
DRAFT

GP-Gammon: Genetically Programming

Backgammon Players

Yaniv Azaria, Moshe Sipper
Dept. of Computer Science, Ben-Gurion University, Beer-Sheva 84105, Israel.
E-mails: {azariaya,sipper}@cs.bgu.ac.il. Web: www.moshesipper.com.

June 12, 2005

Abstract. We apply genetic programming to the evolution of strategies for playing
the game of backgammon. We explore two different strategies of learning: using a
fixed external opponent as teacher, and letting the individuals play against each
other. We conclude that the second approach is better and leads to excellent results:
Pitted in a 1000-game tournament against a standard benchmark player—Pubeval—
our best evolved program wins 62.4% of the games, the highest result to date.
Moreover, several other evolved programs attain win percentages not far behind the
champion, evidencing the repeatability of our approach.

Keywords: genetic programming, backgammon, self-learning

1. Introduction

Games, long considered epitomic of human intelligence, have attracted
many a researcher in artificial intelligence, ever since the field’s pre-
historic times (namely, the 1950s). Tic-tac-toe, checkers, chess, robotic
soccer, and multifarious other games have been targeted by those wish-
ing to study (and possibly enhance) machine intelligence. After all,
what better proof of the latter than a machine beating us (literally) at
our own game?

Specifically, board games such as checkers, Othello, and backgam-
mon have all yielded to machine-learning techniques in the past decades.
The basic rules are few and relatively easy to learn, however, excelling
at the game is an altogether different matter. An ideal strategy—
one that always wins—is usually impossible to obtain (either through
human or computer design), but heuristics that perform well against
human or machine opponents can be found (albeit with much effort).
Commercial interests are also at stake since developing an efficient game
strategy can readily be turned into a winning product (as evidenced by
the multi-billion dollar computer-game industry).

c© 2005 Kluwer Academic Publishers. Printed in the Netherlands.

XXX.tex; 12/06/2005; 9:07; p.1



2 Azaria & Sipper

Our research herein focuses on the game of backgammon,1 which
falls into the category of board games that do not yield to exhaustive
analysis (and solution), but which yield to heuristic solving, that is,
a heuristic strategy that performs very well against human and ma-
chine players can be obtained. The probabilistic nature of the game
makes it suitable for learning [20]. The application of machine-learning
techniques to obtain strong backgammon players has been done both
in academia and industry. The best commercial products to date are
Jellyfish [3] and TD-Gammon [20]. For these, suitable interfaces for
benchmarking are unavailable, and there are no published results con-
cerning their performance against other programs. Our benchmark
competitor will thus be the freely available Pubeval (described below)—
which has become a standard yardstick used by those applying AI
techniques to backgammon.

The majority of learning software for backgammon is based on ar-
tificial neural networks, which usually receive as input the board con-
figuration and produce as output the suggested best next move. The
main problem lies with the network’s fixed topology: The designer
must usually decide upon this a priori, whereupon only the internal
synaptic weights change. (Nowadays, one sometimes uses evolutionary
techniques to evolve the topology [21]).

The learning technique we have chosen to apply is Genetic Program-
ming (GP), by which computer programs can be evolved [7]. A prime
advantage of GP over artificial neural networks is the automatic devel-
opment of structure, i.e., the program’s “topology” need not be fixed
in advance. In GP we start with an initial set of general- and domain-
specific features, and then let evolution determine (evolve) the structure
of the calculation (in our case, a backgammon-playing strategy). In
addition, GP readily affords the easy addition of control structures
such as conditional statements, which may also evolve automatically.

This paper details the evolution of highly successful backgammon
players via genetic programming. In the next section we present previ-
ous work on machine-learning approaches to backgammon, along with
a few examples of applications of GP to other games. In Section 3
we present our algorithm for evolving backgammon-playing strategies
using genetic programming, with the presence of an external opponent
as “teacher.” Section 4 presents the self-learning approach to the prob-
lem, and in Section 5 we compare the two approaches. This is followed
by Section 6 that discusses the evolved strategies. Finally, we present
concluding remarks and future work in Section 7.

1 Readers unfamiliar with the game may consult the appendix.

XXX.tex; 12/06/2005; 9:07; p.2



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 3

2. Previous Work

In 1989, Tesauro presented Neurogammon [18], a neural-network player
evolved using supervised learning and several hand-crafted input fea-
tures of the backgammon game. This work eventually led to TD-Gammon,
one of the top two commercial products to date [20] (Section 1). This
work is based on the Temporal Difference (TD) method, used to train
a neural network through a self-playing model—i.e., learning is ac-
complished by neural networks playing against themselves and thus
improving.

In 1997, Pollack, Blair and Land [11] presented HC-Gammon, a
much simpler Hill-Climbing algorithm that also uses neural networks.
Under their model the current network is declared ‘Champion,’ and
by adding Gaussian noise to the biases of this champion network a
‘Challenger’ is created. The Champion and the Challenger then engage
in a short tournament of backgammon; if the Challenger outperforms
the Champion, small changes are made to the Champion biases in the
direction of the Challenger biases.

Another interesting work is that of Sanner et al. [15], whose ap-
proach is based on cognition (specifically, on the ACT-R theory of
cognition [1]). Rather than trying to analyze the exact board state,
they defined a representational abstraction of the domain, consisting
of general backgammon features such as blocking, exposing, and attack-
ing. They maintained a database of feature neighborhoods, recording
the statistics of winning and losing for each such neighborhood. All
possible moves were encoded as sets of the above features; then, the
move with the highest win probability (according to the record obtained
so far) was selected.

