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Prologue

Anybody who looks at living organ-
isms knows perfectly well that they
can produce other organisms like them-
selves. This is their normal function,
they wouldn’t exist if they didn’t do this,
and it’s plausible that this is the reason
why they abound in the world. In other
words, living organisms are very compli-
cated aggregations of elementary parts,
and by any reasonable theory of proba-
bility or thermodynamics highly improb-
able. That they should occur in the world
at all is a miracle of the first magnitude;
the only thing which removes, or miti-
gates, this miracle is that they reproduce
themselves. Therefore, if by any pecu-
liar accident there should ever be one of
them, from there on the rules of probabil-
ity do not apply, and there will be many
of them, at least if the milieu is reason-
able. (von Neumann, 1966)

If during the long course of ages and
under varying conditions of life, organic
beings vary at all in the several parts of
their organisation, and I think this can-
not be disputed; if there be, owing to
the high geometrical powers of increase

of each species, at some age, season, or
year, a severe struggle for life, and this
certainly cannot be disputed; then, con-
sidering the infinite complexity of the re-
lations of all organic beings to each other
and to their conditions of existence, caus-
ing an infinite diversity in structure, con-
stitution, and habits, to be advantageous
to them, I think it would be a most ex-
traordinary fact if no variation ever had
occurred useful to each being’s own wel-
fare, in the same way as so many varia-
tions have occurred useful to man. But if
variations useful to any organic being do
occur, assuredly individuals thus charac-
terised will have the best chance of being
preserved in the struggle for life; and from
the strong principle of inheritance they
will tend to produce offspring similarly
characterised. This principle of preserva-
tion, I have called, for the sake of brevity,
Natural Selection. (Darwin, 1859)

Genesis

Some three and a half billion years ago
the first self-replicating molecules ap-
peared on Earth, a humble beginning
that marked the onset of the evolution-
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ary avalanche that gave rise to Life, in
all its glory, with the numerous species
in existence today. Among the major sci-
entific quests of this century, many are in-
timately tied to this process; these strike
at the heart of our human essence, aiming
to understand what life is, how it origi-
nated, and whence cometh the complex
ecosystem which we daily witness with
awe.

During the past decade, the traditional
methods used to investigate such issues
have been supplemented by novel ones in
a field known as artificial life. This field
of study is devoted to understanding life
by attempting to abstract the fundamen-
tal dynamical principles underlying bio-
logical phenomena, and recreating these
dynamics in other physical media — such
as computers — making them accessible
to new kinds of experimental manipula-
tion and testing (Langton, 1992). While
biological research is essentially analytic,
trying to break down complex phenom-
ena into their basic components, artificial
life is synthetic, attempting to construct
phenomena from their elemental units
(Levy, 1992; Sipper, 1995). Adding pow-
erful new tools to the scientific toolkit is,
however, only part of the field’s mission.
As put forward by Langton (1992), in ad-
dition to providing new ways for studying
biological phenomena associated with life
here on Earth, life-as-we-know-it, artifi-
cial life lets us extend our studies to the
larger domain of “bio-logic” of possible
life, life-as-it-could-be.

These two parallel lines of research are
by no means independent, indeed, the
hope is that they will cross-fertilize each
other. By studying organic life, we can
perhaps gain insight on how to attain use-
ful artificial systems, ranging from au-
tomated space explorers to autonomous
vacuum cleaners, and, conversely, arti-
ficial life may enable the investigation
of fundamental questions hitherto either

to difficult, or downright impossible, to
tackle.

One of these fundamental questions
concerns the conditions under which life
arises. If one examines our sole example,
organic life, the minimal, necessary con-
ditions seem to be: (1) the existence of
self-replicating entities that are (2) sub-
ject to evolution (Kauffman, 1990; Ray,
1992). If these conditions are imple-
mented in some artificial medium, will
life arise? Though it is probably pre-
mature to provide a definite answer at
this point, research carried out over the
years has lent insight into the issues in-
volved. This paper provides a glimpse
into the questions that arise and some
of their possible answers. We set out
by describing the implementation of self-
replication and evolution processes in ar-
tificial media. Then, we go on to observe
that while these two conditions may be
necessary, they are usually not sufficient.
In other words, one must seek to under-
stand the extra parameters needed to in-
duce evolvability. And even if evolvabil-
ity is attained, one must bear in mind
the huge amount of resources that nature
has been expending. Finally, we explore
an issue that is related to the weak ver-
sus strong artificial life debate, the former
position contending that observed phe-
nomena are mere simulations, the latter
advocating bona fide life. One possible
approach to attaining strong artificial life
is by building actual machines that can
function in our environment, an idea that
has recently emerged in the form of the
nascent field of bio-inspired systems and
evolvable hardware.

