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Abstract. In this chapter we present Fuzzy CoCo, a fuzzy modeling technique
based on cooperative coevolution, conceived to provide high numeric precision (ac-
curacy) while incurring as little a loss of linguistic descriptive power (interpretabil-
ity) as possible. The search for interpretability is represented by several constraints
taken into account when designing the evolutionary algorithm, which induce the
drive for accuracy. Interpretability-oriented fuzzy modeling must conduct two sep-
arate but intertwined search processes: (1) the search for membership functions,
and (2) the search for rules. Towards this end, Fuzzy CoCo employs two coevolv-
ing species: database (membership functions) and rule base. Coevolution allows to
overcome limitations presented by single-population evolutionary algorithms when
confronted with fuzzy modeling, including stagnation, convergence to local optima,
and computational costliness. We demonstrate the efficacy of Fuzzy CoCo by ap-
plying it to a hard, real-world problem—prediction of breast-cancer malignancy—
obtaining excellent results.

1 Introduction

The earliest fuzzy systems were constructed using knowledge provided by
human experts, and were thus linguistically correct. However, the difficulty
of applying such an approach for high-dimension, ill-known, or data-intensive
models, led to the coming of new data-driven fuzzy modeling techniques.

These techniques initially concentrated on solving a parameter-optimization
problem based on the numeric performance of the systems. Unfortunately,
they paid little attention to linguistic aspects, thus neglecting one of the
most important advantages offered by fuzzy systems. Recently, as fuzzy mod-
eling techniques have concentrated more on linguistic issues, the difficulty of
improving system interpretability without losing (numeric) performance has
become evident. This accuracy-interpretability trade-off is currently one of
the most active research lines in fuzzy modeling.

In this chapter we present Fuzzy CoCo, a fuzzy modeling technique based
on cooperative coevolution, conceived to provide high accuracy while incur-
ring as little a loss of interpretability as possible. With Fuzzy CoCo the user
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is in control of the balance between accuracy and interpretability thanks to
the method’s configurability.

This chapter is organized as follows: In the next section we provide an
overview of evolutionary computation and evolutionary fuzzy modeling. Then,
Section 3 discusses some aspects related to interpretability requirements. Sec-
tion 4 presents Fuzzy CoCo, our cooperative coevolutionary approach to fuzzy
modeling. Section 5 then describes a sample application of Fuzzy CoCo to
a hard problem: breast-cancer assessment by mammography interpretation.
The results obtained are presented in Section 6. Finally, we present conclud-
ing remarks in Section 7.

2 Background

2.1 Evolutionary computation

The domain of evolutionary computation involves the study of the founda-
tions and the applications of computational techniques based on the princi-
ples of natural evolution. Evolution in nature is responsible for the “design”
of all organisms on earth, and for the strategies they use to interact with
each other. Evolutionary algorithms employ this powerful design philosophy
to find solutions to hard problems.

Generally speaking, evolutionary techniques can be viewed either as search
methods, or as optimization techniques. As written by Michalewicz [10]:

Any abstract task to be accomplished can be thought of as solving a
problem, which, in turn, can be perceived as a search through a space
of potential solutions. Since usually we are after ‘the best’ solution,
we can view this task as an optimization process.

Three basic mechanisms drive natural evolution: reproduction, mutation,
and selection. The first two act on the chromosomes containing the genetic
information of the individual (the genotype), rather than on the individual
itself (the phenotype) while selection acts on the phenotype. Reproduction is
the process whereby new individuals are introduced into a population. Dur-
ing sexual reproduction, recombination (or crossover) occurs, transmitting
to the offspring chromosomes that are a melange of both parents’ genetic
information. Mutation introduces small changes into the inherited chromo-
somes; it often results from copying errors during reproduction. Selection,
acting on the phenotype, is a process guided by the Darwinian principle of
survival of the fittest. The fittest individuals are those best adapted to their
environment, which thus survive and reproduce.

Evolutionary computation makes use of a metaphor of natural evolution,
according to which a problem plays the role of an environment wherein lives a
population of individuals, each representing a possible solution to the prob-
lem. The degree of adaptation of each individual (i.e., candidate solution)
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to its environment is expressed by an adequacy measure known as the fit-
ness function. The phenotype of each individual, i.e., the candidate solution
itself, is generally encoded in some manner into its genome (genotype). Evo-
lutionary algorithms potentially produce progressively better solutions to the
problem. This is possible, thanks to the constant introduction of new “ge-
netic” material into the population, by applying so-called genetic operators
which are the computational equivalents of natural evolutionary mechanisms.

The archetypal evolutionary algorithm proceeds as follows: an initial pop-
ulation of individuals, P(0), is generated at random or heuristically. Every
evolutionary step ¢, known as a generation, the individuals in the current
population, P(t), are decoded and evaluated according to some predefined
quality criterion, referred to as the fitness, or fitness function. Then, a subset
of individuals, P’(t)—known as the mating pool—is selected to reproduce,
with selection of individuals done according to their fitness. Thus, high-fitness
(“good”) individuals stand a better chance of “reproducing,” while low-fitness
ones are more likely to disappear.

