Evolving Fuzzy Rules for Breast Cancer Diagnosis
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Abstract— We present an evolutionary approach
for discovering fuzzy systems for breast cancer diag-
nosis. By judiciously designing an appropriate repre-
sentation scheme (genome) and fitness function, the
genetic algorithm is then able to produce successful
systems. These surpass the best known systems to
date in terms of combined performance and simplic-

1ty.
I. Introduction

Fuzzy logic is a computational paradigm that provides
a mathematical tool for dealing with the uncertainty
and the imprecision typical of human reasoning [1]. A
prime characteristic of fuzzy logic is its capability of
expressing knowledge in a linguistic way, allowing a
system to be described by simple, “human-friendly”
rules. A fuzzy inference system is a rule-based sys-
tem that uses fuzzy logic, rather than boolean logic,
to reason about data [1]. Its basic structure com-
prises four main components: (1) a fuzzifier, which
translates crisp (real-valued) inputs into fuzzy values,
(2) an inference engine that applies a fuzzy reasoning
mechanism to obtain a fuzzy output, (3) a defuzzifier,
which translates this latter into a crisp value, and (4)
a knowledge base, which contains both an ensemble of
fuzzy rules, known as the rule base, and a database,
which defines the membership functions used in fuzzy
logic.

Fuzzy modeling is the task of identifying the param-
eters of a fuzzy inference system so that a desired be-
havior is attained. There are several works on fuzzy
modeling, based on neural networks [2,3], genetic algo-
rithms [4-6], and hybrid methods [7], which automate
some stages of the process. One of the more impor-
tant problems in fuzzy modeling is the curse of dimen-
stonality, meaning that the computation requirements
grow exponentially with the number of variables. Se-
lection of important variables and adequate rules is
critical for obtaining a good model.

The parameters of fuzzy inference systems can be
classified into four categories (Table 1): logic, struc-
tural, connection, and operational. Generally speak-
ing, this order also represents their relative influence
on system behavior (with logic being the most influ-
ential and operational the least).

Usually, in fuzzy modeling logic parameters are pre-
defined by the designer. Structural, connection, and
operational parameters may be either predefined, or
obtained by synthesis or search methodologies. Gen-
erally, the search space, and thus the computational
effort, grows exponentially with the number of param-

eters. Thus, one can either invest more resources in
the chosen search methodology, or infuse more a priori,
expert knowledge into the system (thereby effectively
reducing the search space).

Table 1 Parameters of fuzzy inference systems

| Class || Parameters

Reasoning mechanism
Fuzzy operators
Membership function types
Defuzzification method

Logic

Relevant variables
Number of membership functions
Number of rules

Structural

Antecedents of rules
Consequents of rules

Rule weights

Membership function values

Connection

Operational

This paper presents a genetic-algorithm strategy for
discovering fuzzy systems for breast cancer diagno-
sis, based on the Wisconsin Breast Cancer Diagno-
sis (WBCD) database. The problem (henceforth de-
noted WBCD) involves classifying a presented case as
to whether it is benign or malignant. It admits a rel-
atively high number of variables and consequently a
large search space. Our encoding of solutions (the
genome) takes advantage of previous knowledge about
the problem, thus reducing the search space while fa-
voring the extraction of the most significant variables
in order to provide more human-comprehensible rules.
Referring to Table 1, the evolved parts of the fuzzy
system in this work are: the relevant variables, the
antecedents and consequents of rules, and the values
of input membership functions. Thus, we evolve struc-
tural, connection, and operational parameters at the
same time.

II. The Breast Cancer Diagnosis Problem

Breast cancer is a common disease and a frequent
cause of death in women in the 35-55 year age group.
The presence of a breast mass' is an alert sign,
but it does not always indicate a malignant cancer.
Fine needle aspiration? of breast masses is a mostly
non-invasive diagnostic test that obtains information

IMost breast cancers are detected as a lump or mass on the
breast, either directly by self-examination, by mammography,
or by both [8].

2Fine needle aspiration is an outpatient procedure that in-
volves using a small-gauge needle to extract fluid directly from
a breast mass [8].



needed to evaluate malignancy. In order to assist med-
ical professionals in diagnostic based on microscopic
examination of fine needle aspirates, a computational
tool is currently used at the University of Wisconsin
Hospital. The WBCD database [9] consists of nine
measures obtained from fine needle aspirates, each of
which is ultimately represented as an integer value be-
tween 1 and 10. The measured variables are as follows:
(1) Clump Thickness (v1); (2) Uniformity of Cell Size
(v2); (3) Uniformity of Cell Shape (vs); (4) Marginal
Adhesion (v4); (5) Single Epithelial Cell Size (vs); (6)
Bare Nuclei (vg); (7) Bland Chromatin (v7); (8) Nor-
mal Nucleoli (vg); and (9) Mitosis (vg).