It is important to distinguish between
two different questions: (1) what is life?
and (2) what are the conditions under
which life arises? While the two are
obviously interlaced, our interest here
lies with the latter. The existence of
self-replicating entities subject to evolu-
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tion, the minimal conditions discussed
herein, can give rise to several char-
acteristics cited by researchers in their
definitions of life, including metabolism,
teleonomic (purposeful) behavior, stabil-
ity under perturbations, and more. This
issue is beyond the scope of this paper,
and the interested reader is referred to
Bedau (1996), who summarizes different
conceptions of life.

Self-replication

In the late 1940s eminent mathemati-
cian and physicist John von Neumann
had become interested in the question
of whether a machine can self-replicate,
that is, produce copies of itself. Von
Neumann wished to investigate the logic
necessary for replication; he was not in-
terested, nor did he have the tools, in
building a working machine at the bio-
chemical or genetic level. Remember that
at the time DNA had not yet been dis-
covered as the genetic material in nature.

To conduct a formal mathematical in-
vestigation of the issue, von Neumann
used a model conceived by his colleague,
mathematician Stanislaw Ulam. The
model, known as a cellular automaton,
consists of a large grid of cells (similar to
a checkerboard), each possessing a cer-
tain state at a given moment. The num-
ber of possible states per cell is finite
and is usually small (one can imagine
each state being represented by a differ-
ent color). All cells change state simul-
taneously such that the state of a cell at
the next time step depends only on its
state at the current time step and the
states of its neighboring cells. The prin-
ciple that guides state transformations is
applied identically to all cells and is re-
ferred to as the rule. For example, a sim-
ple rule for a two-state (black/white) cel-
lular automaton sets the state of a cell at

the next time step to black if it has an
even number of black neighbors, and to
white if it has an odd number of black
neighbors (Figure 1). Though very sim-
ply defined, cellular automata give rise to
complex behavior.

A machine in the cellular automaton
model is a collection of cells that can be
regarded as operating in unison. Thus,
one can observe simple “creatures” that
are able to move within this austere uni-
verse, as demonstrated in Figure 2 for
another well-known cellular automaton
rule, the “game of life.”

Von Neumann used this simple model
to describe a universal constructing ma-
chine, which can read assembly instruc-
tions of any given machine, and construct
that machine accordingly. These instruc-
tions are a collection of cells of various
states, as is the new machine after being
assembled — indeed, any compound ele-
ment on the grid is simply a collection
of cells. The universal constructor can
build any machine given the appropriate
“genome” or assembly instructions; thus,
given its own description, it is capable
of constructing a copy of itself, i.e., self-
replicate. Should we want the offspring
to self-replicate as well, we must copy the
assembly instructions and attach them to
it (Figure 3). In this manner, von Neu-
mann showed that a replicative process
is possible in artificial machines. The ac-
tual proof is quite elaborate and detailed
in a book completed posthumously by
von Neumann’s colleague, Arthur Burks
(von Neumann, 1966).

One of von Neumann’s main conclu-
sions was that the replicative process uses
the assembly instructions in two distinct
manners: as interpreted code (during ac-
tual assembly), and as uninterpreted data
(copying of assembly instructions to off-
spring). During the following decade,
when the basic genetic mechanisms be-
gan to unfold, it became clear that na-
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Figure 1: Patterns produced by a cellular automaton, where each cell can take on one
of two states, represented by black and white squares. Starting from an arbitrary initial
pattern, all cells change states simultaneously such that the state of a cell at the next
time step depends only on its state at the current time step and the states of its four
immediate neighbors (north, south, east, and west). Each cell in the grid follows the
same simple rule which dictates that it becomes black if it has an even number of black
neighbors, and white if it has an odd number of black neighbors. Shown above are the
patterns generated after 90 time steps, that is, after all grid cells have undergone 90
state transformations (left), and after 120 time steps (right).

ture had “adopted” von Neumann’s con-
clusions. The process by which assembly
instructions (that is, DNA) are used to
create a working machine (that is, pro-
teins), indeed makes dual use of informa-
tion: as interpreted code and as uninter-
preted data. The former is referred to in
biology as translation, the latter as tran-
scription.