Selection alone cannot introduce any new individuals into the population,
i.e., it cannot find new points in the search space. These points are generated
by altering the selected population P’(t) via the application of crossover
and mutation, so as to produce a new population, P"(t). Crossover tends to
enable the evolutionary process to move toward “promising” regions of the
search space. Mutation is introduced to prevent premature convergence to
local optima, by randomly sampling new points in the search space. Finally,
the new individuals P”(t) are introduced into the next-generation population,
P(t+ 1); usually P”(t) simply becomes P(t + 1). The termination condition
may be specified as some fixed, maximal number of generations or as the
attainment of an acceptable fitness level. Figure 1 presents the structure of
a generic evolutionary algorithm in pseudo-code format.

begin EA
t:=0
Initialize population P(t)
while not done do
Evaluate P(t)
P'(t) := Select[P(t)]
P"(t) := ApplyGeneticOperators[ P’ (t)]
P(t+ 1) := Introduce[P" (t),P(t)]
ti=t+1
end while
end EA

Fig. 1. Pseudo-code of a standard evolutionary algorithm.

Because they combine elements of directed and stochastic search, evolu-
tionary techniques exhibit a number of advantages over other search methods.
First, they usually require less knowledge and fewer assumptions about the
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characteristics of the search space. Second, they can more easily avoid getting
stuck in local optima. Finally, they strike a good balance between exploita-
tion of the best solutions, and exploration of the search space. The strength
of evolutionary algorithms derives from their population-based search, and
from the use of the genetic mechanisms described above. The existence of
a population of candidate solutions entails a parallel search, with the se-
lection mechanism directing the search to the most promising regions, the
crossover operator encouraging the exchange of information between these
search-space regions, and the mutation operator enabling the exploration of
new directions.

The application of an evolutionary algorithm involves a number of im-
portant considerations. The first decision to take when applying such an
algorithm is how to encode candidate solutions within the genome. The rep-
resentation must allow for the encoding of all possible solutions while being
sufficiently simple to be searched in a reasonable amount of time. Next, an
appropriate fitness function must be defined for evaluating the individuals.
The (usually scalar) fitness value must reflect the criteria to be optimized
and their relative importance. Representation and fitness are thus clearly
problem-dependent, in contrast to selection, crossover, and mutation, which
seem prima facie more problem-independent. Practice has shown, however,
that while standard genetic operators can be used, one often needs to tailor
these to the problem as well.

2.2 Evolutionary fuzzy modeling

Fuzzy modeling is the task of identifying the parameters of a fuzzy inference
system so that a desired behavior is attained [23]. With the direct approach a
fuzzy model is constructed using knowledge from a human expert. This task
becomes difficult when the available knowledge is incomplete or when the
problem space is very large, thus motivating the use of automatic approaches
to fuzzy modeling. Selection of relevant variables and adequate rules is critical
for obtaining a good system. One of the major problems in fuzzy modeling
is the curse of dimensionality, meaning that the computation requirements
grow exponentially with the number of variables.

A fuzzy inference system is a rule-based system that uses fuzzy logic to
reason about data [24]. Its basic structure consists of four main components,
as depicted in Figure 2: (1) a fuzzifier, which translates crisp (real-valued)
inputs into fuzzy values; (2) an inference engine that applies a fuzzy reasoning
mechanism to obtain a fuzzy output; (3) a defuzzifier, which translates this
latter output into a crisp value; and (4) a knowledge base, which contains
both an ensemble of fuzzy rules, known as the rule base, and an ensemble of
membership functions known as the database.

The parameters of fuzzy inference systems can be classified into four cat-
egories (Table 1) [13,14]: logical, structural, connective, and operational.
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Fig. 2. Basic structure of a fuzzy inference system.

Table 1. Parameter classification of fuzzy inference systems.

Class Parameters
Reasoning mechanism
Logical Fuzzy operators

Membership function types
Defuzzification method

Relevant variables
Structural Number of membership functions
Number of rules

Antecedents of rules

Connective Consequents of rules
Rule weights
Operational Membership-function values

Logical parameters are usually predefined by the designer based on ex-
perience and on problem characteristics. Structural, connective, and oper-
ational parameters may be either predefined, or obtained by synthesis or
search methodologies. Generally, the search space, and thus the computa-
tional effort, grows exponentially with the number of parameters. Therefore,
one can either invest more resources in the chosen search methodology, or
infuse more a priori, expert knowledge into the system (thereby effectively
reducing the search space). The aforementioned trade-off between accuracy
and interpretability is usually expressed as a set of constraints on the param-
eter values, thus complexifying the search process.

Evolutionary algorithms are used to search large, and often complex,
search spaces. They have proven worthwhile on numerous diverse problems,
able to find near-optimal solutions given an adequate performance (fitness)
measure. Fuzzy modeling can be considered as an optimization process where
part or all of the parameters of a fuzzy system constitute the search space.
Works investigating the application of evolutionary techniques in the do-
main of fuzzy modeling had first appeared about a decade ago [8,9]. These
focused mainly on the tuning of fuzzy inference systems involved in control
tasks (e.g., cart-pole balancing, liquid-level system, and spacecraft rendezvous
operation). Evolutionary fuzzy modeling has since been applied to an ever-
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growing number of domains, branching into areas as diverse as chemistry,
medicine, telecommunications, biology, and geophysics. For a detailed bibli-
ography on evolutionary fuzzy modeling up to 1996, the reader is referred
to [1,3].

Depending on several criteria—including the available a priori knowledge
about the system, the size of the parameter set, and the availability and com-
pleteness of input-output data—artificial evolution can be applied in different
stages of the fuzzy-parameter search. Three of the four categories of fuzzy
parameters in Table 1 can be used to define targets for evolutionary fuzzy
modeling: structural parameters, connective parameters, and operational pa-
rameters [13,14]. As noted before, logical parameters are usually predefined
by the designer based on experience.

