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Abstract. This paper describes the first attempt to introduce evolution-
arily designed players into the international Robocode league, a simulation-
based game wherein robotic tanks fight to destruction in a closed arena.
Using genetic programming to evolve tank strategies for this highly ac-
tive forum, we were able to rank third out of twenty-seven players in the
category of HaikuBots. Our GPBot was the only entry not written by a
human.

“I wonder how long handcoded algorithms will remain on top.”
Developer’s comment at a Robocode discussion group,

robowiki.net/cgi-bin/robowiki?GeneticProgramming

1 Introduction

The strife between humans and machines in the arena of intelligence has fertil-
ized the imagination of many an artificial-intelligence (AI) researcher, as well as
numerous science fiction novelists. Since the very early days of AI, the domain of
games has been considered as epitomic and prototypical of this struggle. Design-
ing a machine capable of defeating human players is a prime goal in this area:
From board games, such as chess and checkers, through card games, to computer
adventure games and 3D shooters, AI plays a central role in the attempt to see
machine beat man at his own game—literally.

Program-based games are a subset of the domain of games in which the
human player has no direct influence on the course of the game; rather, the
actions during the game are controlled by programs that were written by the
(usually human) programmer. The program responds to the current game en-
vironment, as captured by its percepts, in order to act within the simulated
game world. The winner of such a game is the programmer who has provided
the best program; hence, the programming of game strategies is often used to
measure the performance of AI algorithms and methodologies. Some famous ex-
amples of program-based games are RoboCup (www.robocup.org), the robotic
soccer world championship, and CoreWars (corewars.sourceforge.net), in
which assembly-like programs struggle for limited computer resources.

While the majority of the programmers actually write the code for their
players, some of them choose to use machine-learning methods instead. These
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methods involve a process of constant code modifications, according to the na-
ture of the problem, in order to achieve as best a program as possible. If the
traditional programming methods focus on the ways to solve the problem (the
‘how’), machine-learning methods focus on the problem itself (the ‘what’)—to
evaluate the program and constantly improve the solution.

We have chosen the game of Robocode (robocode.alphaworks.ibm.com), a
simulation-based game in which robotic tanks fight to destruction in a closed
arena. The programmers implement their robots in the Java programming lan-
guage, and can test their creations either by using a graphical environment in
which battles are held, or by submitting them to a central web site where online
tournaments regularly take place; this latter enables the assignment of a rela-
tive ranking by an absolute yardstick, as is done, e.g., by the Chess Federation.
The game has attracted hundreds of human programmers and their submitted
strategies show much originality, diversity, and ingenuity.

One of our major objectives is to attain what Koza and his colleagues have
recently termed human-competitive machine intelligence [1]. According to Koza
et al. [1] an automatically created result is human-competitive if it satisfies one
or more of eight criteria (p. 4; ibid), the one of interest to us here being:

H. The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written com-
puter programs).

Since the vast majority of Robocode strategies submitted to the league were
coded by hand, this game is ideally suited to attain the goal of human-
competitiveness.

The machine-learning method we have chosen to use is Genetic Programming
(GP), in which the code for the player is created through evolution [2]. The code
produced by GP consists of a tree-like structure (similar to a LISP program),
which is highly flexible, as opposed to other machine-learning techniques (e.g.,
neural networks).

This paper is organized as follows: Section 2 describes previous work. Sec-
tion 3 delineates the Robocode rules and Section 4 presents our GP-based
method for evolving Robocode strategies, followed by results in Section 5. Fi-
nally, we present concluding remarks and future work in Section 6.

2 Previous Work

In a paper published in 2003, Eisenstein described the evolution of Robocode
players using a fixed-length genome to represent networks of interconnected com-
putational units, which perform simple arithmetic operations [3]. Each element
takes its input either from the robot’s sensors or from another computational
unit. Eisenstein was able to evolve Robocode players, each able to defeat a single
opponent, but was not able to generalize his method to create players that could
beat numerous adversaries and thus hold their own in the international league.
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This latter failure may be due either to problems with the methodology or to
lack of computational resources—no conclusions were provided.

Eisenstein’s work is the only recorded attempt to create Robocode play-
ers using GP-like evolution. The number of works that have applied machine-
learning techniques to design Robocode players is meager, mostly ANN-based
(Artificial Neural Network), and produced non-top-ranked strategies. In most
cases the ANN controls only part of the robot’s functionality, mainly the tar-
geting systems. We found no reports of substantive success of ANNs over hand-
coded robots. Applications of GP in robotics have been studied by several re-
searchers, dating back to one of Koza’s original experiments—evolving wall-
following robots [4] (a full review of GP works in the field of robotics is beyond
the scope of this paper).