A major problem with von Neumann’s
approach (as well as his successors Banks
(1970), Burks (1970), Codd (1968), and
Pesavento (1995)) is the complexity of
the constructor, which requires hundreds
of thousands of cells. In addition, each
cell can be in one of 29 states rather
than just two. In 1984 Christopher Lang-
ton observed that although the capac-
ity for universal construction is a suffi-
cient condition for self-replication, it is
not a necessary one; furthermore, nat-
ural systems are not capable of univer-
sal construction. Langton (1984) and

his successors Byl (1989), Reggia et al.
(1993), and Morita and Imai (1997) de-
veloped self-replicating automata which
are much simpler than the universal con-
structor. These machines, however, lack
any computing and constructing capabil-
ities, their sole functionality being that
of self-replication. Building upon these
results, a number of researchers have re-
cently demonstrated that one can attain
self-replicating structures that can exe-
cute useful programs (Perrier et al., 1996;
Tempesti, 1995). These latter machines
are simpler than von Neumann’s uni-
versal constructor, yet are able to self-
replicate, with each “daughter” organism
able to continue replicating in its turn, as
well as to carry out other functions writ-
ten into its genetic code.

Cellular automata exhibit what is
known as emergent behavior.  This
term refers to the appearance of global
information-processing capabilities that
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Figure 2: The “game of life” cellular automaton was defined by John H. Conway in
1968: “Life occurs on a virtual checkerboard. The squares are called cells. They are in
one of two states: alive or dead. Each cell has eight possible neighbors, the cells which
touch its sides or its corners. If a cell on the checkerboard is alive, it will survive in
the next time step if there are either two or three neighbors also alive. It will die of
overcrowding if there are more than three live neighbors, and it will die of exposure
if there are fewer than two. If a cell on the checkerboard is dead, it will remain dead
in the next time step unless exactly three of its eight neighbors are alive. In that
case, the cell will be “born” in the next time step” (Berlekamp et al., 1982; Levy,
1992). Shown above at time step 0 are two patterns, a stationary square, known as a
“block,” and a moving creature, known as a “glider.” The latter displaces itself one
square diagonally every four time steps. Upon meeting other creatures, such as the
block, both are subject to this simple universe’s basic rule, or “laws of physics,” which
cause their mutual annihilation in this case. Note that actions, such as “movement,”
are purely in the eyes of the beholder — the most basic level consists of simple state
transformations, with no movement at all. However, by considering higher-level views
of the system, one can introduce new terms to describe the perceived phenomena.
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Figure 3: A schematic diagram of von Neumann’s self-replicating cellular automaton.
The machine is a universal constructor (UC) capable of constructing, through the use of
a “constructing arm,” any configuration whose description (genome) can be stored on
its input tape. Thus, given its own description, the machine is capable of constructing

a copy of itself, i.e., self-replicate.

are not explicitly represented in the
system’s elementary components or in
their interconnections (Crutchfield and
Mitchell, 1995; Forrest, 1991; Sipper,
1997a). As put forward by Steels (1994),
a system’s behavior is emergent if it can
only be defined using descriptive cat-
egories that are not necessary to de-
scribe the behavior of the constituent
components. In physical systems, tem-
perature and pressure are examples of
emergent phenomena — they occur in
large ensembles of molecules and are due
to interactions at the molecular level,
though an individual molecule by itself
possesses neither temperature nor pres-
sure. Nature abounds in such systems
in which the actions of simple, locally-
interacting components give rise to co-
ordinated global behavior. Examples in-
clude insect colonies, cellular assemblies,
the retina, and the immune system. Cel-
lular automata are one of the oft-used
models for studying emergence, since ob-

served phenomena arise as a result of ap-
plying the local “laws of physics,” that
is, the local rule by which state trans-
formations take place. Interestingly, it
has been suggested by Ed Fredkin that
our own universe is a cellular automaton

(Levy, 1992).