Knowledge tuning (operational parameters). The evolutionary algorithm
is used to tune the knowledge contained in the fuzzy system by finding
membership-function values. An initial fuzzy system is defined by an expert.
Then, the membership-function values are encoded in a genome, and an evo-
lutionary algorithm is used to find systems with high performance. Evolution
often overcomes the local-minima problem present in gradient descent-based
methods. One of the major shortcomings of knowledge tuning is its depen-
dency on the initial setting of the knowledge base.

Behavior learning (connective parameters). In this approach, one assumes
that expert knowledge is sufficient in order to define the membership func-
tions; this determines, in fact, the maximum number of rules [23]. The genetic
algorithm is used to find either the rule consequents, or an adequate subset
of rules to be included in the rule base.

As the membership functions are fixed and predefined, this approach lacks
the flexibility to modify substantially the system behavior. Furthermore, as
the number of variables and membership functions increases, the curse of di-
mensionality becomes more pronounced and the interpretability of the system
decreases rapidly.

Structure learning (structural parameters). In many cases, the available
information about the system is composed almost exclusively of input-output
data, and specific knowledge about the system structure is scant. In such a
case, evolution has to deal with the simultaneous design of rules, member-
ship functions, and structural parameters. Some methods use a fixed-length
genome encoding a fixed number of fuzzy rules along with the membership-
function values. In this case the designer defines structural constraints accord-
ing to the available knowledge of the problem characteristics. Other methods
use variable-length genomes to allow evolution to discover the optimal size
of the rule base.

Both behavior and structure learning can be viewed as rule-base learning
processes with different levels of complexity. They can thus be assimilated
within other methods from machine learning, taking advantage of experi-
ence gained in this latter domain. In the evolutionary-algorithm community



Fuzzy CoCo: Accuracy and Interpretability by Means of Coevolution 7

there are two major approaches for evolving such rule systems: the Michi-
gan approach and the Pittsburgh approach [10]. A more recent method has
been proposed specifically for fuzzy modeling: the iterative rule learning ap-
proach [6]. These three approaches are briefly described below.

The Michigan approach. Each individual represents a single rule. The
fuzzy inference system is represented by the entire population. Since several
rules participate in the inference process, the rules are in constant competi-
tion for the best action to be proposed, and cooperate to form an efficient
fuzzy system. The cooperative-competitive nature of this approach renders
difficult the decision of which rules are ultimately responsible for good sys-
tem behavior. It necessitates an effective credit-assignment policy to ascribe
fitness values to individual rules.

The Pittsburgh approach. Here, the evolutionary algorithm maintains a
population of candidate fuzzy systems, each individual representing an entire
fuzzy system. Selection and genetic operators are used to produce new gen-
erations of fuzzy systems. Since evaluation is applied to the entire system,
the credit-assignment problem is eschewed. This approach allows to include
additional optimization criteria in the fitness function, thus affording the im-
plementation of multi-objective optimization. The main shortcoming of this
approach is its computational cost, since a population of full-fledged fuzzy
systems has to be evaluated each generation.

The iterative rule learning approach. As in the Michigan approach, each
individual encodes a single rule. An evolutionary algorithm is used to find
a single rule, thus providing a partial solution. The evolutionary algorithm
is used iteratively for the discovery of new rules, until an appropriate rule
base is built. To prevent the process from finding redundant rules (i.e., rules
covering the same input subspace), a penalization scheme is applied each
time a new rule is added. This approach combines the speed of the Michigan
approach with the simplicity of fitness evaluation of the Pittsburgh approach.
However, as with other incremental rule-base construction methods, it can
lead to a non-optimal partitioning of the antecedent space.

3 Interpretability Considerations

As mentioned before, the fuzzy-modeling process has to deal with an im-
portant trade-off between the accuracy and the interpretability of the model.
The model is expected to provide high numeric precision while incurring as
little a loss of linguistic descriptive power as possible. Currently, there exist
no well-established definitions for interpretability of fuzzy systems, mainly
due to the subjective nature of such a concept. However, some works have
attempted to define objective criteria that facilitate the automatic modeling
of interpretable fuzzy systems [5,20].

The fuzzy system of Figure 2 processes information in three stages: the
input interface (fuzzifier), the processing stage (inference engine), and the
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Fig. 3. Example of a fuzzy variable: Triglycerides has three possible fuzzy values,
labeled Normal, High, and Very High, plotted above as degree of membership
versus input value. The values P;, setting the trapezoid and triangle apices, define
the membership functions. In the figure, an example input value 250 mg/dL is
assigned the membership values pnorma1(250) = 0.75, pmign(250) = 0.25, and
,UVeryHigh(25O) = 0. Note that HNormal(25O) + UHigh (250) + ,UVeryHigh(25O) =1.

output interface (defuzzifier). The interface deals with linguistic variables and
their corresponding labels. These linguistic variables define the semantics of
the system. The inference process is performed using fuzzy rules that define
the connection between input and output fuzzy variables. These fuzzy rules
define the syntaz of the fuzzy system. Fuzzy modelers must thus take into
account both semantic and syntactic criteria to obtain interpretable systems.
Below, we present some criteria that represent conditions driving fuzzy mod-
eling toward human-interpretable systems together with strategies to satisfy
them.

