran-
domly or deterministically (i.e. defined by the rules).
The rules presented in this paper do not admit such
contention.

3. Copy its rule onto a neighoring vacant cell. A special
case is cell rule mobility where one copy is made in an

9 A value computed by assuming that ties (i.e. an equal
number of cooperating neighbors and defecting ones) are bro-
ken in favor of cooperation. This choice is based on one of the
qualities of a “good” strategy discussed by Axelrod (1984),
namely the quality of forgiveness.



adjoining cell and the cell’s own rule is erased (i.e. the
cell becomes vacant). Again contention (in this case
the copying of more than one rule onto the same cell)
may be resolved either randomly or deterministically.
In this paper this type of contention occurs when two
cells attempt to move to the same cell, and this is
resolved randomly (i.e. one cell “wins” while the other
moves to a different vacant cell).

4. A cell may contain a small number of different rules.
At a given moment only one rule is active and deter-
mines the cell’s function. A non-active rule may be
activated or copied onto a neighoring cell.

Our main additions to the original model, aside from
non-uniformity, are in allowing an automaton to change
the state of its neighboring cells and to copy itself onto
them. In the rest of this paper we consider automata
with a nine cell neighborhood and three possible grid
states, denoted {0,1,b}. Note that a vacant cell may
be in any grid state as it can be changed by operational
neighboring cells. Our focus in this section is the study
of complex structures formed by a small number of rules
(due to lack of space the rules are not provided).

3.1 A self-reproducing loop

Our first example involves a simple self-reproducing loop
motivated by Langton’s work (1986,1984) who described
such a structure in uniform cellular automata. Langton’s
loop (motivated by Codd (1968)) makes dual use of the
information contained in a description to reproduce it-
self. The structure consists of a looped pathway, con-
taining instructions, with a construction arm projecting
out from it. Upon encountering the arm junction the in-
struction is replicated, with one copy propagating back
around the loop again and the other copy propagating
down the construction arm, where 1t is translated as an
instruction when it reaches the end of the arm.

The important issue to note is the two different uses
of information, interpreted and uninterpreted, which also
occur in natural self-reproduction, the former being the
process of translation, and the latter transcription. In
Langton’s loops translation is accomplished when the
instruction signals are “executed” as they reach the end
of the construction arms, and upon the collision of sig-
nals with other signals. Transcription is accomplished by
the duplication of signals at the arm junctions (Langton
1984).

The loop considered in this section consists of five cells
and reproduces within six time steps . The initial con-
figuration consists of a grid of vacant cells (i.e. with no
rule) with a single loop composed of five cells in state 1,
each containing the (same) loop rule (Figure 2a). The
arm extends itself by copying its rule onto an adjoin-
ing cell, coupled with a state change to that cell. The
new configuration then acts as data to the arm, thereby
providing the description by which the loop form is repli-
cated. When a loop finds itself blocked by other loops
it “dies” by retracting the construction arm. Figure 2b
shows the configuration after several time steps.

In his paper Langton (1984) compares the self-
reproducing loop with the works of von Neumann (1966)
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A black square represents a cell in state 1, a non-filled
square represents a cell in state 0, a blank square repre-
sents a cell in state b.

(b)

Figure 2: Self reproducing loop.

and Codd (1968), drawing the conclusion that although
the capacity for universal construction, presented by
both, is a sufficient condition for self-reproduction it 1s
not a necessary one. Furthermore, as Langton points
out, naturally self-reproducing systems are not capable
of universal construction. His intent was therefore to
present a simpler system that exhibits non-trivial self-
reproduction. This was accomplished by constructing a
rule in an eight-state cellular automaton, in which the
dual nature of information, 1.e. translation and tran-
scription is utilized.

In the loop presented above simple transcription is ac-
complished as an integral part of a cell’s operation, since
a rule can be copied, i.e. treated as data. Once a rule is
activated it begins to function by changing states in ac-
cordance with the grid configuration, thereby performing
translation on the surrounding cells (data). Essentially,
the loop operates by transcribing itself onto a neighbor-
ing cell while simultaneously writing instructions (in the
form of grid states) that will be carried out at the next
time step.