An interesting point concerning the
cellular automata defined above is their
deterministic mode of operation — a given
initial pattern of states always leads to
the same development in time, that is,
to the same sequence of patterns. How-
ever, probabilistic cellular automata have
also been treated, where cellular state up-
dates take place in a probabilistic manner
(Toffoli and Margolus, 1987). This leads
to non-determinism and to what might
be considered the equivalent of quantum-
mechanical effects.
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Interlude: Permutation City

The Autoverse was a “toy” universe, a
computer model which obeyed its own
simplified “laws of physics” — laws far eas-
ier to deal with mathematically than the
equations of real-world quantum mechan-
ics.

... Autoverse was a vast array of cubic
cells... the laws governing individual cells
drove everything that happened at higher
levels... The cellular automaton which
was the Autoverse did nothing whatso-
ever but apply these rules uniformly to
every cell; these were its fundamental
“laws of physics.” Here, there were no
daunting quantum-mechanical equations
to struggle with — just a handful of trivial
arithmetic operations, performed on inte-
gers. And yet the impossibly crude laws
of the Autoverse still managed to give
rise to “atoms” and “molecules” with a
“chemistry” rich enough to sustain “life.”

Max Lambert’s original reason for de-
signing the Autoverse had been the hope
of observing self-replicating molecular
systems — primitive life — arising from
simple chemical mixtures.

They’d invented a new physics... Ev-
erything was driven from the bottom up,
by the lowest level of physical laws, just
as it was in the real world. The price
of this simplicity was that an Autoverse
bacterium didn’t necessarily behave like

its real-world counterparts.
(Egan, 1994).

Evolution

The only process currently known to have
produced an ecosystem of living crea-
tures, and in particular, of intelligent be-
ings, is that of natural evolution. Darwin
(1859) laid out the core of the currently

accepted theory of evolution, its major
elements being (Ray, 1994a):

e Individuals vary in their viability in
the environments that they occupy.

e This variation is heritable.

e Self-replicating individuals tend to
produce more offspring than can sur-
vive on the limited resources avail-
able in the environment.

e In the ensuing struggle for survival,
the individuals best adapted to the
environment are the ones that will
survive to reproduce.

The continual workings of this process
over the millenia causes populations of
organisms to change, generally becoming
better adapted to their environment.
The issue of self replication was dis-
cussed in the previous section, and we
now turn our attention to the second
issue, namely, evolution. The idea of
applying the biological principle of nat-
ural evolution to artificial systems was
introduced in the 1950s and the 1960s,
when several researchers studied evolu-
tionary systems with the idea that evolu-
tion could be used as an optimization tool
for engineering problems. Central to all
the different methodologies is the notion
of solving problems by evolving an ini-
tially random population of candidate so-
lutions, through the application of opera-
tors inspired by natural genetics and nat-
ural selection, such that in time “fitter”
(i.e., better) solutions emerge (Holland,
1975; Koza, 1992; Michalewicz, 1996;
Mitchell, 1996). Nowadays, these so-
called evolutionary algorithms are ubig-
uitous, having been successfully applied
to numerous problems from different do-
mains, including optimization, automatic
programming, machine learning, eco-
nomics, operations research, immune sys-
tems, ecology, population genetics, stud-
ies of evolution and learning, and social
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systems (Mitchell, 1996). An interesting
line of research that has recently emerged
upon the scene is that of evolving cellular
automata (Mitchell et al., 1994; Mitchell,
1996; Sipper, 1996; Sipper, 1997a; Sip-
per, 1997b).

