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Necessary conditions for density classification by cellular automata
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Classifying the initial configuration of a binary-state cellular automdtA) as to whether it contains a
majority of Os or 1s—the so-called density-classification problem—has been studied over the past decade by
researchers wishing to glean an understanding of how locally interacting systems compute global properties. In
this paper we prove two necessary conditions that a CA must satisfy in order to classify ddnsitg:density
of the initial configuration must be conserved over time, é)cthe rule table must exhibit a density of 0.5.
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I. THE DENSITY-CLASSIFICATION PROBLEM (1) The density of the initial configuration must be con-
served over time.
How does one obtain locally interacting systems that per- (2) The rule table must exhibit a density of 0.5.

form global computations? Such systems exhibit global The first condition is of particular interest as it creates a
information-processing capabilities that are not explicitlylink between the problem of density classification and the
represented in their elementary components or in their locanell-studied class of density-conserving CAs. Effectively,
interconnections. Designing sucellular computerg1] is these latter have received much attention within the physics
an arduous task, which has received much attention durin§e™munity, e.g., for modeling of traffic floy8] and surface

the past several years. growth[9].
Cellular automatgCA's) are the quintessential example
of cellular computers, as well as the first to historically ap- Il. NOTATION AND DEFINITIONS

pear on the scene. A CA consists of a regular array of cells, i N
each of which can be in one of a finite number of possible A configurationis the state of all cells of the CA at a

states, updated synchronously in discrete time steps, accor@lven time step. Theran,sition rule sis the complete lookup
itable, delineating a cell's state at the next time step for every

ing to a local, identical interaction rule. The state of a cell a ble local f' . f neiahbori 0
the next time step is determined by the current states of goss! ? Oct"." ng ('jgufa“g”bo _ne|§|;t ormglstatesl.. e-
surrounding neighborhood of cells. This transition is oftenCESSOr function erived by simultaneously app yirego
e : . ...the entire configuration yielding the configuration at the next
specified in the form of a rule table, delineating the cell’s_. ' .
next state for each possible neighborhood configuration fume stepx_r dengtes a ponﬂguratlon of states, denotes Fhe
" ._input configuration at timé= 0, ando, denotes the configu-

d tAn e."a”t‘rﬁ’ le ?ft? Ictzllula; cor:;t);:tapon Is.tc.)t.ulsetat CAto ration at time step, resulting fromt successive applications
etermine the global density of bits in an initial-state con-o¢ 516 ‘e o= S( ).

figuration. Thisdensity-classification problefmas been stud-
ied extensively over the past decade. PacK&iwas the
first to introduce the following version of the problem: a
one-dimensionallD), two-state CA is presented with an ar-
bitrary initial configuration, and should converge in time to a
state of all & if the initial configuration contains a density of
1s>0.5, and to all 8 if this density <0.5; for an initial
density of 0.5, the CAs behavior is undefinglig. 1(a)].
Spatially periodic boundary conditions are used, resulting in
a circular grid. Though this version was proved to be unsolv-
able[3], it has nonetheless attracted several researchers aim-

ing to evolve high-performancghough imperfectCA rules FIG. 1. Two 1D CA density classifiers. White squares represent
by employing evolutionary algorithnigl—6. cells in state 0, black squares represent cells in state 1. Grid size is
Capcarree, Sipper, and Tomassifif] showed that there —149. The pattern of configurations is shown for the first 150
exists a perfect solution to the density-classification problemime steps, with time increasing down the page. The random initial
(i.e., one that classifies all input configurations corrggtly configuration(i.e., input) contains a majority of & in both cases.
upon defining a different output specificatififig. 1(b)]. (a) The GKL CA (r=3), which correctly classifies approximately
Considering the problem of density classification by cel-81.5% out of a random sample of initial configuratiois.The CA
lular automata, we prove two necessary conditions that a CAf Capcarrereet al.[7] (r=1) which classifies perfectly all initial
must satisfy in order to classify density perfectly: configurations using a different output definition; if there is a ma-
jority of 1s (respectively, 8) in the input, then the output consists
of one or more blocks of at least two consecutive (Ds), inter-
*Email address: mathieu capcarrere@epfl.ch; Islwww.epfl.ch  spersed by an alternation o@nd Is.