In 2001, Darwen [4] studied the coevolution of backgammon play-
ers using single- and multi-node neural networks, focusing on whether
non-linear functions could be discovered. He concluded that with co-
evolution, there is no advantage in using multi-node networks, and that
coevolution is not capable of evolving non-linear solutions.

Finally, Qi and Sun [13] presented a genetic algorithm-based multi-
agent reinforcement learning bidding approach (GMARLB). The sys-
tem comprises several evolving teams, each team composed of a number
of agents. The agents learn through reinforcement using the Q-learning
algorithm. Each agent has two modules, Q and CQ. At any given
moment only one member of the team is in control—and chooses the
next action for the whole team. The Q module selects the actions to
be performed at each step, while the CQ module determines whether
the agent should continue to be in or relinquish control. Once an agent
relinquishes control, a new agent is selected through a bidding process,

XXX.tex; 12/06/2005; 9:07; p.3



4 Azaria & Sipper

whereby the member who bids highest becomes the new member-in-
control.

GP has been applied to games other than backgammon. In 2002,
Gross et al. [5] applied GP to improve the heuristics for the existing
scaffolding chess algorithm. One of us (MS) has successfully applied
GP to two other games: Robocode and chess endgames. Robocode is a
tank-fight simulator where (human) users submit Java-written tank
programs, the object being to destroy your (tank) opponents. GP-
Robocode was able to rank second in an international league, out of 27
contestants, with all other 26 being human written [16]. For chess, the
GP-evolved GP-EndChess was able to draw or win against a Master-
based strategy and against CRAFTY, which finished second in the 2004
Computer Chess Championship [6].

3. Evolving Backgammon-Playing Strategies using GP

We use Koza-style GP [7] to evolve backgammon strategies. In GP, a
population of individuals evolves, where an individual is composed of
LISP sub-expressions, each sub-expression being a program constructed
from functions and terminals. The functions are usually arithmetic
and logic operators that receive a number of arguments as input and
compute a result as output; the terminals are zero-argument functions
that serve both as constants and as sensors. Sensors are a special type of
function that query the domain environment (in our case, backgammon
board configurations).

In order to improve the performance of the GP system, we used
Strongly Typed Genetic Programming (STGP) [10], which allows to add
data types and data-type constraints to the LISP programs, thereby
affording the evolution of more powerful and useful programs.

In STGP, each function has a return type and argument types (if
there are any arguments). In our implementation, a type can be either
an atomic type, which is a symbol, or a set type, which is a group of
atomic types. A node n1 can have a child node n2 if and only if the
return type of n2 is compatible with the appropriate argument type of
n1. An atomic type is compatible with another atomic type if they are
both identical, and a set type is compatible with another set type if
they share at least one identical atomic type.

Note that the types are mere symbols and not real data types; their
purpose is to force structural constraints on the LISP programs. The
data passed between nodes consists only of real numbers.

XXX.tex; 12/06/2005; 9:07; p.4



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 5

3.1. Board evaluation

Tesauro [20] noted that due to the presence of stochasticity in the
form of dice, backgammon has a high branching factor (about 20 moves
on average for each of the 21 dice rolls), therefore rendering deep search
strategies impractical. Thus, we opted for the use of a flat evaluator:
after rolling the dice, generate all possible next-move boards, evaluate
each one of them, and finally select the board with the highest score.

This approach has been used widely by neural network-based players
and—as shown below—it can be used successfully with genetic pro-
gramming. In our model, each individual is a LISP program that—using
the sensors—receives a backgammon board configuration as input and
returns a real number that represents the board score.

An artificial player is had by combining an (evolved) board evaluator
with a program that generates all next-moves given the dice values.

3.2. Major preparatory steps

Koza [7] defined five major steps in preparing to use GP for problem
solving:

1. Determining the set of terminals.

2. Determining the set of functions.

3. Determining the fitness measure.

4. Determining the parameters and variables of controlling the run.

5. Determining the method of designating a result and the criterion
for terminating a run.

These steps are suitable for the case of evolving LISP programs
whose architectures contain a single tree (one subroutine). As explained
below, and as is often the case with non-trivial problems [7], LISP
programs can consist of more than one tree. Therefore, we need to add
a preliminary step to the list: Determining the program architecture.

3.2.1. Program architecture
The game of backgammon can be observed to consist of two main
stages: the ‘contact’ stage, where the two players can hit each other,
and the ‘race’ stage, where there is no contact between the two play-
ers. During the contact stage, we expect a good strategy to block the
opponent’s progress and minimize the probably of getting hit. On the
other hand, during the race stage, blocks and blots are of no import,

XXX.tex; 12/06/2005; 9:07; p.5



6 Azaria & Sipper

rather, one aims to select moves that lead to the removal of a maximum
number of pieces off the board.

This observation has directed us in designing the genomic structure
of individuals in the population. Each individual contains a contact
tree and a race tree. When a board is evaluated, the program checks
whether there is any contact between the players and then evaluates
the tree that is applicable to the current board state. The terminal set
of the contact tree is richer and contains various general and specific
board query functions. The terminal set of the race tree is much smaller
and contains only terminals that examine the checkers’ positions. This
is because at the race phase, the moves of each player are mostly
independent of the opponent’s status, and thus are much simpler.

One can argue that since the strategies of the two stages of the game
are independent, it would be better to train contact and race individuals
independently. However, the final ‘product’ of the evolutionary process
is a complete individual that needs to win complete games, and not only
one of the game stages. For example, to train a race individual would
require generating unnatural board race configurations that would not
represent the complete wide range of starting race configurations a
backgammon game can produce. Therefore, it seems more natural to
train the individuals for both stages together.