3 Robocode Rules

A Robocode player is written as an event-driven Java program. A main loop
controls the tank activities, which can be interrupted on various occasions, called
events. Whenever an event takes place, a special code segment is activated,
according to the given event. For example, when a tank bumps into a wall, the
HitWallEvent will be handled, activating a function named onHitWall(). Other
events include: hitting another tank, spotting another tank, and getting hit by
an enemy shell.

There are five actuators controlling the tank: movement actuator (forward
and backward), tank-body rotation actuator, gun-rotation actuator, radar-
rotation actuator, and fire actuator (which acts as both trigger and firepower
controller).

As the round begins, each tank of the several placed in the arena is assigned a
fixed value of energy. When the energy meter drops to zero, the tank is disabled,
and—if hit—is immediately destroyed. During the course of the match, energy
levels may increase or decrease: a tank gains energy by firing shells and hitting
other tanks, and loses energy by getting hit by shells, other tanks, or walls.
Firing shells costs energy. The energy lost when firing a shell, or gained, in case
of a successful hit, is proportional to the firepower of the fired shell.

The round ends when only one tank remains in the battlefield (or no tanks
at all), whereupon the participants are assigned scores that reflect their perfor-
mance during the round. A battle lasts a fixed number of rounds.

In order to test our evolved Robocode players and compare them to human-
written strategies, we had to submit them to the international league. The league
comprises a number of divisions, classified mainly according to allowed code size.
Specifically, we aimed for the one-on-one HaikuBot challenge
(robocode.yajags.com), in which the players play in duels, and their code is
limited to four instances of a semicolon (four lines), with no further restriction
on code size. Since GP naturally produces long lines of code, this league seemed
most appropriate for our research. Moreover, a code size-limited league places
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GP at a disadvantage, since, ceteris paribus, GP produces longer programs due
to much junk “DNA” (which a human programmer does not produce—usually).

4 Evolving Robocode Strategies using Genetic
Programming

We used Koza-style GP [2], in which a population of individuals evolves. An
individual is represented by an ensemble of LISP expressions, each composed of
functions and terminals. The functions we used are mainly arithmetic and logical
ones, which receive several arguments and produce a numeric result. Terminals
are zero-argument functions, which produce a numerical value without receiving
any input. The terminal set is composed of zero-argument mathematical func-
tions, robot perceptual data, and numeric constants. The list of functions and
terminals is given in Table 1, and will be described below.

As part of our research we examined many different configurations for the
various GP characteristics and parameters. We have tried, for instance, to use
Strongly Typed Genetic Programming (STGP) [5], in which functions and ter-
minals differ in types and are restricted to the use of specific types of inputs;
another technique that we inspected was the use of Automatically Define Func-
tions (ADFs) [6], which enables the evolution of subroutines. These techniques
and a number of others proved not to be useful for the game of Robocode, and
we concentrate below on a description of our winning strategy.

Program architecture. We decided to use GP to evolve numerical expressions
that will be given as arguments to the player’s actuators. As mentioned above,
our players consist of only four lines of code (each ending with a semicolon).
However, there is much variability in the layout of the code: we had to decide
which events we wished to implement, and which actuators would be used for
these events.

To obtain the strict code-line limit, we had to make the following adjust-
ments:

• Omit the radar rotation command. The radar, mounted on the gun, was
instructed to turn using the gun-rotation actuator.

• Implement the fire actuator as a numerical constant which can appear at
any point within the evolved code sequence (see Table 1).

The main loop contains one line of code that directs the robot to start turn-
ing the gun (and the mounted radar) to the right. This insures that within
the first gun cycle, an enemy tank will be spotted by the radar, triggering a
ScannedRobotEvent. Within the code for this event, three additional lines of
code were added, each controlling a single actuator, and using a single numer-
ical input that was evolved using GP. The first line instructs the tank to move
to a distance specified by the first evolved argument. The second line instructs
the tank to turn to an azimuth specified by the second evolved argument. The
third line instructs the gun (and radar) to turn to an azimuth specified by the
third evolved argument (Figure 1).
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Robocode Player’s Code Layout

while (true)

TurnGunRight(INFINITY); //main code loop

...