(a) (b)
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Let I(o) be the number 4 of configurationo. Density  to the same class, thus contradictsig being a perfect den-
D(o) thus equald (o)/|o|, where|o]| is the length(i.e.,  sity classifier transition rule. 18(0% 1) =1 ands(1*"*1)
number of cells of . The bitwise inversion of configuration =0, then @ and 1" give rise to a cycle of alternating con-
o is denoted b}U_- figurations, thus contradicting’s being a perfect density

Following Wolfram[10], the transition rules can be writ- cIaESifier[li].sF . f' . £ d
ten as a string containing the next-state bit for every neigh, -€mma 1.3For any input configurationr, oOf sizen, an
borhood configuration. for %ny dﬁnsny threshol b, Jfr;)ere (emX|s'gr)no,m1 such that

T 0 1 0 1

For 1D CAs, (")) denotes théi — j| bits of configuration D(0™00o1™)>p andD(0T0 " ol ™ ) <p. .

o positioned between biisand ( — 1), inclusive. )X is the Proof. Assuming 1/(1 p) is not an integer, then, setting
concatenation ok configurationss ' : mo+m;=[n/(1—p)]—n, it is straightforward to see that if

i . . . . 1(og)=0, we can setn;=[n/(1—p)]—n andmy=0, with
In this paper we consider two-statdimensional toroi- tr(1eor)esult thalD(OmOUOZlel[) >(p arﬁz]D(O(moﬂ)(gol(mrl))

dal CAs, whose radius is defined as an extension of the
von-Neumann neighborhood: a cell haseighbors on both
sides of each dimension; in addition, the cell itself is in-
cluded in its neighborhood.

The density-classification problem is defined as follows:

Definition Considering a toroidal, two-state CA, a succes-
sor functionSis said to be gerfect density classifieif S _ K
when applied to an arbitrary initial configuration of any gelr’ Suih+}?atl[S(‘TO)]_l(‘TO)“Lp- Then, I{S[(o0)“]}
length, progresses toward a configuration, that allows to ef- L(rgf;? ,]As o%-r CAs are toroidalS| (o) ] = ()*. Then
fectively distinguish whether the density 0§,1in the origi- S (o ).k]}=|[(0' V¥l k= (o )=k*|((2 )+kp=ll[.(o )k]’
nal configuration, is greater or smaller than a predetermineqrkp 0 1 1 0 0

Lemma 1.5Let S be a successor function of a perfect

<p. Now, if I(og)#0, then decreasing; by I(oy) and
increasingm, by the same amount will satisfy the lemma.
If 1/(1—p) is an integer, then settinghg+m;=[n/(1
—p)]—n+1 leads to the same result.
Lemma 1.4 Let S be the successor function for a one-
dimensional CA,o an initial configuration, angh an inte-

thresholdp. [ This definition is not mathematically tight, as it

rests upon the notion of “effective computation’—as indeed one-dimensional density classifier, and ddie the radius of

does the famous Church-Turing thesis. We have opted fof : : ! o
such a definition because, otherwise, many clearly ineﬁec;—EZnC_A‘iriorng configuratiowro, if I[S(o0) ]=1(0) +p
tive CA's might be considered as density classifierg., the =p=0r.

. : ; : . ; + Proof. Let oy be a configuration such thd{S(o)]
|Sdee|glt]|ty rule, which simply maps any configuration to it —I(og)+p. Define a configurationvy, such that vg

=0"R;0oR,1™, where R,= o " and R;=¢{""" and
mg,m=2r+1.
lll. APERFECT DENSITY CLASSIFIER MUST Then, given Lemma 1.2 and our definition Rf and Ry,
CONSERVE DENSITY we conclude thatS(vp) =C,0M 2'C,0,C31M™ 2" where
In this section we prove that a perfect CA density classi-C1 is the Z-bit-long configuration obtained at the border of
fier cannot alter the density of the input configuration. Wel® 0%, C, is the r-bit-long configuration obtained at the
first prove this result for one-dimensional CA's and then pro-border of G'R;, and C; is ther-bit-long configuration ob-
vide an informal argument as to the validity of the proof to tained at the border dR,1%".

any dimension. From Lemma 1.3 we know that we can defimg,m;
Theorem 1.Let S be a successor function of a perfect such thatD(vg)>p, and that if we decrease,; by 1 and
one-dimensional density classifier. Then increasemg by 1, D(vg) <p. (Note that we can increase both
mg and my; by 2r+1 so thatmg,m;=2r+1 as required
Voo, Vt, D(og)=D[S(0p)]. above) Then, as D(vg)>p, we know that D(v;)>p

(Lemma 1.3, which, given the chosen values afy,m,
The proof of this theorem involves five lemmas provedimplies thatl (v;)=1(vp). Expandingl(v,) and I(vg), we

below. can derive that I(Cy)+1(Cy)+I1(C3)+p—2r—I(Ry)
Lemma 1.1Let Sbe a perfect density classifier successor—1(R,)=0.

function. Then,Voy,Vt, D(op)<p=D[S'(cy)]<p, and Analogously, if we defineny,m; such thaD (vy) <p and