3.1 Semantic criteria

The notion of “linguistic variable” formally requires associating a meaning
to each fuzzy label [25]. Hence, each membership function should represent
a linguistic term with a clear semantic meaning. For example, in Figure 3,
the fuzzy variable Triglycerides has three meaningful labels: Normal, High,
and Very High. The following semantic criteria describe a set of properties
that the membership functions of a fuzzy variable should possess in order to
facilitate the task of assigning linguistic terms [13,14,16]. The focus is on the
meaning of the ensemble of labels instead of the absolute meaning of each
term in isolation.

o Distinguishability. Each linguistic label should have semantic meaning
and the fuzzy set should clearly define a range in the universe of dis-
course of the variable. In the example of Figure 3, to describe variable
Triglycerides we used three meaningful labels: Normal, High, and Very
High. Their membership functions are defined using parameters P;, Ps,
and Pg.

o Justifiable number of elements. The number of membership functions of
a variable should be compatible with the number of conceptual entities
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a human being can handle. This number should not exceed the limit of
7 £ 2 distinct terms.

e (Coverage. Any element from the universe of discourse should belong to
at least one of the fuzzy sets. That is, its membership value must be
different than zero for at least one of the linguistic labels. More generally,
a minimum level of coverage € may be defined, giving rise to the concept
of strong coverage. Referring to Figure 3, we see that any value along the
x-axis belongs to at least one fuzzy set; no value lies outside the range of
all sets.

e Normalization. Since all labels have semantic meaning, then, for each
label, at least one element of the universe of discourse should have a
membership value equal to one. In Figure 3, we observe that all three
sets Normal, High, and Very High have elements with membership
value equal to 1.

e Complementarity. For each element of the universe of discourse, the sum
of all its membership values should be equal to one (as in the example
in Figure 3). This guarantees uniform distribution of meaning among the
elements.

3.2 Syntactic criteria

A fuzzy rule relates one or more input-variable conditions, called antecedents,
to their corresponding output fuzzy conclusions, called consequents. The ex-
ample rule presented in Figure 4, associates the conditions High and Middle
of the input variables Triglycerides and Age, respectively, with the conclusion
Moderate of the output variable Cardiac risk. The linguistic adequacy of a
fuzzy rule base lies on the interpretability of each rule as well as on that of
the whole set of rules. The following syntactic criteria define some conditions
which—if satisfied by the rule base—reinforce the interpretability of a fuzzy
system [5].

e Completeness. For any possible input vector, at least one rule should be
fired to prevent the fuzzy system from getting blocked.

o Rule-base simplicity. The set of rules must be as small as possible. If,
however, the rule base is still large, rendering hard a global understanding
of the system, the number of rules that fire simultaneously for any input
vector must remain low in order to furnish a simple local view of the
behavior.

e Single-rule readability. The number of conditions implied in the antecedent
of a rule should be compatible with the aforementioned number of con-
ceptual entities a human being can handle (i.e., <7+ 2).

e (Consistency. If two or more rules are simultaneously fired, their con-
sequents should not be contradictory, i.e., they should be semantically
close.
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Fig. 4. Example of a fuzzy rule and its firing range. The rule if Triglycerides is
High and Age is Middle then Cardiac risk is Moderate, marked as R, is (partially)
fired by input values into the dashed-line rectangle (i.e. u(R) > 0). The solid-line
rectangle denotes the region where p(R) > 0.5.

3.3 Strategies to satisfy semantic and syntactic criteria

The criteria presented above, intended to assess interpretability of a fuzzy
system, define a number of restrictions on the definition of fuzzy parameters.
Semantic criteria limit the choice of membership functions, while syntactic
criteria bind the fuzzy rule base. We present below some strategies to apply
these restrictions when defining a fuzzy model.

Linguistic labels shared by all rules. A number of fuzzy sets is defined
for each variable, which are interpreted as linguistic labels and shared by all
the rules [5]. In other words, each variable has a unique semantic definition.
This results in a grid partition of the input space as illustrated in Figure 5.
To satisfy the completeness criterion, it is normally used a fully defined rule
base, meaning that it contains all the possible rules, as in the example shown
in Figure 6a. Label sharing by itself facilitates but does not guarantee the
semantic integrity of each variable. More conditions are necessary.

Normal, orthogonal membership functions. The membership functions of
two successive labels must be complementary (i.e., their sum must be equal to
one) in their overlapping region, whatever form they have [4,20]. Moreover, in
such regions each label must ascend from zero to unity membership values [13,
14]. The variables presented in Figures 3 and 5, satisfy these requirements.

Don’t-care conditions. A fully defined rule base, as that shown in Fig-
ure 6a, becomes impractical for high-dimension systems. The number of rules
in a fully defined rule base exponentially increases as the number of input
variables increases (e.g., a system with five variables, each with three labels,
would contain 3% = 243 rules). Moreover, given that each rule antecedent
contains a condition for each variable, the rules might be too lenghty to be
understandable, and too specific to describe general circumstances.
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Fig. 5. Grid partition of the input space. In this example, two semantically correct
input variables, each with three labels, divide the input space into a grid of nine
regions.

To tackle these two problems some authors use “don’t-care” as a valid
input label [7,13,14]. Variables in a given rule that are marked with a don’t-
care label are considered as irrelevant. For example, in the rule base shown
in Figure 6b the rule R4:

if Triglycerides is don’t-care and Age is Old then Cardiac risk is Moderate,
replaces three rules (i.e., R3, R, and Ry in Figure 6a) and is interpreted as:
if Age is Old then Cardiac risk is Moderate.

