GP-Rush: Using Genetic Programming to Evolve Solvers
for the Rush Hour Puzzle

Ami Hauptman Achiya Elyasaf

Moshe Sipper Assaf Karmon

Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel
{amihau,achiya.e,sipper,assafkar}@gmail.com

ABSTRACT

We evolve heuristics to guide IDA* search for the 6x6 and
8x8 versions of the Rush Hour puzzle, a PSPACE-Complete
problem, for which no efficient solver has yet been reported.
No effective heuristic functions are known for this domain,
and—before applying any evolutionary thinking—we first
devise several novel heuristic measures, which improve (non-
evolutionary) search for some instances, but hinder search
substantially for many other instances. We then turn to ge-
netic programming (GP) and find that evolution proves im-
mensely efficacious, managing to combine heuristics of such
highly variable utility into composites that are nearly always
beneficial, and far better than each separate component. GP
is thus able to beat both the human player of the game and
also the human designers of heuristics.

Categories and Subject Descriptors

1.2.1 [Applications and Expert Systems]: Games; 1.2.8
[Problem Solving, Control Methods, and Search]|:
Heuristic methods

General Terms

Algorithms, Performance, Design

Keywords

Genetic Programming, Heuristics, Rush-Hour Puzzle, Single-
Agent Search

1. INTRODUCTION

Single-player games in the form of puzzles have received
much attention from the Artificial Intelligence community
for some time (e.g., [14, 30]). However, quite a few NP-
Complete puzzles have remained relatively neglected by re-
searchers (See [19] for a review).

Among these difficult games we find the Rush Hour puz-
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Figure 1: (a) A sample Rush Hour configuration.
This is problem no. 9 of the problem set shipped
with the standard version of the game by Binary
Arts, Inc. In the paper we refer to this problem as
JAMO09. (b) A possible goal state: the red car has
reached the exit tile on the right-hand side of the
grid.

zle, which was proven to be PSPACE-Complete (i.e., more
difficult than NP-Complete problems, if NP C PSPACE)
for the general n x n case [10]. The commercial version of
this popular single-player game is played on a 6x6 grid, sim-
ulating a parking lot replete with several cars and trucks.
The goal is to find a sequence of legal vehicular moves that
ultimately clears the way for the red target car, allowing it
to exit the lot through a tile that marks the exit (see Fig-
ure 1). Vehicles—of length two or three tiles—are restricted
to moving either vertically or horizontally (but not both),
they cannot vault over other vehicles, and no two vehicles
may occupy the same tile at once. The generalized version
of the game is defined on an arbitrary grid size, though the
6x6 board is sufficiently challenging for humans (we are not
aware of humans playing, let alone solving, complex boards
larger than 6x6). (Note: throughout this paper we use the
term ‘car’ when referring to a two-tile element, "truck’ when
referring to a three-tile element, and ’vehicle’ when referring
to either.)

A major problem-solving approach within the field of arti-
ficial intelligence is that of heuristic search. One of the most
important heuristic search algorithms is iterative-deepening
A* (IDA*) [13, 20], which has several well-known enhance-
ments, including transposition tables [11, 33], move-ordering
[29], and pattern-databases [8]. This method is widely used
to solve single-player games (e.g., [16, 22]). IDA* and sim-
ilar algorithms are strongly based on the notion of approxi-

!The name “Rush Hour” is a trademark of Binary Arts, Inc.



mating the distance of a given configuration (or state) to the
problem’s solution (or goal). Such approximations are found
by means of a computationally efficient function, known as
the heuristic function.

By applying the heuristic function to states reachable from
the current ones considered, it becomes possible to select
more promising alternatives earlier in the search process,
possibly reducing the amount of search effort (typically mea-
sured in number of nodes expanded) required to solve a
given problem. The putative reduction is strongly tied to
the quality of the heuristic function used: employing a per-
fect function means simply “strolling” onto the solution (i.e.,
no search de facto), while using a bad function could render
the search less efficient than totally uninformed search, such
as breadth-first search (BFS) or depth-first search (DF'S).