D(0g)>p=D[S'(cop)]>p. if we decreaseny by 1 and increasen; by 1, thenD(vg)

Proof. This follows straightforwardly from our earlier >p. Then, asD(vy)<p, we know thatD(v;)<p (Lemma
definition of the density-classification problem. Since a CAis1.1), which, given the chosen values i, m;, implies that
deterministic and memoryless, if it ever reaches a configurak(v;)<I(vp), from which we derive thatl(C;)+1(C,)
tion o, belonging to the complementary class, it will then +1(C3)+p—2r—1(R;)—1(R,)<0.
wrongly classifyo, and o, as belonging to the same class.  Hence, we know thatl(C;)+1(C,)+1(C3)+p—2r

Lemma 1.2Let s be the transition rule of a perfect density —1(R;) —I(R,) =0, meaning thap—the variation of num-
classifier with radiusr. Then, s(0*1)=0 ands(1*"*')  ber of 1s betweeno, and o;—is exactly equal ta (R;)

=1. +1(Ry)—1(Cyp) —1(C,)—I(C3)+2r. Given the lengths of
Proof. If s(0?"*Y)=1 ands(1* 1) =1, ors(0**)=0 R;,R,,C;,C,, andCs, we compute that-4r <p=<6r.
ands(1?"*1)=0, then the input configurations"Gand 1", We are now able to prove Theorem 1.

wheren is the size of the CA, are classified as belonging Proof of Theorem 1We will proceed by contradiction.
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Assume there exists a configuratiom,, such that
I[S(og)]=1(0g)+p, p being a nonzero integer. From
Lemma 1.4 we know that we can create a configuratign
= (o)X, such thal[S(7o)]=1(7o) + kp. However, if we set
k=7r, wherer is the radius of the CA in question, then we
have a configurationry, wherein I[S(7)]=1(7) +7rp,
which contradicts Lemma 1.5, singe# 0.

Hence p=0, and thus, for all configurationsrg,

I[S(00)]1=1(00)-

To avoid a lengthy proof, we provide an informal argu-

ment as to the validity of Theorem 1 thdimensional CA's.
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h=0. As the number of nodes is a power of 2, we have
g=1,h=0 andh=gcd(n,q)=2. Thus, following the results
of Ref.[11] G contains a Hamiltonian cycle, thereby proving
the lemma.

Lemma 2.2Let oy be ad-dimensional configuration of
length 29 "1 such that all 29" neighborhoods of a
d-dimensionalCA are present once and only once. Thep,
the bitwise inversion ofr, is also such a configuration.

Proof. Consider any two of the?'"* possible neighbor-

hoods ofo: a andb. Then, by definition, there exist,b,

Lemmas 1.1 and 1.2 straightforwardly hold for any dimen-the two corresponding neighborhoodsaf. As each neigh-
sion. Lemma 1.3 can be extended to any dimension if wédorhood is present once and only oneetb, and thusa

define the blocks ® and 1™ to be n-dimensional blocks

22r+1

#b. Given that there are only neighborhoods irgo,

stacked up along the same dimension on each side. To extegdd given that there are?? *! possible different neighbor-

Lemma 1.4 tod dimensions, we note that if[ S(oy)]
=1(op)+p, a configurationv, can be defined as the
d-dimensional vector ok stacking up ofo, along any one
dimension; then)[ S(vg) ]=1(vg) +kp. Finally, taking into

hoods for ad-dimensional CA, then all neighborhoods are
present once and only once .

Lemma 2.3 For any constantr, there exists a one-
dimensional, two-state configuratiar, of length 2, such

account the aforementioned modification for Lemma 1.3, W&hat for any 2 blocks andb of length 2 +1 in o, ab.

would obtain a bounded value farin Lemma 1.5(albeit
different from the one for the one-dimensional gdset still

independent from the size of the chosen configuration. Thu
having proved both the necessity of a bounded variation of
1s and the possibility of creating a configuration with as bi

large a variation of 1s as desired, theorem 1 holdsdfor
dimensions.

IV. APERFECT DENSITY CLASSIFIER'S RULE MUST
EXHIBIT A DENSITY OF 0.5

Having obtained a necessary condition on the global su

cessor functiors, we prove in this section a theorem relating

to the local transition rules, namely, it must exhibit a den-
sity of 0.5.
Theorem 2Let s be the transition rule of a perfect, two-

state, toroidal density classifier of any dimension. Then, fo

any density threshold ofsl p, D(s)=0.5.

The proof of this theorem involves five lemmas and a

result on consecutive-graphs proved by Refl11].