3.2.2. Terminal set
Keeping in mind our use of STGP, we need describe not only the
terminals (and later the functions) but also their type constraints.
We use two atomic types: Float and Boolean. We also use one set
type—Query—that includes both atomic types.

With terminals, we use the ERC (Ephemeral Random Constant)
mechanism, as described in Koza [7]. An ERC is a node that—when
first initialized—is randomly assigned a constant value from a given
range; this value does not change during evolution, unless a mutation
operator is applied.

The terminal set is specific to our domain (backgammon), and con-
tains three types of terminals:

1. The Float-ERC function calls upon ERC directly. When created,
the terminal is assigned a constant, real-number value, which be-
comes the return value of the terminal.

2. The board-position query terminals use the ERC mechanism to
query a specific location on the board. When initialized, a value
between 0 and 25 is randomly chosen, where 0 specifies the bar
location, 1-24 specify the inner board locations, and 25 specifies
the off-board location (Figure 1). The term ‘Player’ refers to the

XXX.tex; 12/06/2005; 9:07; p.6



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 7

Figure 1. Initial backgammon configuration. The White player’s home positions are
labeled 19-24, and the Black player’s home positions are labeled 1-6.

contender whose turn it is, while ‘Enemy’ refers to the opponent.
When a board query terminal is evaluated, it refers to the board
location that is associated with the terminal, from the player’s point
of view.

3. For the last type of terminal we took advantage of one of GP’s most
powerful attributes: The ability to easily add non-trivial functions
that provide useful information about the domain environment. In
our case, these terminals are functions that provide general infor-
mation about the board as a whole, e.g., how far is the player from
winning, and an estimation of the risk of being hit by the enemy.

The terminal set for contact trees is given in Table I and that for
race trees in Table II.

3.2.3. Function set
The function set contains no domain-specific operators, but only arith-
metic and logic ones, so we use the same function set for both contact
and race trees. The function set is given in Table III.

3.2.4. Fitness measure
Our first approach to measuring fitness is based on an external oppo-
nent in the role of a “teacher.” As external opponent (and later for
benchmark purposes as well) we used Pubeval, a free, public-domain
board evaluation function written by Tesauro [19]. The program—
which plays well—seems to have become the de facto yardstick used by
the growing community of backgammon-playing program developers.

XXX.tex; 12/06/2005; 9:07; p.7



8 Azaria & Sipper

Table I. Terminal set of the contact tree. Note that zero-argument func-
tions—which serve both as constants and as sensors—are considered as terminals.
The double horizontal lines distinguish between the three types of terminals (see
text).

F=Float-ERC ERC – random real constant in range [0,5]

Q=Player-Exposed(n) If player has exactly one checker at location n, return
1, else return 0

Q=Player-Blocked(n) If player has two or more checkers at location n,
return 1, else return 0

Q=Player-Tower(n) If player has h or more checkers at location n (where
h ≥ 3), return h− 2, else return 0

Q=Enemy-Exposed(n) If enemy has exactly one checker at location n, return
1, else return 0

Q=Enemy-Blocked(n) If enemy has two or more checkers at location n,
return 1, else return 0

F=Player-Pip Return player pip-count divided by 167 (pip-count is
the number of steps a player needs to move in order
to win the game. This value is normalized through
division by 167—the pip-count at the beginning of
the game.)

F=Enemy-Pip Return enemy pip-count divided by 167

F=Total-Hit-Prob Return sum of hit probability over all exposed player
checkers

F=Player-Escape Measure the effectiveness of the enemy’s barrier over
its home positions. For each enemy home position
that does not contain an enemy block, count the
number of dice rolls that could potentially lead to
the player’s escape. This value is normalized through
division by 131—the number of ways a player can
escape when the enemy has no blocks

F=Enemy-Escape Measure the effectiveness of the player’s barrier over
its home positions using the same method as above

XXX.tex; 12/06/2005; 9:07; p.8



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 9

Table II. Terminal set of the race tree.

F=Float-ERC ERC – random real constant in range [0,5]

Q=Player-Position(n) Return number of checkers at location n

Table III. Function set of the contact and race trees.

F=Add(F, F) Add two real numbers

F=Sub(F, F) Subtract two real numbers

F=Mul(F, F) Multiply two real numbers

F=If(B, F, F) If first argument evaluates to a non-zero value, return
value of second argument, else return value of third
argument

B=Greater(F, F) If first argument is greater than second, return 1, else
return 0

B=Smaller(F, F) If first argument is smaller than second, return 1, else
return 0

B=And(B, B) If both arguments evaluate to a non-zero value, return
1, else return 0

B=Or(B, B) If at least one of the arguments evaluates to a non-
zero value, return 1, else return 0

B=Not(B) If argument evaluates to zero, return 1, else return 0

Several researchers in the field have pitted their own creations against
Pubeval, some using it as teacher (external opponent) as well.

To evaluate fitness, we let each individual (backgammon strategy)
play a 100-game tournament against Pubeval. Fitness is then the indi-
vidual’s score divided by the sum of scores of both players (individual
and Pubeval).

3.2.5. Control parameters
The major parameters that control a run are: population size M (set to
128), and number of generations G (set to 500). GP has a few additional
minor control parameters, which will be mentioned below.

When generating the initial random population, the method of cre-
ating each tree is Koza’s [7] Full-Builder : A random integer d be-

XXX.tex; 12/06/2005; 9:07; p.9



10 Azaria & Sipper

tween min-depth and max-depth is chosen, and then a full tree of depth
d is grown. After completing the creation of the first generation, the
individuals are evaluated.