To date, no efficient heuristics have been reported for the
Rush Hour puzzle. We believe that the main reason for this
is the lack of domain knowledge for the problem, which stems
directly from the lack of research into this domain. More-
over, due to the specific structure of the Rush Hour puzzle,
standard methods for deriving heuristics, such as solving ei-
ther sub-problems (possibly with pattern databases [8]), or
relaxed problems (e.g. using the Manhattan distance heuris-
tic, augmented with linear conflicts [12]), which are typically
easy to apply to other well-known domains, are not appli-
cable here (see Section 3.3). For these reasons, using IDA*
search, or similar algorithms, has probably not been possi-
ble.

In this work, we use genetic programming (GP) to evolve
heuristic functions for the Rush Hour problem. We first
construct a “brute-force”, iterative-deepening search algo-
rithm, along with several search enhancements—some culled
from the literature, some of our own devise—but with no
heuristic functions. As expected, this method works well on
relatively simple boards, and even solves most moderately
difficult ones within reasonable bounds of space and time.
However, when dealing with complex problems, this method
yields inadequate performance.

We move on to hand-crafting several novel heuristics for
this domain, which we then test empirically. The effect of
these heuristics on search efficiency was inconsistent, alter-
nating between decreasing the number of nodes traversed by
70% (for certain initial configurations) and increasing this
number by as much as 170% (for other configurations). It
was clear at this point that using our heuristics correctly
was a difficult task.

To accomplish this task, we use GP. Our main set of exper-
iments focuses on evolving combinations of the basic heuris-
tics devised. We use these basic heuristics as building blocks
in a GP setting, where individuals are embodied as ordered
sets of search-guiding rules (or policies), the parts of which
are GP trees.

The effect on performance was profound: evolution proved
immensely efficacious, managing to combine heuristics of
such highly variable utility into composites that were nearly
always beneficial, and far better than each separate compo-
nent.

The contributions of this work are as follows:

e This is the first reported successful attempt to solve
the Rush Hour puzzle using intelligent search.
e Along the way we devise several novel heuristics for

this domain, some of which could be applied to other
domains.

e We demonstrate how policies can be evolved to solve
more difficult problems than ones previously attempted
with this method.

e We show how difficult solvable puzzles can be gener-
ated, a task which is also considered hard (due to the
fact that the decidability question, i.e., whether a given
board is solvable or not, is also PSPACE-Complete).

2. PREVIOUS WORK

Little work has been done on the Rush Hour puzzle within
the computer science community—work which we review
herein, along with several related topics.

2.1 Rush Hour

Flake & Baum [10] examined a generalized version of Rush
Hour, with arbitrary grid size and exit placements, prov-
ing that the question of whether an initial configuration is
solvable is NP-Hard (the proof uses a reduction from the
Satisfiability problem). They then showed the general prob-
lem’s PSPACE-completeness, by emulating arbitrary recur-
rent circuits within generalized Rush Hour configurations.
Hearn & Demaine [15] proved PSPACE-completeness of slid-
ing block puzzles in the more general case, by demonstrating
a reduction from the Quantified Boolean Formula Satisfia-
bility problem.

These formal results imply that there is no polynomial-
time algorithm able to find a solution for a given Rush Hour
instance (unless P = PSPACE), and that the length of
the shortest solution of a hard initial configuration grows
exponentially with board size n (provided that P # NP and
NP # PSPACE). However, Fernau et al. [9] considered the
parameterized complexity of the generalized version (n x n)
of the game, and showed that solutions can be found in
polynomial time when either the total number of vehicles or
the total number of moves is bounded by a constant.

Colette et al. [6] focused on finding hard initial configu-
rations for 6x6 Rush Hour by modeling the game in propo-
sitional logic, and applying symbolic model-checking tech-
niques to studying the graph of configurations underlying
the game. They were able to classify all 3.6 x 10'° possible
6x6 configurations, according to the lengths of their short-
est solution, within approximately 20 hours of computation
time. Over 500 of the hardest configurations they found are
available at http://cs.ulb.ac.be/ fservais/rushhour/
index.php. On the downside, they proved a general the-
orem regarding the limitations of applying their method to
board games, which stems from the fact that the underlying
data structure grows exponentially with problem size.

None of the work above describes an efficient way to solve
a given Rush Hour problem. The configurations database
constructed by Colette et al. may be used for this purpose
(although this is not what the authors intended [32]). How-
ever, we would need to query the database for the distance
to solution of each board we encounter during the search.
For difficult instances, this is highly inefficient.