Although don’t-care labels allow a reduction of rule-base size, their main
advantage is the improvement of rule readability.

Default rule. In many cases, the behavior of a system exhibits only a few
regions of interest, which can be described by a small number of rules (e.g.,
Rs5, Ra, and Rp in Figure 6b). To describe the rest of the input space, a
simple default action, provided by the default rule, would be enough [22].
The example in Figure 6¢ shows that the default rule, named Ry, covers
the space of rules Ry, Ro, and Ry. By definition, a default condition is true
when all other rule conditions are false. The activation degree of the default
rule, p(Ro), is thus given by p(Ro) = 1 — max(u(R;)), where pu(R;) is the
activation degree of the i-th rule.

4 Fuzzy CoCo: A Cooperative Coevolutionary
Approach to Fuzzy Modeling

As mentioned earlier, the accuracy-interpretability trade-off fuzzy modelers
face implies the assumption of constraints acting on the parameter values,
mainly on the membership-function shapes.
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Fig. 6. Strategies to define the rule base. a) Fully defined rule base: the system
contains all nine possible rules of the form if Triglycerides is label and Age is label
then .... b) don’t-care labels: two rules, R4 and Rp, containing don’t-care labels
cover almost half of the input space. Variables marked with a don’t-care label are
considered as irrelevant for the rule in question. R4 is thus interpreted as if Age
is Old then ..., and Rp as if Triglycerides is VeryHigh then . ... ¢) Default rule,
called here Ry, defines a default action to be performed when none of the so-called
active rules—Rs, Ra, and Rp—apply. By definition, the activation of the (fuzzy)
default rule is u(Ro) = 1—maz(u(R;)), with i = {1,2, 3,...}. The rectangles denote
the region where pu(R;) > 0.5.

In this section we present Fuzzy CoCo, a cooperative coevolutionary ap-
proach, capable of obtaining high-performance, interpretable systems. We
have conceived Fuzzy CoCo to allow a high degree of freedom in the type of
fuzzy systems it can design in order to allow the user to manage the trade-off
between performance and interpretability. The next subsection briefly ex-
plains cooperative coevolution, after which Section 4.2 presents Fuzzy CoCo.

4.1 Cooperative coevolution

Coevolution refers to the simultaneous evolution of two or more species with
coupled fitness. Such coupled evolution favors the discovery of complex so-
lutions whenever complex solutions are required [12]. Simplistically speak-
ing, one can say that coevolving species can either compete (e.g., to ob-
tain exclusivity on a limited resource) or cooperate (e.g., to gain access to
some hard-to-attain resource). Cooperative (also called symbiotic) coevolu-
tionary algorithms involve a number of independently evolving species which
together form complex structures, well-suited to solve a problem. The fit-
ness of an individual depends on its ability to collaborate with individuals
from other species. In this way, the evolutionary pressure stemming from
the difficulty of the problem favors the development of cooperative strate-
gies and individuals. Single-population evolutionary algorithms often perform
poorly—manifesting stagnation, convergence to local optima, and computa-
tional costliness—when confronted with problems presenting one or more
of the following features: (1) the sought-after solution is complex, (2) the
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Fig. 7. Potter’s cooperative coevolutionary system. The figure shows the evolu-
tionary process from the perspective of Species 1. The individual being evaluated
is combined with one or more representatives of the other species so as to construct
several solutions which are tested on the problem. The individual’s fitness depends
on the quality of these solutions.

problem or its solution is clearly decomposable, (3) the genome encodes dif-
ferent types of values, (4) strong interdependencies among the components
of the solution, (5) component-ordering drastically affects fitness. Coopera-
tive coevolution effectively addresses these issues, consequently widening the
range of applications of evolutionary computation. Potter [18,19] developed
a model in which a number of populations explore different decompositions
of the problem. Below we detail this framework as it forms the basis of our
own approach.

In Potter’s system, each species represents a subcomponent of a poten-
tial solution. Complete solutions are obtained by assembling representative
members of each of the species (populations). The fitness of each individual
depends on the quality of (some of) the complete solutions it participated in,
thus measuring how well it cooperates to solve the problem. The evolution of
each species is controlled by a separate, independent evolutionary algorithm.
Figure 7 shows the general architecture of Potter’s cooperative coevolution-
ary framework, and the way each evolutionary algorithm computes the fitness
of its individuals by combining them with selected representatives from the
other species. A greedy strategy for the choice of representatives of a species
is to use one or more of the fittest individuals from the last generation.

4.2 The coevolutionary algorithm

Fuzzy CoCo is a cooperative coevolutionary approach to fuzzy modeling
wherein two coevolving species are defined: database (membership functions)
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and rule base [13,14]. This approach is based primarily on the framework de-
fined by Potter [18,19].

A fuzzy modeling process usually deals with the simultaneous search for
operational and connective parameters (Table 1). These parameters provide
an almost complete definition of the linguistic knowledge describing the be-
havior of a system, and the values mapping this symbolic description into a
real-valued world (a complete definition also requires logical and structural
parameters whose definition is best suited for human skills). Thus, fuzzy mod-
eling can be thought of as two separate but intertwined search processes: (1)
the search for the membership functions (i.e., operational parameters) that
define the fuzzy variables, and (2) the search for the rules (i.e., connective
parameters) used to perform the inference.