After the evaluation stage, we need to create the next generation
of individuals from the current generation. This process involves two
primary operators: breeding and selection. Of a finite set of breeding
operators (described below), one is chosen probabilistically; then, one
or two individuals (depending on the breeding operator) are selected
from the current generation. Finally, the breeding operator is applied to
the selected individual(s). This process continues until the population
size has been reached—and the new generation thus created.

We use four breeding operators in our model, either unary (operating
on one individual) or binary (operating on two individuals): identity,
sub-tree crossover, point mutation, and MutateERC :

− The unary identity operator is the simplest one: copy one indi-
vidual to the next generation with no modifications. The main
purpose of this operator is to preserve a small number of good
individuals.

− The binary sub-tree crossover operator randomly selects an inter-
nal node in each of the two individuals (belonging to corresponding
trees—either race or contact) and then swaps the sub-trees rooted
at these nodes.

− The unary point mutation operator randomly selects one node
from one of the trees, deletes the subtree that is rooted at that
node and grows a new sub-tree instead.2

− The unary MutateERC operator selects one random node and then
mutates every ERC within the sub-tree that is rooted at that node.
The mutation operation we used is the addition of a small Gaussian
noise to the ERC. We used this breeding operator to achieve two
goals: first, this is a convenient way to generate new constants as
evolution progresses; and, second, it helps to balance the constants
in good individuals. The MutateERC operation is described in [2].

As for selection, we chose tournament selection, as described in
Koza [7]: randomly choose a small subset of individuals, and then
select the one with the best fitness. This method is simple and affords
a fair chance of selecting low-fitness individuals in order to prevent

2 The details of crossing over sub-trees and growing new sub-trees due to mutation
are fully described in Koza [7]. Bloat control is afforded by the software used,
through the simple placement of upper bounds.

XXX.tex; 12/06/2005; 9:07; p.10



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 11

Figure 2. Fitness curve when using an external opponent. The fitness of an individ-
ual is the score it obtained in a 100-game tournament, divided by the sum of scores
obtained by both players (the individual and Pubeval).

early convergence. GP has a few more minor parameters—e.g., size of
initial trees and probability of selecting each breeding operator—that
are of less import.

3.2.6. Termination criterion and result designation
An ideal backgammon strategy, which wins whenever possible, does
not exist, so our runs were terminated when reaching a fixed number
of generations: 500. As for result designation, our goal is to find the best
player possible, so every five generations we pitted the four individuals
with the highest fitness in a 1000-game tournament against Pubeval,
and the individual with the highest score in these tournaments, over
the entire evolutionary run, was declared best-of-run.

3.3. Results: External opponent

Due to the stochasticity of our domain, we repeated each experiment
20 times. For each performance measure, we computed the average,
minimum, and maximum values of the best-fitness individual every
five generations over the 20 runs.

Our first measure of performance is the fitness (as defined in Sub-
section 3.2.4) curve of our experiments, shown in Figure 2.

A prima facie observation might lead to the conclusion that these
results are remarkable; indeed, scoring over 60% in a backgammon
tournament against Pubeval is an exceptional result that is far beyond

XXX.tex; 12/06/2005; 9:07; p.11



12 Azaria & Sipper

Figure 3. Benchmark curve when using an external opponent. The benchmark score
of an individual is the score it obtained in a 1000-game tournament against Pubeval,
divided by the sum of the scores obtained by both players (the individual and
Pubeval).

the highest result ever published. Unfortunately, the fitness is computed
using tournaments of 100 games, too short for a backgammon player
benchmark.

In order to obtain a better indication of performance, we had the
best-of-generation individual (according to fitness) play a 1000-game
tournament against Pubeval. Figure 3 shows the results of this bench-
mark, where performance is seen to drop well below the 50% mark.

The results displayed in Figure 3, being more indicative of perfor-
mance, raise the question of whether better players can be had. We
answer in the affirmative in the next section.

4. Self Learning

The performance of our evolved strategies in Section 3 indicates that
GP-based individuals are able to learn to play backgammon, but not
necessarily to excel in it. One might think that when training against
an external opponent, evolved individuals would be able to overpower
this opponent (i.e., win above 50% of the games)—a thought not borne
out. Moreover, the evolved individuals are probably over-fitted to the
strategy of Pubeval, casting doubt upon their generalization capabili-
ties.

XXX.tex; 12/06/2005; 9:07; p.12



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 13

This observation led us to the next phase of experimentation—
self-learning—described in this section: Instead of playing against an
external opponent, individuals play against each other.

4.1. Major preparatory steps

To allow us to compare the performance of both learning methods as
accurately as possible, most of the preparatory steps remain the same
(as defined in Subsection 3.2): program architecture, sets of terminals
and functions, and the control parameters.

In this experiment, the evolutionary process is internally driven,
i.e., the evolving strategies play against each other (and not against an
external opponent). As such, the fitness of an individual is relative to
its cohorts. To avoid overly lengthy evaluation times, methods such as
Round Robin—where each individual is pitted against all others—were
avoided. Through experimentation we concluded that a good evaluation
method is the Single Elimination Tournament: Start with a population
of n individuals, n being a power of two. Then, divide the individuals
into n

2 arbitrary pairs, and let each pair engage in a relatively short
tournament of 50 games. Finally, set the fitness of the n

2 losers to
1
n . The remaining n

2 winners are divided into pairs again, engage in

tournaments as before, and the losers are assigned fitness values of 1
n/2 .