OnScannedRobot() {

MoveTank(<GP#1>);

TurnTankRight(<GP#2>);

TurnGunRight(<GP#3>);

}

Fig. 1. Robocode player’s code layout.

Functions and terminals. Since terminals are actually zero-argument func-
tions, we found the difference between functions and terminals to be of little
importance. Instead, we divided the terminals and functions into four groups
according to their functionality:

1. Game-status indicators: A set of terminals that provide real-time information
on the game status, such as last enemy azimuth, current tank position, and
energy levels.

2. Numerical constants: Two terminals, one providing the constant 0, the other
being an ERC (Ephemeral Random Constant), as described by Koza [2]. This
latter terminal is initialized to a random real numerical value in the range
[-1, 1], and does not change during evolution.

3. Arithmetic and logical functions: A set of zero- to four-argument functions,
as specified in Table 1.

4. Fire command: This special function is used to preserve one line of code by
not implementing the fire actuator in a dedicated line. The exact function-
ality of this function is described in Table 1.

Fitness measure. The fitness measure should reflect the individual’s quality
according to the problem at hand. When choosing a fitness measure for our
Robocode players, we had two main considerations in mind: the opponents and
the calculation of the fitness value itself.

Selection of opponents and number of battle rounds: A good Robocode player
should be able to beat many different adversaries. Since the players in the online
league differ in behavior, it is generally unwise to assign a fitness value according
to a single-adversary match. On the other hand, it is unrealistic to do battle with
the entire player set—not only is this a time-consuming task, but new adversaries
enter the tournaments regularly. We tested several opponent set sizes, including
from one to five adversaries. Some of the tested evolutionary configurations in-
volved random selection of adversaries per individual or per generation, while
other configurations consisted of a fixed group of adversaries. The configuration
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Table 1. GP Robocode system: Functions and terminals.

Game-status indicators

Energy() Returns the remaining energy of the player

Heading() Returns the current heading of the player

X() Returns the current horizontal position of the player

Y () Returns the current vertical position of the player

MaxX() Returns the horizontal battlefield dimension

MaxY () Returns the vertical battlefield dimension

EnemyBearing() Returns the current enemy bearing, relative to the cur-
rent player’s heading

EnemyDistance() Returns the current distance to the enemy

EnemyV elocity() Returns the current enemy’s velocity

EnemyHeading() Returns the current enemy heading, relative to the cur-
rent player’s heading

EnemyEnergy() Returns the remaining energy of the enemy

Numerical constants

Constant() An ERC in the range [-1, 1]

Random() Returns a random real number in the range [-1, 1]

Zero() Returns the constant 0

Arithmetic and logical functions

Add(x, y) Adds x and y

Sub(x, y) Subtracts y from x

Mul(x, y) Multiplies x by y

Div(x, y) Divides x by y, if y is nonzero; otherwise returns 0

Abs(x) Returns the absolute value of x

Neg(x) Returns the negative value of x

Sin(x) Returns the function sin(x)

Cos(x) Returns the function cos(x)

ArcSin(x) Returns the function arcsin(x)

ArcCos(x) Returns the function arccos(x)

IfGreater(x, y, exp1, exp2) If x is greater than y returns the expression exp1, other-
wise returns the expression exp2

IfPositive(x, exp1, exp2) If x is positive, returns the expression exp1, otherwise
returns the expression exp2

Fire command

Fire(x) If x is positive, executes a fire command with x being
the firepower, and returns 1; otherwise, does nothing and
returns 0
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we ultimately chose to use involved a set of three adversaries—fixed throughout
the evolutionary run—with unique behavioral patterns, which we downloaded
from the top of the HaikuBot league. Since the game is nondeterministic, a total
of three rounds were played versus each adversary to reduce the randomness
factor of the results.

Calculation of the fitness value: Since fitness is crucial in determining the trajec-
tory of the evolutionary process, it is essential to find a way to translate battle
results into an appropriate fitness value. Our goal was to excel in the online
tournaments; hence, we adopted the scoring algorithms used in these leagues.
The basic scoring measure is the fractional score F , which is computed using
the score gained by the player SP and the score gained by its adversary SA:

F =
SP

SP + SA

This method reflects the player’s skills in relation to its opponent. It encour-
ages the player not only to maximize its own score, but to do so at the expense
of its adversary’s. We observed that in early stages of evolution, most players
attained a fitness of zero, because they could not gain a single point in the course
of the battle. To boost population variance at early stages, we then devised a
modified fitness measure F̃ :

F̃ =
ε+ SP

ε+ SP + SA
,

where ε is a fixed small real constant.
This measure is similar to the fractional-score measure, with one exception:

when two evolved players obtain no points at all (most common during the first
few generations), a higher fitness value will be assigned to the one which avoided
its adversary best (i.e., lower SA). This proved sufficient in enhancing population
diversity during the initial phase of evolution.