In Langton’s system each grid cell initially contains
the rule that supports replication whereas in our case the
grid cells are vacant and the loop itself contains all the
information needed. In both cases reproduction is not



coded entirely into the “transition physics” but rather
is “actively directed by the configuration itself” where
“the structure may take advantage of certain properties
of the transition function physics of the cellular space”
(Langton 1984). Thus interest in such systems arises
since they display an interplay of active structures taking
advantage of the characteristics of cellular space.

3.2 Reproduction by copier cells

In the previous section we described a self-reproducing
loop, which exhibited a two-fold utilization of informa-
tion, i.e. translation and transcription. In this section
we examine a model of reproduction consisting of passive
structures copied by active (mobile) cells. The motiva-
tion for our approach lies in the information flow in pro-
tein synthesis, where passive mRNA structures are trans-
lated into amino acids by active tRNA cells. Each tRNA
cell matches one specific codon in the mRNA structure
and synthesizes one amino acid.

Our system consists of stationary structures composed
of vacant grid cells comprising the passive data to be
copied. The copy (“synthesis”) process is accomplished
by three types of copier cells, denoted X, Y, and 7 which
are mobile units, “swimming” on the grid, seeking an
appropriate match (remember that cellular mobility is
possible by using rule copying). When such a match
occurs the cell proceeds to create the appropriate sub-
structure, as in the case of a tRNA cell synthesizing the
appropriate amino acid. The final result is a copy of the
original structure.

The process is demonstrated in Figure 3. The initial
configuration consists of a passive structure coupled with
XY and Z cells randomly distributed on the grid (Fig-
ure 3, time = 0). Each time step these copier cells move
to a neighboring vacant cell (shown as blank squares) at
random, unless a match is found which triggers the syn-
thesis process. Each of the three copiers matches exactly
one codon, which is a structure composed of three (pas-
sive) cells. Figure 3 (time = 435) shows the process at
an intermediate stage and at the final stage (time = 813)
where the copy has been produced.

The copy created is not an exact duplicate but rather
a “complementary” one. The reason for this is that we
wish to avoid endless copying which would occur had an
exact duplicate been created. Since our model is inher-
ently local we cannot maintain a global variable spec-
ifying that the synthesis process has been completed.
The only way to avoid an endless chain of duplicate sub-
structures is by locally specifying that a copy has been
completed. This is accomplished by creating a comple-
mentary sub-structure, which does not match any copier
cell and 1s not duplicated further.

3.3 Formation and replication of complex
organisms

The final system presented involves the formation and
replication of complex structures which are created from
grid cells and behave as single “organisms” once formed.
The system consists initially of two cell types, builders

(A cells) and replicators (B cells), floating around on the
grid.

Figure 4 demonstrates the operation of the system.
At time 0 A and B cells are distributed randomly on
the grid and there are two vacant cells in state 1 acting
as the core of the building process. The A cells act as
builders by attaching ones at both ends of the growing
structure. Once a B cell attaches itself growth stops at
that end (time 111).

When a B cell attaches itself to the upper end of a
structure already possessing one zero a C' cell is spawned,
which travels down the length of the structure to the
other end. If that end is as yet uncompleted the C' cell
simply waits for its completion (time 172). The C' cell
then moves up the structure, duplicating its right half
which is also moved one cell to the right (time 179).
Once the C' cell reaches the upper end it travels down
the structure, spawns a D cell at the bottom and begins
traveling upward while duplicating and moving the right
half (time 187). Meanwhile the D cell travels upwards
between two halves of the structure and joins them to-
gether (time 190).

This process is then repeated. The C cell travels up
and down the right side of the structure, creating a du-
plicate half on its way up. As it reaches the bottom
end a D cell is spawned which travels upward between
two disjoint halves and joins them together. Since join-
ing two halves occurs every second pass the D cell dies
immediately every other pass (e.g. time 195).

There are interesting features to be noted in the pro-
cess presented. Replication should begin only after the
organism is completely formed. However there can be
no global indicator that such a situation has occurred
(see also Section 3.2). Our solution is therefore local: a
B cell upon encountering an upper end which already
has one zero completes the formation of that end and
releases a C' cell which travels down the length of the
structure. This cell will seek the bottom end or wazt for
its completion. Only at such time when the structure is
complete will the C' cell begin the replication process.