The diagnostics in the WBCD database were fur-
nished by specialists in the field. The database itself
consists of 683 cases, with each entry representing the
classification for a certain ensemble of measured val-
ues:

. vg | diagnostic
115 1 1 ... 1| Benign
215 4 4 1 | Benign

68314 8 8 1 | Malignant

Note that the diagnostics do not provide any infor-
mation about the degree of benignity or malignancy.
There are several studies based on this database, usu-
ally with data divided into two sets: training and test.
The training set is used for system synthesis (i.e., find-
ing good parameters) and the test set is used for ver-
ification purposes. Bennet and Mangasarian [10] used
linear programming techniques, obtaining 100% clas-
sification on the training set and 98.3% on the test
set. However, their solution exhibits little understand-
ability, i.e., diagnostic decisions are essentially black
boxes, with no explanation as to how they were at-
tained. Kermani et al. [11] used a genetic algorithm
to extract the most important variables, their attained
performance level being lower (94.7% on all cases, no
training/test data was given). Setiono [12] proposed a
method based on pruned neural networks for finding a
set of rules to explain the diagnostic. His results are
encouraging, exhibiting both good performance, and
a reduced number of rules and relevant input vari-
ables. However, the extraction of rules is a manual,
experience-based process.

III. The Experimental Set-up

This section focuses on the two-component set-up we
used in order to evolve fuzzy rules for the WBCD prob-
lem: (1) the fuzzy inference system itself, and (2) the
genetic algorithm.

A. Fuzzy system parameters

Previous knowledge about the WBCD problem repre-
sents valuable information to be used for our choice
of fuzzy parameters. Following Table 1, we delineate
below the fuzzy system set-up:

Degree of membership

Low

Vaue

Figure 1 Orthogonal membership functions and their pa-
rameters, plotted above as degree of membership versus
input values. The orthogonality condition means that the
sum of all membership functions at any point is one. P
and d define the start point and the length of membership
function edges, respectively (as shown above).

1. Logic parameters

e Reasoning mechanism: zero-order, Takagi-
Sugeno-Kang (TSK) fuzzy system, mean-
ing that consequents of rules (i.e., output
membership functions) are real values (also
called singletons), rather than fuzzy ones.

e Fuzzy operators: min and max.

e Input membership function type: orthogo-
nal, trapezoidal (see Figure 1).

o Defuzzification method: weighted average.

2. Structural parameters

e Relevant variables: there is insufficient a
priori knowledge to define them, therefore
this will be one of the genetic algorithm’s
goals.

e Number of membership functions: two
membership functions, denoted Low and
High are used for the input variables (see
Figure 1). We also experimented with
three membership functions but the results
were less satisfactory, probably due in part
to the increased search space size. Two out-
put values are used, corresponding to Be-
nign and Malignant diagnostics.

e Number of rules: results from Setiono [12]
show that few rules are needed to achieve
good performance. Thus, we limited the
number of rules to be in the range [1,4].
These rules are evolved.

3. Connection parameters

e Antecedents of rules: to be found by evolu-
tion.

e Consequent of rules: the implemented
strategy has the algorithm find rules for one
of the possible consequents (malignant or
benign), the other being an else condition.

e Rule weights: active rules have a weight of
value 1, and the else condition has a weight
of 0.1.

4. Operational parameters

e Input membership function values: to be
found by evolution.

e Output membership function values: fol-
lowing the WBCD database, we used a
value of 2 for Benign and 4 for Malignant.



B. The genetic algorithm

As noted, we use a genetic algorithm to search for
four parameters: relevant variables, antecedents and
consequents of rules, and input membership function
values (Table 1).

e Relevant variables are searched for implicitly by
letting the algorithm choose non-existent mem-
bership functions as valid antecedents; in such a
case the respective variable is considered irrele-
vant.

e Membership function parameters: there are nine
variables, each with two parameters P and d
which define, respectively, the start point and
the length of the membership function edges
(Figure 1).

e Antecedents and consequents: the i-th rule has
the form:

if (vy is A%) and ...

... and (vg is Aj)
then (output is C*)

where A;» represents the membership function
applicable to variable v;. A;- can take on the
values: 1 (Low), 2 (High), or 0 or 3 (v; is not
used by rule). C? can take on the values: 1 (Be-
nign) or 2 (Malignant).

Table 2 delineates the parameters encoding, which
together comprise one individual’s genome.

Table 2 Parameters encoding of an individual’s genome.
Total genome length is 64 + 18N,, where N, denotes the
number of rules.

| Parameter | Values | Bits | Qty | Total bits |

P [1-101 | 4 9 36
d [0-71 3 9 27
A [0-3] 2 | 9N, 18N,
C 1,2 1 1 1

To evolve the fuzzy inference system, we used a sim-
ple genetic algorithm, with a fixed population size of
200 individuals, no generational overlap, and fitness-
proportionate selection. As for the fitness function of
the genetic algorithm, the classification performance
of an individual was tested with a training set of 342
cases extracted from the database. The fitness of an
individual is the ratio of correct diagnostics to size of
training set. The algorithm terminates when the max-
imum number of generations is reached, or when the
increase in the performance of the best individual over
five successive generations falls below a certain thresh-
old (in our experiments 10=*). The test set we used
for verifying the performance of the evolved fuzzy in-
ference system contains the remaining 341 individuals.