2.2 Search Heuristics for Single-Player Games

Ample examples are found in the literature of hand-crafting
heuristics to guide IDA* search in single-player games (hand-
crafting—as opposed to using an automatic method, such as
evolution, described in the next section). Korf [22] describes
the use of pattern databases, which are pre-computed tables
of the exact cost of solving various subproblems of an exist-
ing problem. This method was used to guide IDA* to solve
Rubik’s cube. Korf & Felner [23] dealt with disjoint pattern
databases for the sliding-tiles puzzle problem. In a later
work, Felner et al. [8] generalized this notion to include dy-
namic partitioning of the problem into disjoint subproblems
for each state. They applied their method to three different
problem domains: the sliding-tile puzzle, the 4-peg Towers
of Hanoi problem, and finding an optimal vertex-cover of a
graph.

Junghanns & Schaffer [18, 17] and later Botea et al. [5]
dealt with one of the most complex single-player domains:
the game of Sokoban. This is a transport puzzle in which the
player pushes boxes around a maze and tries to put them in
designated locations. The game is challenging due to several
reasons, including: large and variable branching factors (po-
tentially over 100); long solutions (some problems require
over 500 moves); subgoals are interrelated and thus can-
not be solved independently; heuristic estimators are com-
plex; and, deadlocks exist—some moves render the prob-
lem unsolvable. Their IDA*-based program, Rolling Stone,
equipped with several enhancements, including transposi-
tion tables, move ordering, deadlock tables, various macros,
and pattern search, was able to solve 52 of the 90-problem
standard test suite for Sokoban.

2.3 Evolving Heuristics for AI Planning

Some of the research on evolving heuristics for search is
related to Al planning systems. However, heuristics are used
to guide search in this field in a way highly similar to single-
agent IDA* search, as we employ here.

Aler et al. [3] (see also [1, 2]) proposed a multi-strategy
approach for learning heuristics, embodied as ordered sets
of control rules (called policies), for search problems in Al
planning. Policies were evolved using a GP-based system
called EvoCK [2], whose initial population was generated by
a specialized learning algorithm, called Hamlet [4]. Thus,
their hybrid system (Hamlet-EvoCK) out-performed each
of its sub-systems on two benchmark problems often used in
planning: Blocks World and Logistics (solving 85% and 87%
of the problems in these domains, respectively). Note that
both these domains are far simpler than Rush Hour, mainly
because they are less constrained.

Levine & Humphreys [25] also evolved policies and used
them as heuristic measures to guide search for the Blocks
World and Logistic domains. Their system, L2Plan, in-
cluded rule-level genetic operators (for dealing with entire
rules), as well as simple local search to augment GP crossover
and mutation. They demonstrated some success in these
two domains, although hand-coded policies sometimes out-
performed the evolved ones.

3. METHOD

Our work on the Rush Hour puzzle developed through
four main phases:

1. Construction of an iterative-deepening (uninformed)

search engine, endowed with several enhancements, some
of which were specifically tailored for this problem.
Heuristics were not used during this phase.

2. Design of several novel heuristics, which were tested in
conjunction with our engine.

3. Evolution of combinations of heuristics, along with
conditions for applying them, using genetic program-
ming.

4. Evolution of difficult 8x8 boards, using our engine aug-
mented by heuristics to test board fitness.

First we briefly describe our test suite of problems.

3.1 Test Suite

The Rush Hour game (standard edition) is shipped along
with 40 problems, grouped into four difficulty levels (Begin-
ner, Intermediate, Advanced, and Expert). Minimal solu-
tion length (i.e., minimal number of moves) is an oft-used
rough estimate of problem difficulty. We mark these prob-
lems JAMOL... JAMA40. Their solution lengths vary from
8 to 52 moves.

To add harder problems to the test suite we expanded it
with the 200 most difficult configurations published online
by Colette et al., whose solution lengths vary from 53 to 93
moves. We mark these SERL...SER200. We are now in
possession of an ample test suite, with problems of increas-
ing difficulty—from simplest (JAM1) to hardest (SER200).
The problem SER200 is the hardest 6x6 Rush Hour config-
uration, as reported in [6].

In order to work with more challenging problems, we evolved
15 difficult solvable 8x8 boards using the method described
in Section 3.5. This resulted in much more difficult boards,
which are marked E1...E15. Solution lengths for these
problems vary from 90 to 120 moves.