In order to execute an evolutionary al-
gorithm one creates, at random, a pop-
ulation of individuals. FEach individual
represents a possible solution to an a pri-
ori given problem, and is often repre-
sented by a simple string of characters.
This initial population is referred to as
the first generation. The following gen-
erations are then formed by evolution so
that in time the population comes to con-
sist of better (fitter) individuals. Each
new generation is created by selecting
good parents from the previous genera-
tion that are then subjected to “genetic”
operators, such as crossover and muta-
tion. A parent that is better at solv-
ing the problem at hand stands a bet-
ter chance of being selected, thereby hav-
ing its genes remain in the gene pool.
Crossover creates a new individual from
two parents by mixing their genetic ma-
terial, while mutation introduces a small
amount of copying errors (Figure 4). The
selection-crossover-mutation process con-
tinues until the next generation is formed,
in (abstract) analogy to nature: a given
generation consists of different individu-
als whose chances of survival stand in re-
lation to their fitness — the better (fitter)
an individual, the higher its probability
of survival, and in time the population’s
overall fitness increases.

A fundamental issue that must be ad-
dressed is what comprises a good (fit)
individual within the population of ar-
tificial organisms. This question, while
highly complex in nature, has a sim-
pler answer in the context of evolution-
ary computation — fitness is imposed ex-
ternally by an outside observer, in ac-
cordance with the particular problem at

hand. For example, if the goal is to de-
sign an airplane wing, then the popula-
tion might consist of individual designs,
initially created at random. The fitness
in this case will reflect how well an in-
dividual wing design performs in some
kind of test environment, for example,
a wind tunnel (or a computer simula-
tion of such a tunnel). Obviously, the
first-generation individuals will exhibit
poor performance, however, there will
be some variability among them. Even
such minute differences can be picked up
by evolution and enhanced to ultimately
produce a good solution (in our exam-
ple, a wing design that can be used in an
actual aircraft). Note that evolution pro-
ceeds without human intervention — after
the environment is set, an initial popula-
tion is generated at random and evolution
treads along until a satisfying solution is
found. A prime advantage of evolution-
ary methods from an engineering stand-
point is the potential for adaptability —
when an unforeseen event occurs, the sys-
tem can evolve, that is, adapt to the new
situation, in analogy to nature.

A major difference between natural
and artificial evolution pertains to the
issue of open-endedness. When the fit-
ness criterion is imposed by the user in
accordance with the task to be solved
(currently the rule with artificial evolu-
tion techniques), one attains a form of
guided, or directed evolution. This is
to be contrasted with open-ended evolu-
tion occurring in nature, which admits
no externally imposed fitness criterion,
but rather an implicit, emergent, dynam-
ical one (that could arguably be summed
up as survivability). A significant as-
pect of the natural environment to which
any given organism must adapt is all
the other organisms with which it inter-
acts; this is often referred to as coevolu-
tion. Darwin (1859) himself wrote “of the
coadaptations of organic beings to each
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Figure 4: Demonstration of an evolutionary algorithm over one generation. The popu-
lation consists of six individuals, each one represented by an artificial genome containing
six genes. A gene can take on one of two values (marked by black and white boxes).
In this simple example, the fitness of an individual equals the number of black boxes
(genes) in its genome (fitness values are displayed below the genomes). Selection (re-
production) is performed probabilistically: the higher an individual’s fitness, the better
its chance of being selected. Thus, some parents get selected more than once while oth-
ers not at all. Each selected pair of parents is recombined to produce two offspring,
an operation known as crossover. This is done by exchanging all genes to the right
of a randomly selected crossover point. Mutation is then applied with low probability
by simply flipping the gene’s value. Note that application of the genetic operators on
the population of generation X has yielded a perfect individual, with a fitness value of
6, at generation X + 1. Furthermore, the average fitness of the population, computed
over all individuals, has increased.
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other.” Open-ended, undirected evolu-
tion is the only form of evolution known
to produce such devices as eyes, wings,
and nervous systems, and to give rise to
the formation of species. Undirectedness
may have to be applied to artificial evolu-
tion if we want to observe the emergence
of completely novel systems.