When facing multiple adversaries, we simply used the average modified frac-
tional score, over the battles against each adversary.

Evolutionary parameters:

• Population size: 256 individuals. Though some GP researchers, such as Koza,
use much larger populations (up 10,000,000 individuals [1]), we had limited
computational resources. Through experimentation we arrived at 256.

• Termination criterion and generation count: We did not set a limit for the
generation count in our evolutionary runs. Instead, we simply stopped the
run manually when the fitness value stopped improving for several genera-
tions.

• Creation of initial population: We used Koza’s ramped-half-and-half method
[2], in which a number d, between mindepth (set to 4) and maxdepth (set
to 6) is chosen randomly for each individual. The genome trees of half of the
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individuals are then grown using the Grow method, which generates trees
of any depth between 1 and d, and the other half is grown using the Full
method, which generates trees of depth d exactly. All trees are generated
randomly, by selection of appropriate functions and terminals in accordance
with the growth method.

• Breeding operators: Creating a new generation from the current one involves
the application of “genetic” operators (namely, crossover and mutation) on
the individuals of the extant generation. We used two such operators:

– Mutation (unary): randomly selects one tree node (with probability 0.9)
or leaf (with probability 0.1), deletes the subtree rooted at that node
and grows a new subtree instead, using the Grow method. Bloat control
is achieved by setting a maxdepth parameter (set to 10), and invoking
the growth method with this limit.

– Crossover (binary): randomly selects a node (with probability 0.9) or
a leaf (with probability 0.1) from each tree, and switches the subtrees
rooted at these nodes. Bloat control is achieved using Langdon’s method
[7], which ensures that the resulting trees do not exceed the maxdepth
parameter (set to 10).

The breeding process starts with a random selection of genetic operator: a
probability of 0.95 of selecting the crossover operator, and 0.05 of select-
ing the mutation operator. Then, a selection of individuals is performed (as
described in the next paragraph): one individual for mutation, or two for
crossover. The resulting individuals are then passed on to the next genera-
tion.

• Selection method: We used tournament selection, in which a group of in-
dividuals of size k (set to 5) is randomly chosen. The individual with the
highest fitness value is then selected.
In addition, we added elitism to the breeding mechanism: The two highest-
fitness individuals were passed to the next generation with no modifications.

• Extraction of best individual: When an evolutionary run ends, we should
determine which of the evolved individuals can be considered the best. Since
the game is highly nondeterministic, the fitness measure does not explicitly
reflect the quality of the individual: a “lucky” individual might attain a
higher fitness value than better overall individuals. In order to obtain a more
accurate measure for the players evolved in the last generation, we let each
of them do battle for 100 rounds against 12 different adversaries (one at a
time). The results were used to extract the optimal player—to be submitted
to the league.

On execution time and the environment. Genetic programming is known
to be time consuming, mainly due to fitness calculation. We can estimate the
time required for one run using this simple equation:

ExceutionT ime = RoundT ime×NumRounds×
NumAdversaries× PopulationSize×NumGenerations
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A typical run involved 256 individuals, each battle carried out for 3 rounds
against 3 different adversaries. A single round lasted about one second, and our
best evolutionary run took approximately 400 generations, so the resulting total
run time was:

ExecutionT ime = 1× 3× 3× 256× 400 ≈ 9.2× 105
seconds = 256 hours,

or about 10 days. In order to overcome the computational obstacle, we dis-
tributed the fitness calculation process over up to 20 computers. Needless to say,
with additional computational resources run time can be yet further improved
upon.

We used Luke’s ECJ11 system, a Java-based evolutionary computation and
genetic programming research system (cs.gmu.edu/∼eclab/projects/ecj/).

5 Results

We performed multiple evolutionary runs against three leading opponents, as
described in Section 4. The progression of the best run is shown in Figure 2.
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Fig. 2. Modified fractional score (Section 4) averaged over three different adversaries,
versus time (generations). Top (dotted) curve: best individual, bottom (solid) curve:
population average.