Fuzzy modeling presents several features discussed earlier which justify
the application of a cooperative-coevolutionary approach: (1) The required
solutions can be very complex, since fuzzy systems with a few dozen vari-
ables may call for hundreds of parameters to be defined. (2) The proposed
solution—a fuzzy inference system—can be decomposed into two distinct
components: rules and membership functions. (3) Membership functions are
continuous and real-valued, while rules are discrete and symbolic. (4) These
two components are interdependent because the membership functions de-
fined by the first group of values are indexed by the second group (rules).

Consequently, in Fuzzy CoCo, the fuzzy modeling problem is solved by two
coevolving, cooperating species. Individuals of the first species encode values
which define completely all the membership functions for all the variables of
the system. For example, with respect to the variable Triglycerides shown
in Figure 3, this problem is equivalent to finding the values of P;, P, and
Ps.

Individuals of the second species define a set of rules of the form:

if (v; is A1) and ... and (v, is A,) then (output is C),

where the term A, indicates which of the linguistic labels of fuzzy variable v
is used by the rule. For example, a valid rule could contain the expression:

if ... and (Triglycerides is High) and ... then ...

which includes the membership function High whose defining parameters are
contained in the first species (population).

The two evolutionary algorithms used to control the evolution of the two
populations are instances of a simple genetic algorithm [21]. Figure 8 presents
the Fuzzy CoCo algorithm in pseudo-code format. The genetic algorithms
apply fitness-proportionate selection to choose the mating pool, and apply an
elitist strategy with an elitism rate Er to allow some of the best individuals to
survive into the next generation. Standard crossover and mutation operators
are applied with probabilities P. and P,,, respectively.

We introduced elitism to avoid the divergent behavior of Fuzzy CoCo, ob-
served in preliminary trial runs. Non-elitist versions of Fuzzy CoCo tended to
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begin Fuzzy CoCo
g:=0
for each species S
Initialize populations Pg(0)
Evaluate population Pg(0)
end for
while not done do
for each species S
gi=g+1
Es(g) = elite-select Ps(g — 1)
Ps(g) = select Ps(g— 1)
Pg(g) = crossover P§(g)
Pg'(g) = mutate Pg(g)
Ps(g) = P"(g9) + Es(9)
Evaluate population Pg(g)
end for
end while
end Fuzzy CoCo

Fig. 8. Pseudo-code of Fuzzy CoCo. Two species coevolve in Fuzzy CoCo: mem-
bership functions and rules. The elitism strategy extracts Es individuals to be
reinserted into the population after evolutionary operators have been applied (i.e.,
selection, crossover, and mutation). Selection results in a reduced population Pg(g)
(usually, the size of P§(g) is ||P§|| = ||Ps|| — ||Es||)- The line “Evaluate population
Ps(g)” is elaborated in Figure 9.

lose the genetic information of good individuals found during evolution, con-
sequently producing populations with mediocre individuals scattered through-
out the search space. This is probably due to the relatively small size of the
population which renders difficult the preservation of good solutions while
exploring the search space. The introduction of simple elitism produces an
undesirable effect on Fuzzy CoCo’s performance: populations converge pre-
maturely even with reduced values of the elitism rate F,.. To offset this effect
without losing the advantages of elitism, it was necessary to increase the
mutation probability P, by an order of magnitude so as to improve the ex-
ploration capabilities of the algorithm. (Increased mutation rates were also
reported by Potter [18,19] in his coevolutionary experiments.)

A more detailed view of the fitness evaluation process is depicted in Fig-
ure 9. An individual undergoing fitness evaluation establishes cooperations
with one or more representatives of the other species, i.e., it is combined with
individuals from the other species to construct fuzzy systems. The fitness
value assigned to the individual depends on the performance of the fuzzy
systems it participated in (specifically, either the average or the maximal
value).
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Generation Species 1 Species 2

g1
g
(a)
Species 1 Evaluation Species 2
Environment

Fitness

Selected cooperators

Selected cooperators

Fig. 9. Fitness evaluation in Fuzzy CoCo. (a) Several individuals from generation
g — 1 of each species are selected according to their fitness to be the representatives
of their species during generation g; these representatives are called “cooperators.”
(b) During the evaluation stage of generation g (after selection, crossover, and
mutation—see Figure 8), individuals are combined with the selected cooperators
of the other species to construct fuzzy systems. These systems are then evaluated
on the problem domain and serve as a basis for assigning the final fitness to the
individual being evaluated.

Representatives, called here cooperators, are selected both fitness-proportionally
and randomly from the previous generation since they have already been as-
signed a fitness value (see Figure 8). In Fuzzy CoCo, N.s cooperators are
selected according to their fitness, usually the fittest individuals, thus fa-
voring the exploitation of known good solutions. The other N, cooperators
are selected randomly from the population to represent the diversity of the
species, maintaining in this way exploration of the search space.
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Table 2. Variables corresponding to a patient’s clinical data.

v Age [28-82] years

v2  Menstrual history Premenopausal

Postmenopausal

None

Second familiar
First familiar
Contralateral
Homolateral

vz Family history

T W N~ N

5 Application Example: The Catalonia Online
Breast-Cancer Risk Assessor

Mammography remains the principal technique for detecting breast cancer.
Its undoubtable value in reducing mortality notwithstanding, mammogra-
phy’s positive predictive value (PPV) is low: only between 15 and 35% of
mammographic-detected lesions are cancerous [11,17]. The remaining 65 to
85% of biopsies, besides being costly and time-consuming, cause understand-
able stress on women facing the doubt of cancer. A computer-based tool that
assists radiologists during mammographic interpretation would contribute to
increasing the PPV of biopsy recommendations.