The question of whether open-ended
evolution can be embedded within a com-
puter was posed by Thomas Ray who de-
vised a virtual world called Tierra, con-
sisting of computer programs that can
undergo evolution (Ray, 1992). In con-
trast to evolutionary computation where
fitness is defined by users, the Tierra
“creatures” (programs) receive no such
direction. = Rather, they compete for
the natural resources of their computer-
ized environment, namely CPU time and
memory. Since only a finite amount of
these are available, the virtual world’s
natural resources are limited, as in na-
ture, serving as the basis for competi-
tion between creatures. Ray inoculated
his system with a single, self-replicating
organism, called the “Ancestor,” which
is the only engineered (man-made) crea-
ture in Tierra. He then set his system
loose and witnessed the emergence of an
ecosystem within the Tierra world, in-
cluding organisms of various sizes, par-
asites, hyper-parasites, and so on. The
evolved parasites, for example, are small
creatures that use the replication code of
larger organisms (such as the Ancestor)
to self-replicate. In this manner they pro-
liferate rapidly without the need for the
excess replication code. Ray has recently
extended his Tierra environment to run
on the Internet, rather than on a single
computer, hoping that by increasing the
scale of the system new phenomena may
arise that have not been observed on a
single computer (Ray, 1994b; Ray, 1996).

Interlude: Permutation City

“I want you to construct a seed for a
biosphere... I want you to design a pre-
biotic environment — a planetary surface,
if you’d like to think of it that way —
and one simple organism which you be-
lieve would be capable, in time, of evolv-
ing into a multitude of species and filling
all the potential ecological niches.”

“Think of this whole project as... A
sketch of a proof.”
“A proof of what?”
“That Autoverse life could — in theory —
be as rich and complex as life on FEarth.”
(Egan, 1994).

Self-replication
+ Evolution = Life ?

We have established so far that self-
replication and evolution can be attained
in artificial systems. Though there is
much yet to be explored along these
lines, an even more basic question arises:
while these two factors seem to com-
prise a necessary condition for the cre-
ation of life, and in particular of bio-
diversity, are they sufficient? In other
words, what does it take to induce evolv-
ability? Consider, for example, computer
programs written in a standard program-
ming language such as FORTRAN or C.
A brute-force attempt to apply an evolu-
tionary process that randomly reshuffles
such programs, would, in most cases, lead
nowhere, churning out a plethora of non-
functional systems (Kauffman, 1990). (In
fact, it is possible to evolve computer pro-
grams by an evolutionary methodology
known as genetic programming (Koza,
1992). However, this requires meticu-
lously setting the evolutionary scenario,
including the genomic encoding of pro-
grams, and the genetic operators applied
to them.)
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Ray (1994a) studied the evolvability is-
sue within the Tierra framework by cre-
ating four versions of his artificial world.
The four differed in the basic machine
language which comprises the underly-
ing genetic system. Though the differ-
ences were subtle they nonetheless gave
rise to a wide variability in terms of
rates, degrees, and patterns of evolution.
Dawkins (1989) looked into this question
by employing a simple environment of
evolving organisms, denoted biomorphs.
He too noted that tweaking this simple
world’s genetic system has a large in-
fluence on evolvability, that is, on the
possible evolutionary outcomes. Finally,
Kauffman (1990; 1995) used a model
known as random boolean networks to
study the requirements for evolvability in
complex systems. For now, it seems that
we are still far from possessing a defi-
nite answer to this question, which could
provide us with clear guidelines for con-
structing artificial worlds.

Even if evolvability is attained, one
must bear in mind the huge amount of
resources that nature has been expend-
ing, in terms of time, area size, and pop-
ulation size. Darwin (1859) himself had
noted the importance of these elements,
writing, on the time factor: “The mind
cannot possibly grasp the full meaning
of the term of a hundred million years;
it cannot add up and perceive the full
effects of many slight variations, accu-
mulated during an almost infinite num-
ber of generations.” On area size: .
on the whole I am inclined to believe
that largeness of area is of more impor-
tance...” And, on population size: “A
large number of individuals... is, I be-
lieve, an extremely important element of
success.” Darwin remarked that the evo-
lutionary process goes on “... for mil-
lions on millions of years; and during each
year on millions of individuals of many
kinds...” As beautifully put by him “na-

ture is prodigal in variety, though nig-
gard in innovation” — the huge amount
of resources expended thereby enabling,
nonetheless, progression.

Interlude: Permutation City

Then, changing the length scale by a fac-
tor of a million, she started up twenty-
one tiny cultures of Autobacterium lam-
berti...