3.2 Enhanced Iterative Deepening Search

We initially implemented standard Iterative Deepening
search [20] as the heart of our game engine. This algo-
rithm may be viewed as a combination of BFS and DFS:
starting from a given configuration (e.g., the initial state),
with a minimal depth bound, we perform a DFS search
for the goal state through the graph of game states (in
which vertices represent game configurations, and edges—
legal moves). Thus, the algorithm requires only 6(n) mem-
ory, where n is the depth of the search tree. If we succeed,
the path is returned. If not, we increase the depth bound
by a fixed amount, and restart the search. Note that since
the search is incremental, when we find a solution, we are
guaranteed that it is optimal (more precisely, near-optimal,
given that the depth increase is usually larger than one),
since a shorter solution would have been found in a previ-
ous iteration. However, for difficult problems, such as Rush
Hour and Sokoban, finding a solution is sufficient, and there
is typically no requirement of finding the optimal solution.

The game engine receives as input a Rush Hour board, as
well as some run parameters, and outputs a solution (i.e.,
a list of moves) or a message indicating that the given in-
stance could not be solved within the time or space con-
straints given. The idea of limiting the search derives from
the work of Junghanns and Schaeffer [16] for the domain
of Sokoban, where a limit of 20,000,000 nodes was set for
each problem. Since the Sokoban standard test-suite, which



they used, contains problems that typically require more re-
sources than 6x6 Rush Hour problems, we used a stricter
limit of 1,500,000 nodes (since both depth and branching
factor are lower for our problem, and hence search trees are
smaller, this bound is reasonable).

The basic version of the game engine also included several
simple search macros (sets of moves grouped together as a
single move [21]) such as moving a vehicle several tiles (if
applicable) as a single move, and always moving the red car
toward the exit as a single move when possible.

Transposition tables, which afford the ability to identify
redundant sub-trees [11, 33|, were an important enhance-
ment to our basic engine. The common use for such tables is
to avoid visiting boards which were visited previously (thus
escaping loops, since all move operators are reversible by
definition), using a hash table to store all boards already en-
countered. However, since we are using iterative deepening,
it is sometimes possible to revisit a node, but along a shorter
path from the initial state. In this case, we keep the node,
and update its distance. This idea allows us to find (near)
optimal solutions, which is beyond the accepted requirement
for difficult problems such as Rush Hour. Thus, for each so-
lution we can count the number of nodes expanded, as well
as the number of transpositions (which is precisely the size
of the table).

Using search alone, along with the enhancements described
above, we were able to solve all boards of the first problem
set, JAMOL1. .. JAMA40, expanding less than 500,000 nodes.
However, 20 problems from the group SER150...S5FER200
still took over 1,500,000 nodes to solve, which violated our
space bound.

We concluded that uninformed search, even when aug-
mented by several enhancements, is not powerful enough to
solve difficult instances of this problem. Thus, it was clear
that heuristics were needed.

3.3 Heuristics for Rush Hour

In this section we describe some of the heuristics we de-
vised, all of which are used to estimate the distance to the
goal from a given board.

We encountered difficulties when attempting to imple-
ment standard methods for devising heuristics, mainly in the
form of problem relaxation [27] (e.g., with pattern databases
[7, 8], and more specifically, the Manhattan-Distance heuris-
tic [12]). This methodology is difficult to apply to the Rush
Hour puzzle due to the structure of the domain—every vehi-
cle can potentially have a substantial effect over the problem
as a whole. Alleviating the constraints imposed even by a
single vehicle (e.g., by removing it or allowing it to move
freely) in order to obtain a heuristic value for the above-
mentioned methods may render a difficult problem easy (for
example, if we remove vehicles M and I in problem JAMO09
of Figure 1, the problem can be solved in a mere two steps).
These ideas can, however, be refined into useful heuristics,
which we describe below.

Additionally, when we use heuristics to guide search, we
move from simple iterative deepening, to iterative deepening
A* (or IDA*) [20]. This algorithm operates similarly, except
for using the heuristic value to guide the search at each node
(this method is known as move-ordering [29]).

3.3.1 Blockers Estimation
The first obvious estimate to the closeness of a board con-

figuration to the goal is the number of vehicles blocking the
red car’s path to the exit, because when this number reaches
zero, the problem is solved. However, simply counting the
number of such vehicles is not very informative (e.g., for
several difficult problems only one vehicle blocks the path in
the initial configuration, yet still the distance to the solution
is large).