5.1 The database

The Catalonia Mammography Database, which is the object of our study,
was collected at the Duran y Reynals hospital in Barcelona. It consists of 15
input attributes and a diagnostic result indicating whether or not a carcinoma
was detected after a biopsy. The 15 input attributes include three clinical
characteristics (Table 2) and two groups of six radiologic features, according
to the type of lesion found in the mammography: mass or microcalcifications
(Table 3).

A radiologist fills out a reading form for each mammography, assigning
values for the clinical characteristics and for one of the groups of radiologic
features. Then, the radiologist interprets the case using a five-point scale: (1)
benign; (2) probably benign; (3) indeterminate; (4) probably malignant; (5)
malignant. According to this interpretation a decision is made on whether
to practice a biopsy on the patient or not. The Catalonia database contains
data corresponding to 227 cases. Each case is examined by three different
readers—for a total of 681 readings—but only diverging readings are kept.
The actual number of readings in the database is 516, among which 187 are
positive (malignant) cases and 329 are negative (benign) cases.
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Table 3. Variables corresponding to radiologic features. There are two groups of
variables used to describe the mammographic existence of microcalcifications and
masses (left and right columns respectively).

Microcalcifications Mass
v4 Disposition v10 Morphology
1 Round 1 Oval
2 Indefinite 2 Round

U5

3 Triangular or Trapezoidal
4 Linear or Ramified

Other signs of group form

1 None

2 Major axis in direction of nipple
3 Undulating contour

4 Both previous

3 Lobulated
4 Polilobulated
5 Irregular

v11 Margins
1 Well delimited
2 Partially well delimited
3 Poorly delimited

ve Maximum diameter of group 4 Spiculated

[3-120] mm v12 Density greater than parenchyma
v7 Number 1 Not
1 <10 2 Yes
2 10 to 30 v13 Focal distortion
3 >30 1 Not
2 Yes

vg Morphology
Ring shaped v14 Focal asymmetry
Regular sharp-pointed 1 Not

Too small to determine 2 Yes

Irregular sharp-pointed
Vermicular, ramified

Tt W N~

v15 Maximum diameter
[5-80] mm
vy Size irregularity
1 Very regular
2 Sparingly regular
3 Very irregular

5.2 Proposed system

The solution scheme we propose is depicted in Figure 10. It consists of a
reading form, a fuzzy subsystem, and a threshold unit. Based on the 15 in-
put attributes collected with the reading form, the fuzzy system computes a
continuous appraisal value of the malignancy of a case. The threshold unit
then outputs a biopsy recommendation according to the fuzzy system’s out-
put. The threshold value used in this system is 3, which corresponds to the
“indeterminate” diagnostic. Fuzzy CoCo is applied to design the fuzzy system
in charge of appraising malignancy.

5.3 Fuzzy-parameter setup

We used prior knowledge about the Catalonia database to guide our choice
of fuzzy parameters. In addition, we took into account the interpretability
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Reading form Reading Fuzzy system Malignancy Threshold unit Biopsy

\ | input : XX 1 | appraisd _,— Proposal

Fig. 10. Proposed system. Note that the fuzzy system displayed in the middle is
in fact the entire fuzzy inference system of Figure 2.

criteria presented in Section 3 to define constraints on the fuzzy parameters.
Referring to Table 1, we delineate below the fuzzy system’s set-up:

e Logical parameters: singleton-type fuzzy systems; min-max fuzzy opera-
tors; orthogonal, trapezoidal input membership functions (see Figure 11);
weighted-average defuzzification.

e Structural parameters: two input membership functions (Low and High,;
see Figure 11); two output singletons (benign and malignant); a user-
configurable number of rules. The relevant variables are one of Fuzzy
CoCo’s evolutionary objectives.

Variable

Fig. 11. Input fuzzy variables. Each fuzzy variable has two possible fuzzy values
labeled Low and High, and orthogonal membership functions, plotted above as
degree of membership versus input value. P1 and P> define the membership-function
apices.

e Connective parameters: the antecedents and the consequent of the rules
are searched by Fuzzy CoCo. The algorithm also searches for the conse-
quent of the default rule. All rules have unitary weight.

e Operational parameters: the input membership-function values are to be
found by Fuzzy CoCo. For the output singletons we used the values 1
and 5, for benign and malignant, respectively.

5.4 Genome encodings

Fuzzy CoCo thus searches for four parameters: input membership-function
values, relevant input variables, and antecedents and consequents of rules. To
encode these parameters into both species’ genomes, which together describe
an entire fuzzy system, it is necessary to take into account the hetereogeneity
of the input variables as explained below.
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Table 4. Genome encoding of parameters for membership-function species.
Genome length is 106 bits.