Arranging for A. lamberti to mutate
was easy; like a real-world bacterium, it
made frequent errors every time it du-
plicated its analogue of DNA. Persuad-
ing it to mutate “usefully” was something
else. Max Lambert himself — inventor of
the Autoverse, creator of A. lamberti... —
had spent much of the last fifteen years of
his life trying to discover why the subtle
differences between real-world and Au-
toverse biochemistry made natural selec-
tion so common in one system, and so
elusive in the other. Exposed to the kind
of stressful opportunities which E. coli
would have exploited within a few dozen
generations, strain after strain of A. lam-
berti had simply died out.

“What exactly do you mean by a ‘plan-
etary environment’?”
“Whatever you think is reasonable. Say
— thirty million square kilometers?”

“We’ve given the Autoverse a lot of re-
sources; seven thousand years, for most of
us, has been about three billion for Planet
Lambert.” (Egan, 1994).

The Real McCoy

So far we have discussed two major
factors in our planet’s natural history,
self-replication and evolution, consider-
ing their implementation in artificial me-
dia. Up until now we did not discuss the
actual media used, and in point of fact
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all the works discussed above were im-
plemented as simulations on a general-
purpose computer, such as a PC or a
workstation. This raises a fundamen-
tal issue, namely, the distinction between
so-called weak artificial life, where ob-
served phenomena are considered to be
mere simulations, and strong artificial
life, involving bona fide life. The latter’s
goal was stated by Langton (1986): “We
would like to build models that are so
life-like that they cease to be models of
life and become examples of life them-
selves.” One of the basic tenets of strong
artificial life is that veritable phenomena
are observed, the underlying belief being
that life is not necessarily carbon-based.
The sole implication of the term ‘artifi-
cial’ is that the systems in question are
man-made, that is, the basic components
were not created by nature through evo-
lution. However, the higher-level phe-
nomena are completely genuine. Thus,
it is argued that the replicative process
exhibited by self-replicating automata is
as real as that carried out in nature, the
difference resting solely in the basic com-
ponents: artificial cells versus live ones.
The reader wishing to learn more on the
issue of strong versus weak artificial life
is referred to Boden (1996) and Langton
et al. (1992).

One possible approach to attaining
strong artificial life is by building ac-
tual machines that can function in our
environment. This idea, whose origins
can be traced to the cybernetics move-
ment of the 1940s and the 1950s, has re-
cently resurged in the form of the nascent
field of bio-inspired systems and evolv-
able hardware. The field draws on ideas
from the evolutionary computation do-
main as well as on novel hardware inno-
vations (Sanchez and Tomassini, 1996).
Sipper et al. (1997) have recently intro-
duced the POE model for classifying bio-
inspired hardware along three axes, in-

spired by three levels of organization ob-
served in nature: Phylogeny, Ontogeny,
and Epigenesis (Figure 5a):

Phylogeny: The first level concerns the
temporal evolution of the genetic
program, the hallmark of which is
the evolution of species, or phy-
logeny.

Ontogeny: Upon the appearance of
multicellular organisms, a second
level of biological organization man-
ifests itself. The successive divi-
sions of the mother cell, the zygote,
with each newly formed cell possess-
ing a copy of the original genome,
is followed by a specialization of the
daughter cells in accordance with
their surroundings, i.e., their posi-
tion within the ensemble. This latter
phase is known as cellular differenti-
ation. Ontogeny is thus the devel-
opmental process of a multicellular
organism.

Epigenesis: The ontogenetic program is
limited in the amount of informa-
tion that can be stored, thereby ren-
dering the complete specification of
the organism impossible. (A well-
known example is that of the hu-
man brain with some 10! neurons
and 10'* connections, far too large a
number to be completely specified in
the four-character genome of length
approximately 3 x 10%.) Therefore,
upon reaching a certain level of com-
plexity, there must emerge a differ-
ent process that permits the individ-
ual to integrate the vast quantity of
interactions with the outside world.
This process is known as epigenesis,
and primarily includes the nervous
system, the immune system, and the
endocrine system.