A better measure is had by computing a lower-bound esti-
mate of the number of moves required to move each vehicle
out of the red car’s path.? This entails estimating the num-
ber of moves needed to move each vehicle blocking these ve-
hicles, and so on, recursively. The numbers are then added
up, with some redundancy checks to avoid counting the same
vehicle more than once. When we have to choose between
two possible directions of moving a vehicle out of the way,
we compute both and retain the minimal value.

This heuristic, which we called BlockersLower Bound, re-
duced the number of nodes for several difficult problems by
70% when tested empirically, although for some problems
it actually increased the node count by more than 170%.
This latter was probably because some parts of the solu-
tions required moves that increased the blockers’ estimate,
and this heuristic guided the search away from them. What
was missing was a measure of when to apply the heuristic.
Moreover, errors are expected due to the fact that no es-
timator for a difficult problem can be perfect. Indeed, the
ambivalent nature of this heuristic—often helpful, at times
detrimental—is also true of the other heuristics introduced.

3.3.2 Goal Distance

The following heuristic, called Goal Distance, is a possi-
ble way to implement the Manhattan-Distance heuristic, as
used for the sliding-tiles puzzle (e.g., [23].) To devise such a
measure, we need to count each vehicle’s distance from its
designated place in the goal board. However, compared to
the sliding tiles or Rubik’s cube, the final position for each
vehicle is not known in advance.

In order to solve this problem, we construct, for each ini-
tial configuration, a deduced goal: a board containing a clear
path to the goal, where all interfering vehicles (and vehicles
blocking them) have been “forcibly” positioned (i.e., ignoring
move rules while still forbidding two vehicles from occupy-
ing the same tile) in possible locations in which they are
no longer blocking the red car. If necessary, we also move
the cars blocking their paths in the same manner. Devis-
ing a good heuristic function for deducing goal boards was
not easy, as it required some complex reasoning for several
cases. Moreover, there is no guarantee, especially for diffi-
cult problems, that the deduced goal board will actually be
the correct goal board. However, this heuristic proved to be
a useful building block for high-fitness individuals.

3.3.3 Hybrid Blockers Distance

Here we combine the essence of the previous two heuris-
tics. Instead of merely summing up each vehicle’s distance
to its location in the deduced goal, we also count the number
of vehicles in its path, and add it to the sum. This heuristic
was dubbed Hybrid. Note that we do not perform a full
blocker’s estimation for each vehicle (only the number of

2Heuristic functions that never overestimate solution lengths
(known as admissible heuristics) have been theoretically
proven to guide single-agent search better than non-
admissible heuristics (for example, see [31]).



blockers is summed)—this is needed since computing a more
detailed measure would be both time consuming and would
sometimes produce larger estimates than required (since the
same vehicle may block several other vehicles, and it would
be counted as a blocker for each of them).

3.3.4 Other Heuristics

Additional functions were used to assign scores to boards,
including:

e MoveFreed: Checks if the last move made increases
the number of vehicles free to move.

e IsMoveToSecluded: Did the last move place a car in
a position to which no other car can move?

e ProblemDif ficulty: The given difficulty level of the
problem at hand (this information is also available to
humans when solving the problems shipped with the
game).

For a complete list of heuristics, see Table 1.

3.4 Evolving Heuristics

Using the heuristics we devised to make search more ef-
ficient is a difficult task, as it involves solving two major
sub-problems:

1. Finding exact conditions regarding when to apply each
heuristic (in order to avoid the strong inconsistent ef-
fect on performance mentioned above).

2. Combining several estimates to get a more accurate
one. We hypothesized that different areas of the search
space might benefit from the application of different
heuristics.

Solving the above sub-problems means traversing an ex-
tremely large search space of possible conditions and com-
binations. This is precisely where we turn to evolution.

3.4.1 The Genome

As we want to embody both application conditions and
combinations of estimates, we decided to evolve ordered
sets of control rules, or policies. As stated above, poli-
cies have been evolved successfully with GP to solve search
problems—albeit simpler ones (for example, see [3] and [4],
mentioned above).

Policies typically have the following structure:®

RULE;: IF Condition: THEN Value;

RULEN: IF Conditiony THEN Valuen
DEFAULT: Valuen+1

where Condition; and Value; represent the aforementioned
conditions and estimates, respectively.