A consecutive-l graphG(l,n,q,h), is ann-node directed
graph, wherein there exists an edgij), if and only if j
e{qi+k(mod n)yh<k<h-+I-1}. Du etal. [11] proved
that such a graph contains a Hamiltonian cyglg] if q
=I, h=0, andl=gcd(n,q)=2.

Lemma 2.1For any radiug, one-dimensional, two-state
toroidal CA, there exists a configuratier of length 2" 1,
such that all 2" neighborhoods are present once and onl
once.

Proof. Consider the directed grapgh, whose vertices are
the 221 binary numbers 0...,2""1—1, defined as fol-
lows: there is an edge from vertey, to vertexv,,, if and
only if the last 2 bits of v,, are identical to the first 2 bits
of v,. Then, finding a Hamiltonian cycle i& is equivalent
to finding an input configuration-y satisfying the conditions
of the lemma.

The set of edges d& can be defined as follows:— | if
je{2i+k(mod n):0<k<1}. We thus obtain a
consecutive-2lirected graphG(l,n,q,h), with g=1=2 and

Proof. One may see that the proof of Lemma 2.1 still
holds for even powers of 2. Thus, we know that there exists
configuration of length 2, such that any £-long block
. it2r-1)modzzr Is different from any other 2-long
ock a; . ..a(j+2r—1)mod22r, 1#]. In such a configuration,
any 2r+1-long blocka; . ..a;2ymod22 is thus different
from any other 2+ 1-long blocka; . . . aj 2rymod22r, 1 7]-

Lemma 2.4 For anyd-dimensional, 2-state toroidal CA,
and for any radius, there exists a configuration wherein all
22dr+1 possible neighborhoods are present once and only
Qonce.

Proof. We will prove this lemma by induction.

The base of the inductiod=1, is proved by Lemma 2.1.
Induction step—Assume a-dimensional configuration
oo that includes all 297" possible neighborhoods, each

present once and only once.

We next construct  Bo=ay ... aer, the
(d+1)-dimensional configuration, by “stacking up” along

the (d+1)th dimension 2" «'s, where a e {og,00}. We

construct the sequence; ...aj2r, such that any block
@ ... Q(it2ymod22zr IS different from any other block
@;j . .. aj12rymod22, 1 #]. One can see this is possible: if we

denote the case=o, by 0 and the case=o0, by 1, we
can then invoke Lemma 2.3.

From the induction assumption and from Lemma 2.2, we
know that along each hyperplang there are 24" differ-
yent neighborhoods. Each of these neighborhoods includes
along its @+1)th dimension the sequence of bits
B(i—rymod22r - - - B(i+rymoa22r- We know that this sequence is
different for each hyperplane from the construction con-
straint that any blocky; . . . a(j 4 2rymoaz2r is different from
any other blocke; . . . a(j+2rymodz2r, 1 #]. Thus, all 241
different neighborhoods on hyperplang are different from
all 22971 different neighborhoods on hyperplamf, i#j.
Then, we know that we have?? 22dr+1=22(d+1)r+1 gitar.
ent neighborhoods iBy, which is also the maximum number
of possible neighborhoods. Thug, is a configuration of
dimensiond+ 1, in which all 2@+ *1 possible neighbor-
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hoods are present once and only once. This proves the indupessible neighborhoods are present once and only once, then
tion stepd to d+ 1. D[S(op)]=D(s), and hencé(s)=0.5.
Lemma 2.5Let o be ad-dimensional configuration, such
that all 22971 possible input states are present once and only V. CONCLUSION
once, in any dimensiod. Then,D (o) =0.5. We have shown that a perfect CA density classifier must
Proof. The density of all neighborhoods, i.e., the densityconserve the density in time of the initial configuration, and
of all the numbers from 0 to%"*1—1 is 0.5. When “mov- its rule table must exhibit a density of 0.5. Thus, nondensity-
ing” along o, to collect all neighborhoods, each bit is conserving CAs[such as the GKL rule of Fig.(&)], or,
counted exactly the same number of times, namatly,#21 indeed, any specification of the problem that involves density

times. Thus, the density af, is the same as the density of change, precludes the ability to perform perfect density clas-
all possible neighborhoods, i.e., 0.5. sification. These two necessary conditions might thus aid in

We are now able to prove Theorem 2. the search for locally interacting systems that compute the

Proof of Theorem 2Assume configuration, contains all ~ global density property.
22dr+1 possible neighborhoods once and only once. From
Lemma 2.4 we know that suchag exists. From Theorem 1
we deduce that—given th&is a perfect density classifier The authors thank Eric Tannier from the Leibniz Labora-
successor functionB{ S(oy)]=D(0y), which, from tory at Imag, Grenoble, France, for his crucial remark on the
Lemma 2.5, we know to be 0.5. Moreover, as aff2!  use of graphs.
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