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1. Artificial Life

“He wanted to dream a man: he wanted to dream him with minute integrity and
insert him into reality.” This was the goal of the silent man who came from the
South, in Jorge Luis Borges’s short story The Circular Ruins. From Pygmalion,
Frankenstein, and the Golem to Star Trek’s Lieutenant Commander Data, the dream
of administering the breath of life has fascinated mankind since antiquity (Sipper,
2002). This question moved from the realm of science fiction to that of science with
the advent of the field known as artificial life (ALife). The term was coined by
Christopher G. Langton, organizer of the first artificial life conference, which took
place in Los Alamos in 1987 (Langton, 1989).

“Artificial Life,” wrote Langton (in the proceedings of the second conference),
“is a field of study devoted to understanding life by attempting to abstract the
fundamental dynamical principles underlying biological phenomena, and recreating
these dynamics in other physical media—such as computers—making them
accessible to new kinds of experimental manipulation and testing.” (Langton et al.,
1992) While biological research is essentially amalyric, trying to break down
complex phenomena into their basic components, artificial life is synthetic,
attempting to construct phenomena from their elemental units, as such adding
powerful new tools to the scientific toolkit. This is, however, only part of the field’s
mission. As put forward by Langton, “In addition to providing new ways to study
the biological phenomena associated with life here on Earth, /ife-as-we-know-it,
Artificial Life allows us to extend our studies to the larger domain of the “bio-logic’
of possible life, life-as-it-could-be, whatever it might be made of and wherever it
might be found in the universe.”

2. Key Challenges
One way to understand the workings and goals of a scientific endeavor is to consider

the key challenges its practitioners aré facing. Beadau et al. (2000) have recently
published such a structured list of fourteen key open problems in artificial life. The
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challenges are classified under three broad categories: the transition to life, the
evolutionary potential of life, and the relation between life and mind and culture.
A. How does life arise from the nonliving?
1. Generate a molecular proto-organism in vitro.
2. Achieve the transition to life in an artifictal chemistry in silico.
3. Determine whether fundamentally novel living organizations can exist.
4. Simulate a unicellular organism over its entire lifecycle.
5. Explain how rules and symbols are generated from physical dynamics in
living systems.
B. What are the potentials and limits of living systems?
6. Determine what is inevitable in the open-ended evolution of life.
7. Determine minimal conditions for evolutionary transitions from specific to
generic response systems.
8. Create a formal framework for synthesizing dynamical hierarchies at all
scales.
9. Determine the predictability of evolutionary consequences of manipulating
organisms and ecosystems.
10. Develop a theory of information processing, information flow, and
information generation for evolving systems.
C. How is life related to mind, machines, and culture?
11, Demonstrate the emergence of intelligence and mind in an artificial living
system.
12, Evaluate the influence of machines on the next major evolutionary
transition of life,
13. Provide a quantitative model of the interplay between cultural and
biological evolution.
14. Establish ethical principles for artificial life.

As can be seen, the field of artificial life encompasses a wide range of
problems, dealing with issues pertaining to the very basics of life, and all the way up
to intelligence and societies, along the way passing through basic questions of
organization, emergence, and structuring.

Since I cannot elaborate upon all of the above issues within the limited scope of
this chapter, I shall try to focus on a small number of key issues, which underlie
many of the above chatlenges, ALife pioneer Thomas Ray wrote, “I would consider
a gystem to be living if it is self-replicating, and capable of open-ended evolution.”
(Ray, 1992) Indeed, self-replication and evolution are both crucial to ALife research.

3, Self Replication

The study of self-replicating structures in man-made systems began in the late 1940s,
when John von Neumann—one of the twentieth century’s most eminent
mathematicians and physicists—posed the question of whether a machine can self-
replicate (i.e., produce copies of itself ). He wrote:



ARTIFICIAL LIFE . 711

Living organisms are very complicated aggregations of elementary parts, and
by any reasonable theory of probability or thermodynamics highly improbable. That
they should occur in the world at all is a miracle of the first magnitude; the only
thing which removes, or mitigates, this miracle is that they reproduce themselves.
Therefore, if by any peculiar accident there should ever be one of them, from there
on the rules of probability do not apply, and there will be many of them, at least if
the milieu is reasonable. (von Neumann, 1966).

Von Neumann was not interested in building an actual machine, but rather in
studying the theoretical feasibility of self-replication from a mathematical peint of
view. He succeeded in proving {mathematically) that machines can self-replicate,
laying down along the way a number of fundamental principles involved in this
process.