Policies are used by the search algorithm in the following
manner: The rules are ordered such that we apply the first
rule that “fires” (meaning its condition is true for a given
board), returning its Value part. If no rule fires, the value

3 Actually, policies are commonly defined as rules where the
result is an action, not a value. However, actions lead to the
selection of a child node, and are thus effectively similar to
heuristic values.

is taken from the last (default) tree: Valueni. Thus, in-
dividuals, while in the form of policies, are still board eval-
uators (or heuristics)—the value returned by the activated
rule is an arithmetic combination of heuristic values, and
is thus a heuristic value itself. This suits our requirements:
rule ordering and conditions control when we apply a heuris-
tic combination, and values provide the combinations them-
selves.

Thus, with N being the number of rules used, each in-
dividual in the evolving population contains N Condition
GP-trees and N + 1 Value GP-trees. After experimenting
with several sizes of policies, we settled on N = 5, providing
us with enough rules per individual, while avoiding “heavy”
individuals with too many rules. The depth limit used both
for the Condition and Value trees was empirically set to 5.

The function set includes the functions {AND,OR,<,>}
for condition trees and the functions {x,+} for the value
trees. All heuristics described above are used as terminals.
For a complete list, see Table 1. To get a more uniform cal-
culation, we normalize the values returned by terminals of
Condition trees to lie within the range [0, 1], by maintain-
ing a maximal possible value for each terminal, and dividing
by it. For example, BlockersLower Bound might return an
estimate of 20 moves, with the maximal value for this termi-
nal determined empirically to be 40, thus setting the return
value to 0.5.

3.4.2 Genetic Operators

We used the standard crossover and mutation operators,
as detailed in [24]. However, before selecting the crossover
or mutation point, we first randomly selected rules whose
conditions (or values) were to be substituted. Crossover
was only performed between nodes of the same type (using
Strongly Typed Genetic Programming [26]).

We also added RuleCrossover and RuleMutation oper-
ators, whose purpose was to swap entire randomly selected
rules, between individuals and within the same individual,
respectively. One of the major advantages of policies is that
they facilitate the use of more diverse genetic operators, such
as RuleCrossover and RuleMutation.

3.4.3 Test and Training Sets

Individuals were evolved with fixed groups of problems
(one group per run): The suite of all 6x6 problems (JAMO01
through SER200) was divided into 5 equally sized groups
(48 problems per group). Additionally, we used a sixth
group containing 15 difficult 8x8 problems, discovered through
evolution (see Section 3.5).

For each group, 10 problems (taken from the 20 most dif-
ficult ones) were tagged as test problems, and the remaining
ones were used as training problems. Training problems
were used for fitness purposes (see below), while test prob-
lems were used to test the best individual, in order to assess
the overall progress of the run.

3.4.4 Fitness

Fitness scores were obtained by performing full IDA* search,
with the given individual used as the heuristic function. For
each solved board, we assign to the individual a score equal
to the percentage of nodes reduced, compared to search-
ing with no heuristics. For unsolved boards, the score was
0. Scores were averaged over 10 randomly selected boards
from the training set.



Table 1: Terminal set of an individual program in
the population. B:Boolean, R:Real or Integer. The
upper part of the table contains terminals used both
in Condition and Value trees, while the lower part
regards Condition trees only.

R=BlockersLower Bound A lower bound on the number of
moves required to remove blocking

vehicles out of the red car’s path

R=GoalDistance Sum of all vehicles’ distances to
their locations in the deduced-goal

board

R=Hybrid Same as GoalDistance, but also
add number of vehicles between each

car and its designated location

R={0.0,0.1...,1.0,1,...,9} Numeric terminals

B=IsMoveToSecluded Did the last move taken position the
vehicle at a location that no other

vehicle can occupy?

Did the last move made add new
possible moves?

B=1IsReleasingMove

R=g Distance from the initial board

R=PhaseByDistance g + (g + DistanceT oGoal)

R=PhaseByBlockers g + (g + BlockersLower Bound)

R=NumberO fSyblings The number of nodes expanded from
the parent of the current node

R=D:if ficultyLevel The difficulty level of the given
problem, relative to other problems

in the current problem set.

3.4.5 GP Parameters

We experimented with several configurations, finally set-
ting upon: population size — between 50 and 100, generation
count — between 100 and 400, reproduction probability — 0.5,
crossover probability — 0.4 , and mutation probability — 0.1.
For both the crossover and mutation operators, we used a
uniform distribution for selecting trees inside individuals.