This process continues until one champion individual remains. Thus,
the more tournaments an individual “survives,” the higher its fitness.

One of the properties of Single Elimination Tournament is that half
of the population is always assigned the same low fitness. Although
there is a certain ‘injustice’ in having relatively good individuals receive
the same fitness as others with poorer performance, this method has
proven advantageous. Our preliminary experiments with ‘fairer’ meth-
ods, like round-robin, showed that they lead to premature convergence
because bad individuals are rarely selected; preserving some amount of
low-performance individuals allows the discovery of new strategies. On
the other hand, an individual must exhibit a consistently good strategy
in order to attain high fitness, and thus we are very likely to preserve
good strategies.

4.2. Results: Self-learning

Figure 4 shows the benchmark curve vs. Pubeval of the individuals
evolved through self-learning. Table IV shows how our evolved play-
ers fared against Pubeval, alongside the performance of the other ap-
proaches described in Section 2. The best player of each of our runs is

XXX.tex; 12/06/2005; 9:07; p.13



14 Azaria & Sipper

Figure 4. Benchmark curve when using self-learning. The benchmark score of an
individual is the score it obtained in a 1000-game tournament against Pubeval,
divided by the sum of the scores obtained by both players (the individual and
Pubeval).

the individual that was designated according to the procedure described
in Subsection 3.2.6.

4.2.1. Computational resources
On a standard workstation our system plays about 700–1,000 games
a minute. As can be seen in Figure 4, to achieve good asymptotic
performance our method requires on the order of 500,000–2,000,000
games (100–300 generations) per evolutionary run—about 2-3 days
of computation. In comparison, GMARLB-Gammon required 400,000
games to learn, HC-Gammon – 100,000, and ACT-R-Gammon – 1000
games. The latter low figure is due to the explicit desire by ACT-
R-Gammon’s authors to model human cognition, their starting point
being that a human can at best play 1,000 games a month (should he
forego all other activities). Note that as opposed to the other individual-
based methods herein discussed (e.g., employing one or a few neural
networks), our approach is population based; the learning cost per
individual is therefore on the order of a few thousand games.

Our primary goal herein has not been to reduce computational cost,
but to attain the best machine player possible. As quipped by Milne
Edwards (and quoted by Darwin in Origin of Species), “nature is prodi-
gal in variety, but niggard in innovation.” With this in mind, we did not
mind having our processes run for a few days. After all, backgammon
being a hard game to play expertly (our reason for choosing it), why

XXX.tex; 12/06/2005; 9:07; p.14



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 15

Table IV. Comparison of backgammon players. GP-Gammon-i designates the best
GP strategy evolved at run i, which was tested in a tournament of 1000 games
against Pubeval. (In comparison, GMARLB-Gammon used 50 games for evaluation,
ACT-R-Gammon used 5000 games, Darwen used 10,000 games, and HC-Gammon
used 200 games.) “Wins” refers to the percentage of wins against Pubeval.

Rank Player Wins Rank Player Wins

1 GP-Gammon-1 56.8a 13 GP-Gammon-12 51.4

2 GP-Gammon-2 56.6 14 GMARLB-Gammon [13] 51.2b

3 GP-Gammon-3 56.4 15 GP-Gammon-13 51.2

4 GP-Gammon-4 55.7 16 GP-Gammon-14 49.9

5 GP-Gammon-5 54.6 17 GP-Gammon-15 49.9

6 GP-Gammon-6 54.5 18 GP-Gammon-16 49.0

7 GP-Gammon-7 54.2 19 GP-Gammon-17 48.1

8 GP-Gammon-8 54.2 20 GP-Gammon-18 47.8

9 GP-Gammon-9 53.4 21 ACT-R-Gammon [15] 45.94

10 GP-Gammon-10 53.3 22 GP-Gammon-19 45.2

11 GP-Gammon-11 52.9 23 GP-Gammon-20 45.1

12 Darwen [4] 52.7 24 HC-Gammon [11] 40.00

a Sanner et al. [15] quoted a paper by Galperin and Viola, who used TD(λ)
training to purportedly obtain players with win percentage 59.25 against Pubeval.
The reference for Galperin and Viola is of a now-obsolete URL, and all our efforts
to obtain the paper by other means came to naught. Moreover, it seems to be
but a short project summary and not a bona fide paper with full experimental
details. Thus, the article does not meet two necessary criteria of a valid scientific
publication: availability and repeatability. We have therefore not included their
result herein.

b This is an average value over a number of runs. The authors cited a best value
of 56%, apparently a fitness peak obtained during one evolutionary run, computed
over 50 games. This is too short a tournament and hence we cite their average
value. Indeed, we were able to obtain win percentages of over 65% (!) for randomly
selected strategies over 50-game tournaments, a result which dwindled to 40-45%
when the tournament was extended to 1000 games.

XXX.tex; 12/06/2005; 9:07; p.15



16 Azaria & Sipper

Table V. Using the island model.
I-GP-Gammon-i designates the best
GP strategy evolved at distributed run
i.

Rank Player Wins

1 I-GP-Gammon-1 62.4

2 I-GP-Gammon-2 62.2

3 I-GP-Gammon-3 62.1

4 I-GP-Gammon-4 62.0

5 I-GP-Gammon-5 61.4

6 I-GP-Gammon-6 61.2

7 I-GP-Gammon-7 59.1

should a machine learn rapidly? (see also [17]) Be that as it may, we
do plan to tackle the optimization issue in the future.