To conduct a formal mathematical investigation of the issue, von Neumann
used a model conceived by his colleague, mathematician Stanislaw Ulam. The
model, known as cellular automata (CA), consists of a large grid of cells (similar to a
checkerboard), each possessing a certain state at a given moment. The number of
possible states per cell is finite and is usually small (in figures, each state is usually
represented by a different color). All cells change state simultaneously such that the
state of a cell at the next time step depends only on its state at the current time step
and the states of its neighboring cells. The principle that guides state transformations
is applied identically to all cells and is referred to as the transition rule. Note that this
rule is entirely local, thus any global phenomena occurring throughout the grid are
due to interactions of numerous cells.

A machine in the CA model is a collection of cells that can be regarded as
operating in unison. Thus, one can observe simple “creatures” that are able to move
within this austere universe, as demonstrated in Figure 1 for a well-known CA rule—
the “game of life.”

One of von Neumann’s main conclusions was that the replicative process uses
the assembly instructions in two distinct manners: as interpreted code (during actual
assembly), and as uninterpreted data (copying of assembly instructions to offspring).
During the following decade, when the basic genetic mechanisms began to unfold, it
became clear that nature had “adopted” von Newmann’s conclusions. The process,
by which assembly instructions (DNA) are used to create a working machine
(proteins), makes dual use of information: as interpreted code and as uninterpreted
data, the former referred to in biology as translation, the latter as framscription
(Figure 2).

A major problem with von Neumann's approach (as well as a number of his
successors) 1s the complexity of the constructor, which requires hundreds of
thousands of cells. In addition, each cell can be in one of 29 states rather than just
two. In 1984 Christopher Langton observed that although the capacity for universal
construction is a sufficient condition for self-replication, it is not a necessary one;
furthermore, natural systems are not capable of universal construction. He devised a
small CA “loop,” capable solely of self-replicating, but which was much simpler
than von Neumann’s design, with but a few dozen cells (Langton, 1984; for a
demonstration of its workings see http://necsi.org/postdocs/sayama/sdsr/java/).
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Figure 1. The “game of life” CA was defined by John H. Conway in 1968: “Life occurs on a virtual
checkerboard. The squares are called cells. They are in one of two states: alive or dead. Each cell has eight
possible neighbors, the cells which touch its sides or ifs corners. If a cell on the checkerboard is alive, it
will survive in the next time step if there are either two or three neighbors also alive. Tt will die of
overcrowding if there are more than three live neighbors, and it will die of exposure if there are fewer than
two. If a cell on the checkerboard is dead, it will remain dead in the next time step unless exactly three of
its eight neighbors are alive, In that case, the cell will be ‘born’ in the next time step” (Berlekamp et al.,
1982). Shown above at time step 0 are two patterns, a stationary square, known as a “block,” and a
moving creature, known as a “glider.” The latter displaces itself one square diagonally every four time
steps. Upon meeting other creatures, such as the block, both are subject to this simple universe’s basic
rule, or “laws of physics,” which cause their mutual annihilation in this case. Note that actions such as
“movement” are purely in the eyes of the beholder—the most basic level consists of simple state
transformations, with no movement at all. However, by considering hipher-level views of the system, one
can introduce new terms to describe the perceived phenomena. Such phenomena have often been termed
“emergent,” although this appellation is highly problematic (Ronald et af., 1999).
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Figure 2. A schematic diagram of von Neumann’s self-replicating CA. The machine is a universal
constructor (UC) capable of constructing, through the use of a “constructing arm,” any configuration
whose description (genome) can be stored an its input tape. Thus, given its own description, the machine
is capable of constructing a copy of itself, i.e., self-replicate. The parent UC first inferprets the genetic
information stored on the tape as building instructions to create an offspring UC, and then copies the
genomic tape uninferpreted and attaches it to the offspring, so the Jatter can replicate in its turn.
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The study of self-replication has been taking place now for more than half a
century (Sipper, 1998; alse http://www.cs.bgu.ac.il/~sipper/selfrep). This research
might better our understanding of self-replication in nature, as well as find many
technological applications. There is much talk today of nanotechnology, where self-
replication is of vital import: we would like to be able to build one miniature
machine, which would than sally forth and multiply.

As noted above self-replication is but one of two major characteristic of life, the
second being evolution.

4. Evolutionary Algorithms

The only process currently known to have produced an ecosystem of living creatures,
and in particular, of intelligent beings, is that of natural evolution. Darwin laid out
the core of the currently accepted theory of evolution, its major elements being (Ray,
1994);

s Individuals vary in their viability in the environments that they occupy.

o This variation is heritable.

o Sclf-replicating individuals tend to produce more offspring than can survive

on the limited resources available in the environment.

o In the ensuing struggle for survival, the individuals best adapted to the

environment are the ones that will survive to reproduce.