3.5 Evolving Difficult Solvable 8x8 Boards

Since our enhanced IDA* search solved over 90% of the
6x6 problems (including 30% of the 50 most difficult prob-
lems reported in [6]), well within the space bounds (in fact,
with far fewer requirements), and, moreover, we wanted to
demonstrate our method’s scalability to larger boards, we
needed to design more challenging problems. This we did
through evolution.

We generated the initial population by taking solvable 6x6
boards and expanding each one to size 8x8 by “wrapping”
it with a perimeter of empty cells (i.e., each 6x6 board was
embedded in the center of an empty 8x8 board). Then, us-
ing simple mutation operators, which randomly either add,
swap, or delete vehicles, we assigned to each board a fitness
score equal to the number of boards required to solve it us-
ing our enhanced IDA* search. A board that could not be
solved within 15 minutes (on a Linux-based PC, with pro-
cessor speed 3GHz, and 2GB of main memory) received a
fitness score of 0.

We repeated this process until evolution showed no further
improvement. While this mutation-based process might gen-
erate genotypically similar boards, they are phenotypically
different due to the domain structure, described above. The
most difficult 8x8 board found required 26,000,000 nodes to
solve with no-heuristic, iterative deepening (the None col-
umn in Table 2).

Table 2: Average percentage of nodes required to
solve test problems, with respect to the number
of nodes scanned by iterative deepening (shown as
100% in the second column). H1: the heuristic
function BlockersLower Bound; H2: GoalDistance; H3:
Hybrid. Hc is our hand-crafted policy, and GP is
the best evolved policy, selected according to per-
formance on the training set. 6x6 represents the
test cases taken from the set {JAMO1...SER200}.
8x8 represents the 15 most difficult 8x8 problems
we evolved. Numbers are rounded to nearest inte-
ger.

Heuristic: ~None H1 H2 H3 Hc GP
Problem
6x6 100% 72% 94% 102% 70% 40%
8x8 100% 69% 75% 70% | 50% 10%
4. RESULTS

We assess the performance of heuristics with the same
scoring method used for fitness computation, except we av-
erage over the entire test set instead of boards taken from
the training set.

We compare several heuristics: the three hand-crafted
heuristics described in Section 3.3; a hand-crafted policy
that we designed ourselves, by combining the basic (hand-
crafted) heuristics; and the top full-fledged policy developed
via GP, which we took from the best run.

Results are summarized in Table 2. As can be seen, the
average performance of our hand-crafted heuristics did not
show significant improvement over iterative deepening with
no heuristic (although BlockersLower Bound proved better
than the other two). While our hand-crafted policy fared
somewhat better, the evolved policy yielded the best results
by a wide margin, especially given the increasing difficulty
of node reduction as search gets better. Overall, evolved
policies managed to cut the amount of search re-
quired to 40% for 6x6 boards and to 10% for 8x8
boards, compared to iterative deepening.

It should also be noted that performance over 8x8 boards
was better relative to 6x6 boards. This may be ascribed to
the fact that while the entire space of difficult 6x6 boards
is covered by our test and training sets, this is not the case
for our 8x8 boards. Still, considering that the evolved 8x8
boards we used proved immensely difficult for no-heuristic
iterative deepening (requiring over 20,000,000 nodes to solve
in some cases) results show that our method is scal-
able, which is non-trivial for a PSPACE-Complete
problem.

Next, we turn to comparing the performance of evolution
to that of humans. Since we have no exact measure for the
number of boards examined by humans for this problem,
we turn to another measure: solution time. All comparisons
performed so far treated only the number of nodes expanded,
due to the fact that the amount of time required to solve a
problem is linearly related to the number of nodes (i.e., less
nodes implies less time). This is obvious since the engine’s
speed (or nodes per second) is constant. The time data was
collected along with the number of nodes for all our runs.

Data regarding human performance is available online at
http://trafficjamgame.com/, in the form of High Scores
(sorted by time to solution) for each of the problems JAMO01
to JAM40. This site contains thousands of entries for each
problem, so the data is reliable, although it doesn’t neces-



Table 3: Time (in seconds) required to solve prob-
lems JAMOL ... JAMA40 by: ID — iterative deepening,
Hi — average of our three hand-crafted heuristics,
Hc — our hand-crafted policy, GP — our best evolved
policy, and human players (average of top 5). Prob-
lems are divided into 5 groups, and the average is
presented below.