4.3. Using additional resources

Wishing to improve our results yet further we employed a distributed
asynchronous island model. In this experiment we used 50 islands,
designated Island-0 thorough Island-49. Starting at generation 10, for
each generation n, every Island i that satisfies i mod 10 = n mod 10,
migrates 4 individuals to the 3 adjacent neighbors (a total of 12).
Individuals are selected for migration based on fitness using tourna-
ment selection (Subsection 3.2.5) with repeats. The rest of the setup is
identical to that of Section 4. Table V shows the improved results.

To get an idea of the human-competitiveness of our evolved players
we referred to the HC-Gammon homepage [12], which presents statistics
of games played by HC-Gammon [11] against human players. Accord-
ingly, HC-Gammon wins 58% of the games when counting abounded
games as wins, and 38% when disregarding them. Considering that HC-
Gammon wins 40% of the games vs. Pubeval we expect, by transitivity,
that our 62%-vs-Pubeval GP-Gammon is a very strong player in human
terms.

XXX.tex; 12/06/2005; 9:07; p.16



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 17

Figure 5. Comparing average benchmark performance of external-opponent and
self-learning.

5. Comparing External-Opponent with Self-Learning

One would expect that strategies evolved using an external opponent
and tested against the same program would perform much better (with
respect to the benchmark program) than strategies that have been
evolved without any prior knowledge of the benchmark strategy. Sur-
prisingly, this is not the case here; it is clear that the performance of
the self-learning approach is much better than the external approach:
Figure 5 shows a comparison of average performance of the external-
opponent and self-learning approaches and Figure 6 shows a comparison
of maximum performance.

In order to explain these results, we should examine the learning
model of both approaches. Population size and initialization method are
the same for both; indeed, Figure 5 shows that the performance of the
strategies of the first generation are the same for both approaches. Also,
selection and breeding operators are identical, so that if, for instance,
we assume the performances of the strategies at generation t for both
approaches are equal, then their performances at generation t+1 should
be equal, too.

This observation leads us to conclude that the key to the success of
self-learning lies in the only difference between the two approaches:
the fitness measure. With an external opponent, each individual is
measured only by playing against Pubeval, which is known to be a

XXX.tex; 12/06/2005; 9:07; p.17



18 Azaria & Sipper

Figure 6. Comparing maximum benchmark performance of external-opponent and
self-learning.

good player, but still far from perfect (as yet, no such player exists)
and has its own advantages and weaknesses.

Backgammon players that gain experience by playing only with one
other player, who does not improve and has only one fixed reply for
each game configuration, are likely to form a strategy adapted to this
particular environment, i.e., to the external opponent’s specific strat-
egy, achieving a moderate score against it. However, in order to gain
a significant and consistent advantage over the external opponent, a
new strategy needs to be “discovered.” As it turns out, the individ-
uals were unable to discover such a novel strategy by playing only
against Pubeval, and therefore they converged to a moderate level of
performance.

On the other hand, with self-learning, individuals exhibiting good
performance are likely to play against two or more different opponents
at each generation. Moreover, the term “good performance” is relative
to the performance of other individuals in the population and not to
those of an external opponent, which performs much better at the
beginning of evolution.

A human playing against many different opponents would probably
fare better than one who has learned only from a single teacher, due
to the fact that the former is exposed to many strategies and thus
must develop responses to a wide range of game conditions. In terms
of evolution, considering our domain, the fitness of an individual mea-
sured by playing backgammon against a variety of other individuals is

XXX.tex; 12/06/2005; 9:07; p.18



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 19

likely to be more reliable than fitness measured by playing only against
Pubeval.

6. Playing Backgammon the GP Way

As is often the case with genetic programming, evolved individuals
are highly complex, especially when the problem is a hard one—e.g.,
backgammon. Much like a biologist examining naturally evolved genomes,
one cannot divine the workings of the program at a glance. Thus, we
have been unable—despite intense study—to derive a rigorous formu-
lation concerning the structure and contribution of specific functions
and terminals to the success of evolved individuals (this we leave for
future work). Rigorousness aside, though, our examination of many
evolved individuals has revealed a number of interesting behaviors and
regularities, hereafter delineated.

Recall that our terminal set contains two types of board-query func-
tions: those that perform specific board-position queries (e.g., Player-
Exposed(n) and Player-Blocked(n)), and those that perform general
board queries (e.g., Enemy-Escape and Total-Hit-Prob). These latter
are more powerful, and, in fact, some of them can be used as stand-alone
heuristics (albeit very weak) for playing backgammon.

We have observed that general query functions are more common
than position-specific functions. Furthermore, GP-evolved strategies
seem to “ignore” some board positions. This should come as no sur-
prise: the general functions provide useful information during most of
the game, thus inducing GP to make use of them often. In contrast,
information pertaining to a specific board position has less effect on
overall performance, and is relevant only at a few specific moves during
the game.

We surmise that the general functions form the lion’s share of an
evolved backgammon strategy, with specific functions used to balance
the strategy by catering for (infrequently encountered) situations. In
some sense GP strategies are reminiscent of human game-playing: hu-
mans rely on general heuristics (e.g., avoid hits, build effective barriers),
whereas local decisions are made only in specific cases. (As noted above,
the issue of human cognition in backgammon was central to the paper
by Sanner et al. [15].)