The distinction between the axes can-
not be easily drawn where nature is con-
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Figure 5: The POE model. (a) Partitioning the space of bio-inspired hardware systems
along three axes: phylogeny, ontogeny, and epigenesis. (b) In the future we may witness
the oncoming of systems that are situated along two, and ultimately all three axes. For
example, a system that exhibits self-replication and evolution would be situated within
the PO plane. Given time, it could possibly “infiltrate” the epigenetic axis, through
the evolution of, say, some form of learning mechanism.

cerned, indeed the definitions themselves
may be subject to discussion. Sipper
et al. (1997) therefore defined each of the
above axes within the framework of the
POE model as follows: the phylogenetic
axis involves evolution, the ontogenetic
axis involves the development of a single
individual from its own genetic material,
essentially without environmental inter-
actions, and the epigenetic axis involves
learning through environmental interac-
tions that take place after formation of
the individual. Sipper et al. (1997) pre-
sented an overview of the nascent field
of bio-inspired systems, describing actual
hardware implementations situated along
each of these axes. In particular, hard-
ware realizations of self-replicating (onto-
genetic) and evolving (phylogenetic) sys-
tems, such as those described in this
paper, have been demonstrated (Sip-
per et al., 1997; Sipper, 1997a). Sip-
per et al. (1997) also presented an out-
look on the field’s possible future devel-
opment, concluding that we may witness
the oncoming of systems that are situated
along two, and ultimately all three axes.
For example, a system that exhibits self-

replication and evolution would be situ-
ated within the PO plane. Given time, it
could possibly “infiltrate” the epigenetic
axis, through the evolution of, say, some
form of learning mechanism (Figure 5b).

Looking (and dreaming) toward the
future, one can imagine nano-scale
(bioware) systems becoming a reality,
which will be endowed with evolutionary,
reproductive, regenerative, and learning
capabilities. Such systems could give rise
to novel species which will coexist along-
side carbon-based organisms.

Interlude: Permutation City

The catch was, if a molecule obeyed only
Autoverse physics — the internal logic of
the self-contained computer model — then
how could she, outside the model, inter-
act with it at all? By constructing little
surrogate hands in the Autoverse, to act
as remote manipulators?... Manipulating
the contents of the Autoverse meant vio-
lating its laws. (Egan, 1994).
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Elephants Don’t Play

Chess

Evolution on Earth has given rise not
only to the plethora of species in exis-
tence today, but also to intelligent be-
ings. According to Brooks (1990), an
examination of the evolution of life on
Earth reveals that most of the time was
spent developing basic intelligence. The
elemental faculties evolved enable mobil-
ity in a dynamic environment and sens-
ing of the surroundings to a degree suf-
ficient to achieve the necessary mainte-
nance of life and reproduction. This
point pertains to an essential difference
between artificial life and artificial intelli-
gence (AI). Whereas Al has traditionally
concentrated on complex human func-
tions such as chess playing, text compre-
hension, medical diagnosis, and so on, ar-
tificial life concentrates on basic natural
behaviors, emphasizing survivability in
complex environments. The issues dealt
with by Al appeared only very recently
on the evolutionary scene (a mere few
thousand years) and mostly in humans.
This suggests that problem-solving be-
havior, language, expert knowledge, and
reason are all rather simple once the
essence of being and reacting is available.
The idea is expressed in the title of one
of Brooks’ papers, Elephants Don’t Play
Chess (Brooks, 1990), suggesting that
these creatures are nonetheless highly in-
telligent, able to survive and reproduce
in a complex, dynamic environment.

In conclusion, we began by observ-
ing two factors that played a key role
in the formation of species in the or-
ganic world: self-replication and evolu-
tion. Following nature’s example, we
explored the possibility of implementing
these two processes in artificial media, as
computer simulations, or as actual hard-
ware that interacts with the real world.

The years to come will see what wonders
shall sprout from our artificial seeds.

Epilogue: Permutation City

Maria was elated, and a little dazed. Peo-
ple had been trying to achieve a spon-
taneous adaptation like this for sixteen
years. She didn’t even know why she’d
finally succeeded...

“There are six hundred and ninety mil-
lion species currently living on Planet
Lambert. All obeying the laws of the
Autoverse. All demonstrably descended
from a single organism which lived three
billion years ago — and whose characteris-
tics I expect you know by heart. Do you
honestly believe that anyone could have

designed all that?” (Egan, 1994).
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