Problems 1D Hi He¢  GP | Humans

JAMOL...JAMO8 | 0.2 0.65 0.06 0.03 2.6

JAMOQO9...JAM16 | 1.7 035 174 0.6 8.15
JAMI1T...JAM24 | 24 1.8 1.08 0.83 10.32
JAM?25...JAM32 | 63 1.6 394 1.17 14.1
JAM33...JAM40 | 7.65 2.8 7.71 2.56 20.00

Average 3.65 144 269 1.04 11.03

sarily reflect the best human performance. We compared
the time required to solve these 40 problems by humans
to the runtime of several algorithms: iterative deepening,
Hi (representing the average time of our three hand-crafted
heuristics), our hand-crafted policy, and our best evolved
policy. Results are presented in Table 3. Clearly, all al-
gorithms tested are much faster than human players, and
evolved policies are the fastest.

This emphasizes the fact that evolved policies save both
search time and space.

5. CONCLUSIONS

We designed an IDA*-based solver for the Rush Hour do-
main, a problem to which intelligent search has not been ap-
plied to date. With no heuristics we managed to solve most
6x6 problems within reasonable time and space limits, but
only a few of our newly evolved, difficult 8x8 problems. Af-
ter designing several novel heuristics for the Rush Hour do-
main, we discovered that their effect on search was limited,
and somewhat inconsistent, at times reducing node count by
70%, but in several cases actually increasing the node count
to over 170% for many configurations. Solving the problem
of correctly applying our heuristics was done by evolving
policies with GP (which outperformed a less successful at-
tempt to devise policies by hand). To push the limit yet
further, we evolved difficult 8x8 boards, which aided in the
training of board-solving individuals by augmenting the fit-
ness function.

Our results show that the improvement attained with heuris-

tics increased substantially when evolution entered into play:
search with evolved policies required less than 50% of the
nodes required by search with non-evolved heuristics. As a
result, 85% of the problems, which were unsolvable before,
became solvable within the 1,500,000 node limit, including
several difficult 8x8 instances.

There are several conceivable extensions to our work, in-
cluding;:

1. We are confident that better heuristics for Rush Hour
remain to be discovered. For example, it is possible
to take the ideas underlying the Goal Distance heuris-
tic, and apply them to deducing more configurations
along the path to the goal (and calculating distances to
them, as we did with GoalDistance). While this cal-
culation requires more preprocessing, we are certain
that it will yield a more efficient algorithm, since we’d

be providing search with a more detailed map to the
goal.

2. Hand-crafted heuristics may themselves be improved
by evolution. This could be done by breaking them
into their elemental pieces, and evolving their combi-
nations thereof. For example, the values we add when
computing Blocker Lower Bound might be real num-
bers, not integers, whose values evolve, subject to more
domain knowledge. It is both possible to evolve a given
heuristic as the only one used in IDA* search, or to
evolve it as part of a larger structure of heuristics, itself
subject to (piecewise) evolution. Totally new heuris-
tics may also be evolved using parts comprising several
known heuristics (just like the Hybrid heuristic was
conceptualized as a combination of BlockersLower Bound
and GoalDistance).

3. As our search keeps improving, and we use it to find
more difficult solvable configurations, which, in turn
aid in evolving search, we feel that the limits of our
method (i.e., solving the most difficult boards possible
within the given bounds) have not yet been reached.
As we are dealing with a PSPACE-Complete problem,
it is certain that if we take large-enough boards, solv-
ing them would become infeasible. However, for the
time being we plan to continue discovering the most
challenging configurations attainable.

4. Many single-agent search problems fall within the frame-
work of Al-planning problems, and Rush Hour is no
exception. Algorithms for generating and maintaining
agendas, policies, interfering sub-goals, relaxed prob-
lems, and other methodologies mentioned above are
readily available, provided we encode Rush Hour as a
planning domain (e.g., with ADL [28]). However, us-
ing evolution in conjuncture with these techniques is
not trivial.

Rush Hour is a fun game, which challenges the mind both
of player and of Al practitioner alike. Encouraged by our
positive results reported herein, we are vigorously pursuing
the avenues of future research described above, and hope to
be able to report upon more exciting results in the future.
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