XXX.tex; 12/06/2005; 9:07; p.19



20 Azaria & Sipper

7. Concluding Remarks and Future Work

7.1. Attribute 17

In their book, Koza et al. [9] delineate 16 attributes a system for au-
tomatically creating computer programs might beneficially possess:

1. Starts with problem requirements.

2. Produces tractable and viable solution to problem.

3. Produces an executable computer program.

4. Automatic determination of program size.

5. Code reuse.

6. Parameterized reuse.

7. Internal storage.

8. Iterations, loops, and recursions.

9. The ability to organize chunks of code into hierarchies.

10. Automatic determination of program architecture.

11. Ability to implement a wide range of programming constructs.

12. Operates in a well-defined manner.

13. Possesses some degree of generalization capabilities.

14. Applicable to a wide variety of problems from different domains.

15. Able to scale well to larger instances of a given problem.

16. Competitive with human-produced results.

Our current work has prompted us to suggest an additional attribute
to this list:

17. Cooperative with humans.

We believe that a major reason for our success in evolving winning
backgammon strategies is GP’s ability to readily accommodate human
expertise in the language of design. Ronald, Sipper, and Capcarrère
defined this latter term within the framework of their proposed emer-
gence test [14]. The test involves two separate languages—one used to

XXX.tex; 12/06/2005; 9:07; p.20



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 21

design a system, the other used to describe observations of its (putative)
emergent behavior. The effect of surprise arising from the gap between
design and observation is at the heart of the emergence test (for de-
tails see [14]). Our language of design possesses several functions and
terminals that attest to the presence of a (self-proclaimed) intelligent
designer (Tables I, II, and III). This design language, which gives rise
to a powerful language of observation in the form of successful players,
was designed not instantaneously—like Athena springing from Zeus’s
head fully grown—but rather through an incremental, interactive pro-
cess, whereby man (represented by the humble authors of this paper)
and machine (represented by man’s university’s computers) worked
hand-in-keyboard. To wit, we began our experimentation with small
sets of functions and terminals, which were revised and added upon
through our examination of evolved players and their performance.

We believe that GP represents a viable means to automatic pro-
gramming, and perhaps more generally to machine intelligence, in no
small part due to attribute 17: more than many other adaptive search
techniques (e.g., genetic algorithms, artificial neural networks, ant al-
gorithms), the GPer, owing to GP’s representational affluence and
openness, is better positioned to imbue the language of design with his
own intelligence. While artificial-intelligence (AI) purists may wrinkle
their noses at this, taking the AI-should-emerge-from-scratch stance,
we argue that a more practical path to AI involves man-machine co-
operation. GP, as evidenced herein, is a forerunning candidate for the
‘machine’ part.

7.2. Future work

Our model divides the backgammon game into two main stages, thus
entailing two types of trees. A natural question arising is that of re-
fining this two-fold division into more sub-stages. The game dynamics
may indeed call for such a refined division, with added functions and
terminals specific to each game stage.

However, it is unclear how this refining is to be had: Any (human)
suggestion beyond the obvious two-stage division is far from being
obvious—or correct. One possible avenue of future research is simply to
let GP handle this question altogether and evolve the stages themselves.
For example, we can use a main tree to inspect the current board
configuration and decide which tree should be used for the current
move selection. These ‘specific’ trees would have their own separately
evolving function and terminal sets. Automatically defined functions

XXX.tex; 12/06/2005; 9:07; p.21



22 Azaria & Sipper

(ADFs) [8] and architecture-altering operations [9] will most likely come
in quite handy here.3

Our application of an adaptive—so-called “intelligent”—search tech-
nique in the arena of games is epitomic of an ever-growing movement.
Our evolved backgammon players are highly successful, boding well for
the future of GP-evolved strategies.

Appendix

Rules of Backgammon

The game of backgammon starts with the board configuration shown
in Figure 1. The object of the game is to remove all of one’s checkers
(pieces) outside the board. In the figure, White moves along the posi-
tive direction (ascending board positions) while Black moves along the
negative direction (descending board positions). Each player has home
positions, as shown in Figure 1.

Each player casts in turn a pair of dice and moves as follows: If the
dice show different values, the player moves two checkers according to
the dice values (movement of one board position per one die point).
If the two dice show identical values, the player moves four times
according to the dice values (e.g., if the dice values are both 2, the
player moves four times 2 positions). A player is not allowed to move
onto board positions where two or more of the opponent’s checkers are
placed.

A blot occurs when a player has a single checker at some board
position. In this case the opponent can “hit” this point, sending the
player back to the position just before the beginning of the board (in
Figure 1, position 0 for White, and position 25 for black; also known
as the “bar”). Before moving another checker the player must re-enter
the board at the opponent home positions, determined by the cast of
dice. The player cannot move while any of his checkers remain on the
bar.

When a player has all his checkers at his home positions (Figure 1),
he can begin removing checkers outside the board. The player can
remove a checker at the position corresponding to a die value. If,
for example, one die shows 4, then White can remove the checker at
position 21 in Figure 1. If this position is empty, the player has two

3 Early experiments with ADFs in our current work produced lower results and—
as non-ADF runs worked quite nicely—we decided to concentrate our efforts there.
This does not preclude, however, the beneficial use of ADFs in the refinement of our
methodology described in the paragraph.

XXX.tex; 12/06/2005; 9:07; p.22



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 23

options: 1) if the other home positions behind the current position
(19 and 20, in our example) are empty, then the player can remove a
checker from the position closest (22, 23, and 24, in our example) to that
corresponding to the die value (21, in our example); 2) otherwise, the
player cannot remove any checkers, and must resort to other possible
non-checker-removing moves.

The game ends when one of the players has removed all his checkers
off the board. If—as is often the case—the game in question is part
of a series, then the winner is awarded one point. In case the loser
still has all his checkers on the board, the winner is said to have won
a gammon—and is awarded two points. A special case of gammon—
called backgammon—occurs when a player wins and the opponent still
has checkers in the player’s home; the winner is then awarded three
points (this latter case is extremely rare).