The continual workings of this process over the millennia causes populations of
organisms to change, generally becoming better adapted to their environment,

Having witnessed the study of self-replication in an artificial setting, we now
do the same for evolution. The idea of applying the biological principle of natural
evolution to artificial systems was introduced in the 1950s and the 1960s, when
several researchers studied evolutionary systems with the idea that evolution could
be used as an optimization tool for engineering problems, Central to all the different
methodologies is the notion of selving problems by evolving an initially random
population of candidate solutions, through the application of operators inspired by
natural genetics and natural selection, such that in time “fitter” (i.e., betier)
solutions emerge (Sipper, 2002). Nowadays, these so-called evolutionary algorithms
are ubiquitous, having been successfully applied to numerous problems from different
domains, including optimization, automatic programming, machine learning, eco-
nomics, operations research, immune systems, ecology, and population genetics. In
particular, they are central to ALife research.

Based on (and inspired by) the workings of evolution by natural selection, the
basic meta-algorithm is seductively (and, I might add, deceptively) simple, and can
be expressed in a mere 8 lines of pseudocode:

1. produce an initial pepulation,of individuals, these latter being candidate
solutions to the problem at hand

2. evaluate the fitness of each individual in accordance with the problem whose
solution is sought
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. while termination condition not met do

. select fitter individuals for reproduction
. recombine (crossover) individuals

. mutate individuals

. evaluate fitness of modified individuals
. end while
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Over the past two decades evolutionary algorithms have proven their worth
beyond a doubt, at times not only solving hard problems but indeed competing with
their human designers (Koza et al., 2003).

A major reason for the success of this seemingly blind search is its not being
blind at all (as in nature): though randomness and probability do play a part,
selection is a function of fitness, and the recombination of good sub-pieces—or
building-blocks—from two (or more) individuals enables the creation of offspring that
outperform their parents (Figure 3).

ALife researchers often use some form of evolutionary algorithm to study the
issues delineated in Section 2. For example, where the transition from the nonliving
to the living is concerned, one can explore the evolution of self-replicating entities,
as done, e.g., by Lohn and Reggia (1997). They used an evolutionary algorithm to
automatically discover transition rules that govern emergent self-replicating
processes in cellular automata. Given dynamically evolving automata, one of the
most difficult tasks is that of identifying effective fitness functions for self-
replicating structures. Simply ascribing a higher fitness to better replicators is of no
use, since at the outset (generation 0) there are no replicators at all, i.e., all individual
structures have a fitness of zero. And with no variability evolution grinds to a halt.
Lohn and Reggia were able to ingeniously solve the fitness problem by assigning
values to “partial” replicators, thereby demonstrating that self-replicating structures
can be evolved.

5. Getting “Wetter”: Lipidia

The presentation up until now may have seemed somewhat theoretical, and indeed
much research in artificial life is, ipso facto, of an abstract nature. But in recent years
AlLife researchers have been attempting to get “closer” to biology, by building
systems and models that attempt to answer biological questions through ALife
methods. As an example 1 will briefly describe below the work my colleagues and I
have undertaken in the area of Origin of Life: Lipidia. f

Lipidia is a novel simulation system related to the “Lipid World” scenario for
the origin of life. Lipidia allows conducting experiments with a population of
assemblies containing lipid-like molecules on a two-dimensional grid (Naveh et al,,
2004). The dynamics of the assermblies is modeled using the Graded Autocatalysis
Replication Domain (GARD)} model (Segre et al., 1998).

The “RNA World™ is possibly today’s most popular theory for the origins of
life. Because RNA molecules can act as catalysts in addition to acting as templates, it
is hypothesized they might have been able to do both: to store alphabet-based genetic
information and to catalyze their own creation. Life, according to this theory, began
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when certain RNA molecules achieved the capability to replicate themselves. This
scenario, despite its elegance, suffers from difficulties.
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Figure 3. Onec generation (evaluation-selection-crossover-mutation cycle) of a simple evolutionary
algorithm. Individuals are represented as bit strings (the so-called geromes). Fitness in this toy example is
the number of 1 (black) bits. Selection is performed proportionately to fitmess, so that high-fitness
individuals are more likely to be selected. Recombination—or crossover—is performed on two individuals
by selecting a crossover point at random and exchanging the chunks beyond this point. Mutation is
performed by flipping a small number of bits (with low probability). As can be seen, this simple
cvolutionary scenario has produced a perfect solution by the next generation, in this case due to the
crossover operation, which has glued a good sub-piece from one individual (3 1s on the right) with
another good sub-piece from the second individual (3 1s on the left).