Replication involves two cells operating in unison
where the C cell duplicates half of the structure while
the D cell “glues” two halves together. Again it is cru-
cial that the whole process be local in nature since no
global indicators can be used.

The spawning of C' and D cells are provided for by our
model since as noted above a cell may contain a small
number of different rules, where only one is active at a
given moment. Therefore, the initial B cells can contain
all three rules: B,C',D.

The design of our system is even more efficient than
that however, requiring only two rule tables, one for A
cells and one for B/C'/ D cells. Each entry of the B/C/D
rule table is only used by one of the cell types (i.e. the
entries are mutually exclusive). At a given moment the
cell has one active rule (which determines its type). If
the table entry to be accessed belongs to the active rule-
it 1s used, otherwise a default state change occurs. The
default transformation is a move to a random vacant cell
for B cells and no change for C' and D cells. This may



Figure 4: Formation and reproduction of complex organism

(b) Zoom of intermediate stages. C' cells are represented by @, D cells by *.
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be regarded as a form of differentiation where the cell
contains the entire rule table (DNA) but uses only those
parts which are relevant to its current functioning.

4 Discussion

The initial random population of rules in the first model
(Section 2) can be viewed as a gene pool, where pheno-
typic effects are achieved by rule application. We ob-
served how successful (fit) genes proliferate the popula-
tion, in some cases forming coalitions, in others one gene
emerges as the winner.

Observing our results we note that when the initial
population of rules is generated with random A conver-
gence is much more rapid than with constant A. An
interesting analogy may be drawn with the biological
phenomenon of sex, for which no accepted theory ex-
ists. One hypothesis suggests that animal sexuality helps
diversify the gene pool thereby promoting more rapid
adaptation (Hamilton et al. 1990). Tn our case diver-
sification is achieved by using random A which indeed
promotes rapid convergence (adaptation in our model).

In his book Dawkins (1986) discusses the issue of pos-
sessing “6% of an eye” in relation with objections to
the theory of evolution. He argues convincingly that 5%
vision is better than no vision at all. Some of our ex-
periments involved a small number of cells which are 5%
“more fit” than the rest. We observed that in a major-
ity of the trials such a gene (rule) came to dominate the
gene pool. Although our model is simplified in relation
to real life it nonetheless demonstrates how even a small
advantage is crucial in the “survival” race.

The formation of territories when the success criterion
is Agree can be regarded as a simple form of epistasis*. A
gene’s success depends on the interaction with its neigh-
boring genes, as opposed to , say, the Live criterion where
a cell’s fitness depends solely on its own gene.

In the second model (Section 3) we concentrated on
the formation of complex organisms, composed of sim-
ple grid cells. These are formed by using only a small
number of rules. The examples presented demonstrate
a main feature of our work, namely the power it offers
in creating models of interest. As opposed to uniform
cellular automata, where each cell contains the same au-
tomaton our model enables the creation of systems in
which there are different automatons operating in uni-
son. This is especially noted in our last example where
complex structures were formed by cooperative opera-
tion. Our model also enables the simplification of pro-
cesses which in uniform automata require complex rule
tables with several states per cell. This is noted upon ex-
amining the self-reproducing loop which consists of only
five cells yet promotes its own replication.

The model presented seems to offer fertile grounds
for further investigation. Complex structures may be
formed, exhibiting real life properties. Indeed, the dy-
namic behavior of the last two systems is somewhat rem-
iniscent of observations of organisms under a microscope.

*In the context of Artificial Life this means any interaction
between genes, i.e. the extent to which the contribution to
fitness of one gene depends on the values of other genes.

As discussed by Langton (1986) such complex structures
are essentially virtual state machines, i.e. higher order
automata composed of lower order ones, where first or-
der automata are those that occupy every cell and serve
as the basic building blocks.

The work presented in this paper suggests a practical
model for studying Artificial Life phenomena consisting
of enhanced non-uniform cellular automata which evolve
in rule space as well as state space. The 1ssues to be ex-
plored involve the evolution of complex structures, where
the diversity offered by our model coupled with its sim-
plicity seem to present us with a viable system for such
explorations.
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