Acknowledgements

We are grateful to Assaf Zaritsky for helpful comments. Special thanks
to Diti Levy for helping us with the drawing in Figure 1. We are grateful
to the anonymous reviewers. Special thanks to Pierre Collet for his very
detailed and constructive comments.

XXX.tex; 12/06/2005; 9:07; p.23



24 Azaria & Sipper

References

1. Anderson, J. R. and C. Lebiere: 1998, The Atomic Components of Thought.
Mahwah, NJ: Lawrence Erlbaum Associates.

2. Chellapilla, K.: 1998, ‘A Preliminary Investigation into Evolving Modular Pro-
grams without Subtree Crossover’. In: J. R. Koza, W. Banzhaf, K. Chellapilla,
K. Deb, M. Dorigo, D. B. Fogel, M. H. Garzon, D. E. Goldberg, H. Iba, and
R. Riolo (eds.): Genetic Programming 1998: Proceedings of the Third Annual
Conference. University of Wisconsin, Madison, Wisconsin, USA, pp. 23–31.

3. Dahl, F.: 1998 -2004, ‘JellyFish Backgammon’.
http://www.jellyfish-backgammon.com.

4. Darwen, P.: 2001, ‘Why Co-Evolution beats Temporal-Difference Learning at
Backgammon for a Linear Architecture, but not a Non-Linear Architecture’.
In: Proceedings of the 2001 Congress on Evolutionary Computation (CEC-01).
Seoul Korea, pp. 1003–1010.

5. Gross, R., K. Albrecht, W. Kantschik, and W. Banzhaf: 2002, ‘Evolving
Chess Playing Programs’. In: W. B. Langdon, E. Cantú-Paz, K. Mathias,
R. Roy, D. Davis, R. Poli, K. Balakrishnan, V. Honavar, G. Rudolph, J.
Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F. Miller, E. Burke, and
N. Jonoska (eds.): GECCO 2002: Proceedings of the Genetic and Evolutionary
Computation Conference. New York, pp. 740–747.

6. Hauptman, A. and M. Sipper: 2005, ‘GP-EndChess: Using genetic program-
ming to evolve chess endgame players’. In: Proceedings of 8th European
Conference on Genetic Programming (EuroGP2005). (to appear).

7. Koza, J. R.: 1992, Genetic programming: On the Programming of Computers
by Means of Natural Selection. Cambridge, MA: MIT Press.

8. Koza, J. R.: 1994, Genetic Programming II: Automatic Discovery of Reusable
Programs. Cambridge, Massachusetts: MIT Press.

9. Koza, J. R., F. H. Bennett III, D. Andre, and M. A. Keane: 1999, Genetic
Programming III: Darwinian Invention and Problem Solving. San Francisco,
California: Morgan Kaufmann.

10. Montana, D. J.: 1995, ‘Strongly Typed Genetic Programming’. Evolutionary
Computation 3(2), 199–230.

11. Pollack, J. B., A. D. Blair, and M. Land: 1997a, ‘Coevolution of a Backgammon
Player’. In: C. G. Langton and K. Shimohara (eds.): Artificial Life V: Pro-
ceedings of the Fifth International Workshop on the Synthesis and Simulation
of Living Systems. Cambridge, MA, pp. 92–98.

12. Pollack, J. B., A. D. Blair, and M. Land: 1997b, ‘DEMO Lab’s HC-Gammon’.
http://demo.cs.brandeis.edu/bkg.html.

13. Qi, D. and R. Sun: 2003, ‘Integrating reinforcement learning, bidding and ge-
netic algorithms’. In: Proceedings of the International Conference on Intelligent
Agent Technology (IAT-2003). pp. 53–59.

14. Ronald, E. M. A., M. Sipper, and M. S. Capcarrère: 1999, ‘Design, Observation,
Surprise! A Test of Emergence’. Artificial Life 5(3), 225–239.

15. Sanner, S., J. R. Anderson, C. Lebiere, and M. Lovett: 2000, ‘Achieving Ef-
ficient and Cognitively Plausible Learning in Backgammon’. In: P. Langley
(ed.): Proceedings of the 17th International Conference on Machine Learning
(ICML-2000). Stanford, CA, pp. 823–830.

16. Shichel, Y., E. Ziserman, and M. Sipper: 2005, ‘GP-Robocode: Using genetic
programming to evolve robocode players’. In: Proceedings of 8th European
Conference on Genetic Programming (EuroGP2005). (to appear).

XXX.tex; 12/06/2005; 9:07; p.24



GP-Gammon: Genetically Programming Backgammon Players, DRAFT 25

17. Sipper, M.: 2000, ‘A Success Story or an Old Wives’ Tale? On Judging
Experiments in Evolutionary Computation’. Complexity 5(4), 31–33.

18. Tesauro, G.: 1989, ‘NEUROGAMMON: A Neural-Network Backgammon
Learning Program’. Heuristic Programming in Artificial Intelligence 1(7),
78–80.

19. Tesauro, G.: 1993, ‘Software–Source Code Benchmark player “pubeval.c”’.
http://www.bkgm.com/rgb/rgb.cgi?view+610.

20. Tesauro, G.: 1995, ‘Temporal Difference Learning and TD-Gammon’. Commu-
nications of the ACM 38(3), 58–68.

21. Yao, X.: 1999, ‘Evolving artificial neural networks’. Proceedings of the IEEE
87(9), 1423–1447.

XXX.tex; 12/06/2005; 9:07; p.25



XXX.tex; 12/06/2005; 9:07; p.26