Due to the nondeterministic nature of the Robocode game, and the relatively
small number of rounds played by each individual, the average fitness is worthy
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of attention, in addition to the best fitness. The first observation to be made is
that the average fractional score converged to a value equaling 0.5, meaning that
the average Robocode player was able to hold its own against its adversaries.
When examining the average fitness, one should consider the variance: A player
might defeat one opponent with relatively high score, while losing to the two
others.

Though an average fitness of 0.5 might not seem impressive, two comments
are in order:

• This value reflects the average fitness of the population; some individuals
attain much higher fitness.

• The adversaries used for fitness evaluation were excellent ones, taken from
the top of the HaikuBot league. In the “real world,” our evolved players
faced a greater number of adversaries, most of them inferior to those used
in the evolutionary process.

To join the HaikuBot challenge, we extracted what we deemed to be the best
individual of all runs. Its first attempt at the HaikuBot league resulted in third
place out of 27 contestants (Figure 3).

6 Concluding Remarks and Future Work

As noted in Section 1, Koza et al. [1] delineated eight criteria for an automatically
created result to be considered human-competitive, the one of interest to us
herein being:

H. The result holds its own or wins a regulated competition involving human
contestants (in the form of either live human players or human-written com-
puter programs).

Currently, all players in the HaikuBot league but GPBot are human-written
computer programs. We believe that our attaining third place fulfills the eighth
criterion: GPBots are human competitive.

In addition, the complexity of the problem should be taken under consider-
ation: The game of Robocode, being nondeterministic, continuous, and highly
diverse (due to the unique nature of each contestant), induces a virtually infinite
search space, making it an extremely complex (and thus interesting) challenge
for the GPer.

Generalization. When performing an evolutionary run against a single ad-
versary, winning strategies were always evolved. However, these strategies were
specialized for the given adversary: When playing against other opponents (even
relatively inferior ones), the evolved players were usually beaten. Trying to avoid
this obstacle, our evolutionary runs included multiple adversaries, resulting in
better generalization, as evidenced by our league results (where our players en-
countered previously unseen opponents). Nevertheless, there is still room for
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Fig. 3. Best GPBot takes third place at HaikuBot league on October 9, 2004
(robocode.yajags.com/20041009/haiku-1v1.html). The table’s columns reflect vari-
ous aspects of robotic behavior, such as survival and bullet damage measures. The final
rank is determined by the rating measure, which reflects the performance of the robot
in combat with randomly chosen adversaries.

improvement where generalization is concerned. A simple (yet highly effective,
in our experience) enhancement booster would be the increase of computational
resources, allowing more adversaries to enter into the fitness function.

Coevolution. One of the evolutionary methods that was evaluated and aban-
doned is coevolution. In this method, the individuals in the population are eval-
uated against each other, and not by referring to an external opponent. Coevo-
lution has a prima facie better chance of attaining superior generalization, due
to the diversity of opponents encountered during evolution. However, we found
that the evolved players presented primitive behavior, and were easily defeated
by human-written programs. Eisenstein [3] described the same phenomenon,
and has suggested that the problem lies with the initial generation: The best
strategies that appear early on in evolution involve idleness—i.e., no moving nor
firing—since these two actions are more likely to cause loss of energy. Breeding
such players usually results in losing the genes responsible for movement and
firing, hence the poor performance of the latter generations. We believe that
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coevolution can be fruitful if carefully planned, using a two-phase evolutionary
process. During the first stage, the initial population will be evolved using one
or more human-written adversaries as fitness measure; this phase will last a rel-
atively short period of time, until basic behavioral patterns emerge. The second
stage will involve coevolution over the population of individuals that was evolved
in the first stage. This two-phase approach we leave for future work.

Exploring other Robocode divisions. There are a number of other divisions
apart from HaikuBot in which GP-evolved players might compete in the future.
Among these is the MegaBot challenge, in which no code-size restrictions hold.
Some players in this category employ a unique strategy for each adversary, using
a predefined database. Since GP-evolved players are good at specializing, we
might try to defeat some of the league’s leading players, ultimately creating an
overall top player by piecing together a collection of evolved strategies.

Other Robocode battle divisions are yet to be explored: melee games—in
which a player faces multiple adversaries simultaneously, and team games—in
which a player is composed of several robots that act as a team.
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