In an attempt to come up with a probable scenario, having observed that no
known bio-molecule is capable of self replication in its naked form, it has been
suggested that self replication might not have been achieved by a single molecule,
but rather by a molecular ensemble (Kauffman, 1995). This work is based on “The
Lipid, World” scenario (Segre et al,, 2001), which follows that line of thought. The
scenario assumes that self-replication was initially achieved by non-covalent
assemblies of lipid-like molecules that contained mutually catalytic sets. RNA
according to this scenario, while possibly playing an important role, came later.
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We used the GARD model to quantitatively model and simulate the
developmental process of non-covalent assemblies of lipid-like molecules. Previous
studies using the GARD model have mostly examined such assemblies in a one-at-
a-time fashion. The behavior of assembly populations has been largely unexplored. In
this work we expanded the model to a population of assemblies and obtained
quantitative and qualitative results regarding its behavior. Also, previous studies
assumed idealization of an infinite environment where the assembly’s effect on the
environment is negligible and “food” molecules are in infinite supply. In our work
we introduced a finite environment to the model, which allows cross-interactions
between assemblies via the environment. We also compared the effect of finite
environments vs. infinite environments (Figure 4).
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Figure 4. A Lipidia screen shot, typifying®an A Life scenario. Lipidia is based on a two-dimensional
interaction grid, as with cellular automata. Each square on the grid is catled a grid location, or-location for
short. For each location there is a defined environment containing a variety of molecules. Each location
may contain zero or more assemblies of molecules. The location’s environment is common for all
assemblies contained within it. Molecules from the environment may join an assembly, andimolecules
from the assemblies may leave their assembly back to the environment. “Matter” on the grid is therefore
preserved—no matter is ever lost or created. The finite environment model can be replaced by an infinite
environment model of fixed concentrations. For full details see (Naveh et al., 2004).
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Our results showed that a finite environment produces more attractors (species),
and faster, than an infinite environment. A finite environment allows more
assemblies to occur in more attractors and in greater numbers (Naveh et al., 2004).
Thus, diversity increases.

The results might be considered surprising. One might think that having an
infinite supply of resources, in the form of “food” molecules, might help to “do
more.” According to our results, it only helps to “do more of the same.” Diversity
seems to spring when resources are limited. It is when resources for the “best
solutions” run out that the race towards alternative solutions begins.

While the details are beyond the scope of this chapter, this work exemplifies an
Al ife research: the formation of digitally (but not carbonaceously) testable questions
in a biclogical domatn (in this case, Origin of Life), followed by the conception of a
synthetic model, its implementation and the running of simulations, and the drawing
of conclusions.

6. Strong Artificial Life?

The research described heretofore is often referred to as weak artificial life, namely,
the application of synthetic—often digital—tools to the study of biological
phenomena. But can we create bona fide life? This latter is the goal of strong
artificial life, which for now remains mostly in the realm of theory and philosophy.

One way to create life, currently being explored by a number of groups, is to
start at the very bottom—with bacteria. These have small genomes—on the order of
a few hundred nucleotides—and we may be able to fabricate such small living
organisms. A related research subjects simple bacteria to knock-out experiments,
wherein genes are systematically taken out, in order to arrive at the very minimal
organism which is still viable.

At the other end, we might employ open-ended evolution. As opposed to
evolutionary algorithms described above, where a fitness function is imposed by the
human designer, open-ended evolution—such as occurs in nature—has no such
external imposition, but rather seeks out a trajectory on its own. Creating a set-up for
such an open-ended process is a major challenge, probably still far in the future (a
lengthy discussion of this challenge can be found in (Sipper, 2002)). Yet one cannot
help but wonder, what if: What if we came up with the prodigious resources
{computer power, “wet” power) necessary to mount an open-ended evolutionary
process? What if we were able to design such an experiment—itself a fundamental
problem? Would we then see—after a day, a month, or a decade—the emergence of
living creatures? If so, would they really be artificial? After all, artificial life might in
fact be an oxymoron—how can life be artificial? If something is truly alive—
assuming we can somehow agree upon this fact, as no ironclad definition exists—
then what is artificial about it?

Such speculative, futuristic science aside, artificial life today is providing a
novel outlook on many scientific issues, and enabling the execution of experiments
too costly or downright impossible in a “real” laboratory.
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