IV. Results

This section describes our results, starting with gen-
eral ones concerning the genetic algorithm, followed by
two illustrative examples of evolved fuzzy systems.

A. The genetic algorithm...

We performed 40 evolutionary runs, all of which ended
with high-performance systems: considering the best
individual per run, 39 runs led to a fuzzy system whose
performance exceeds 96%, and 9 runs ended with per-
formance exceeding 97%.

B. ...and the fuzzy systems it discovered

We next describe two of our top-performance systems,
demonstrating the interesting solutions that the ge-
netic algorithm was able to discover. The first system
consists of two rules (note that the else condition is
not counted as an active rule):

if (vg is Low) and (vs is Low) and (v¢ is Low) and
(vg is Low) and (vg is Low) then (output is
Benign)

if (vq is High) and (vq is High) and (vs is High) and
(vq is High) and (vs is High) and (vg is Low)
and (v; is High) and (vs is Low) and (vg is
High) then (output is Benign)

else (output is Malignant)

The evolved parameters P and d (Figure 1) are as
follows:

U1 V2 U3 V4 Us Vs U7 Us Vg

P76 28 22 28 70 52 28 22 76
d| 2 2 2 7 3 1 2 6 7

Table 3 summarizes the performance of our two-
rule fuzzy system, and compares it with a three-rule
Boolean system reported by Setiono [12]. The latter
was obtained by manually extracting the rules from a
pruned neural network. Interestingly, when applying
an automatic verification tool, we found that the sec-
ond rule of our system is never actually activated by
any of the cases, both in the training and test sets.
Thus, our evolved single-rule system compares very
favorably with the more complex three-rule one.

Table 3 Performance values of our evolved two-rule fuzzy
system and Setiono’s three-rule Boolean system, manually
extracted from a pruned neural network. Performance level
is given for both training and test sets. Also shown are
separate performance values for the benign and malignant
cases, as well as the overall average of the two.

Our system Setiono’s
Training | Test | Training | Test
Benign 98.7% | 97.8% | 97.4% | 96.5%
Malignant 95.9% | 91.5% | 98.4% | 96.7%
Overall 97.7% | 95.6% | 97.7% | 96.6%

Can the genetic algorithm automatically discover a
simple, single-rule system, i.e., without recourse to any



post-processing? Our results have shown that this is
indeed the case. One such single-rule solution, with
but three relevant variables, is delineated below:

if (vq is Low) and (vg is Low) and (vg is Low) then
(output is Benign)

else (output is Malignant)

where the evolved P and d parameters are as follows:

(%] (7 (3
P28 10 58
d| 3 5 3

Table 4 delineates the performance of this system.
We note that it is better than Setiono’s single-rule one,
trailing but shortly behind the two- and three-rule sys-
tems.

Table 4 Performance of an evolved single-rule system,
compared with a single-rule system found by Setiono.

Our system Setiono’s
Training | Test | Training | Test
Benign 98.6% | 98.2% | 98.7% | 97.4%
Malignant 95.0% | 89.8% | 93.4% | 87.5%
Overall 97.4% | 95.3% | 96.9% | 94.0%

Setiono’s single-rule system is given below:
if (v2<4) and (v6<5) then (output is Benign)
else (output is Malignant)

This system is not fuzzy, i.e., it uses standard
Boolean (binary) logic, which is (by definition) a spe-
cial case of fuzzy logic. We can transform our evolved
fuzzy system into a Boolean one, thereby enabling a
more detailed comparison between the two. (Note:
such a transformation involves no reduction in perfor-
mance, though it becomes no longer possible to pro-
vide a degree of truth, or reliability, of the output di-
agnostic). The transformed system is given below:

if (v2<5) and (vs<5) and (vs<8) then (output is
Benign)

else (output is Malignant)

We note that the two systems are quite similar,
which is notable given the use of completely differ-
ent methodologies to obtain them. However, ours is
refined, with the added wg variable, and a different
right term for the vy comparison. This refinement is
sufficient in order to give rise to a marked increase in
performance.

V. Conclusions

We presented an evolutionary approach for discover-
ing fuzzy systems for breast cancer diagnosis. By
judiciously designing an appropriate representation
scheme (genome) and fitness function, the genetic al-
gorithm was then able to produce high-performance
systems. Comparing these with some of the best
known systems to date, we remarked that not only
did we attain higher performance (at least in some
cases), but, as importantly, our evolved systems are
perhaps the simplest ones available. As for the lat-
ter, we ended up with minimal, single-rule systems,
with but a small number of variables. Thus, we
obtain high-performance, human-comprehensible sys-
tems that are able to solve this important medical clas-
sification problem.

These promising results incited us to engage in fur-
ther investigation of this approach. We are currently
extending our experiments, using other representa-
tions and more elaborate fitness functions, with pre-
liminary encouraging results, which we hope to report
in the near future.
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