Variable type Qty Parameters Bits Total bits
Continuous 3 2 7 42
Discrete 8 2 4 64

Total Genome Length 106

e Species 1: Membership functions. The fifteen input variables (v; — v15)
present three different types of values: continuous (v1,vg, and v15), dis-
crete (v3 — vy and vy — v11), and binary (ve and vz — wvi4). It is not
necessary to encode membership functions for binary variables as they
can only take on two values. The membership-function genome encodes
the remaining 11 variables—eight continuous and three discrete—each
with two parameters P; and Ps, defining the membership-function apices
(Figure 11). Table 4 delineates the parameters encoding the membership-
function genome.

e Species 2: Rules. The i-th rule has the form:

if (v1 is A}) and ... and (v5 is Ai;) then (output is C?),

where A’ can take on the values: 1 (Low), 2 (High), or 0 or 3 (don’t-care).
C" can take on the values: 1 (benign) or 2 (malignant). However, as men-
tioned before, each database case presents three clinical characteristics
and six radiologic features according to the type of lesion found: mass
or microcalcifications (note that only a few special cases contain data
for both groups). To take advantage of this fact, the rule-base genome
encodes, for each rule, 11 parameters: the three antecedents of the clinical-
data variables, the six antecedents of one radiological-feature group, an
extra bit to indicate whether the rule applies for mass or microcalcifi-
cations, and the rule consequent. Furthermore, the genome contains an
additional parameter corresponding to the consequent of the default rule.
Relevant variables are searched for implicitly by allowing the algorithm to
choose non-existent membership functions as valid antecedents (A; =0
or A;'- = 3); in such case the respective variable is considered irrelevant,
and removed from the rule. Table 5 delineates the parameters encoding
the rules genome.

Table 5. Genome encoding of parameters for rules species. Genome length is 20 x
N, + 1 bits, where N, denotes the number of rules.

Parameters Qty Bits Total bits
Clinical antecedents 3 x N, 2 6 X Ny
Radiologic antecedents 6 X N, 2 12 x N,
Rule-type selector N, 1 N,
Consequents N, +1 1 N, +1

Total Genome Length 20 x N, +1
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5.5 Evolutionary parameters

Table 6 delineates values and ranges of values of the evolutionary parameters.
The algorithm terminates when the maximum number of generations, G4z,
is reached (we set Gaz = 700 4+ 200 X N,., i.e., dependent on the number of
rules used in the run), or when the increase in fitness of the best individual
over five successive generations falls below a certain threshold (10~* in our
experiments). Note that mutation rates are relatively higher than those used
with a simple genetic algorithm.

Table 6. Fuzzy CoCo set-up.

Parameter Values
Population size N, 90

Maximum generations Gmax 700 + 200N,
Crossover probability P. 1

Mutation probability P, {0.005,0.01}
Elitism rate E. {0.1,0.2}
“Fit” cooperators N.s 1

Random cooperators Ne, 1

5.6 Fitness function

As the main function of the proposed system is the assessment of a med-
ical diagnosis, our fitness definition takes into account medical diagnostic
criteria. The most commonly employed measures of the validity of diagnostic
procedures are the sensitivity and specificity, the likelihood ratios, the pre-
dictive values, and the overall classification (accuracy) [2]. Table 7 provides
expressions for four of these measures which are important for evaluating the
performance of our systems. Three of them are used in the fitness function,
the last one is used in Section 6 to support the analysis of the results. Besides
these criteria, the fitness function provides extra selective pressure based on
two syntactic criteria: simplicity and readability (see Section 3).

Our fitness function combines the following five criteria: 1) Fyepns: sen-
sitivity, or true-positive ratio, computed as the percentage of positive cases
correctly classified; 2) Fpec: specificity, or true-negative ratio, computed as
the percentage of negative cases correctly classified (note that there is usu-
ally an important trade-off between sensitivity and specificity which renders
difficult the satisfaction of both criteria); 3) Fj..: classification performance,
computed as the percentage of cases correctly classified; 4) F.: rule-base size
fitness, computed as the percentage of unused rules (i.e., the number of rules
that are never fired and can thus be removed altogether from the system);
and 5) F,: rule-length fitness, computed as the average number of don’t-care
antecedents (i.e., unused variables) per rule. This order also represents their
relative importance in the final fitness function, from most important (Fyens)
to least important (F,. and F,).
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Table 7. Diagnostic performance measures. The values used to compute the ex-
pressions are: True positive (TP): the number of positive cases correctly detected,
true negative (TN): the number of negative cases correctly detected, false positive
(FP): the number of negative cases diagnosed as positive, and false negative (FN):
the number of positive cases diagnosed as negative.

Sensitivit, _TP
Y TP+ FN

TN
Specificity TN FP
Accurac TP+TN

Y TP+TN+ FP+ FN

TP

Positive predictive value (PPV) TP+ FP

The fitness function is computed in three steps—basic fitness, accuracy
reinforcement, and size reduction—as explained below:

1. Basic fitness. Based on sensitivity and specificity, it is given by

Fsens + anpec

F =
! 1+«

)

where the weight factor a = 0.3 reflects the greater importance of sensi-
tivity.
2. Accuracy reinforcement. Given by

F 7F1+6F(;,CC
2 — 1+5 ’

where 6 = 0.01. F)_.. = Fyee when F,.. > 0.7; F. .. = 0 elsewhere. This

acc
step slightly reinforces the fitness of high-accuracy systems.
3. Size reduction. Based on the size of the fuzzy system, it is given by

F: Fsize
F:L7
142y

where v = 0.01. Fype = (Fr + F,) if Foee > 0.7 and Fisepns > 0.98;
Fg;.e = 0 elsewhere. This step rewards top systems exhibiting a concise
rule set, thus directing evolution toward more interpretable systems.

6 Results

This section describes the results obtained when applying the methodology
described in Section 5. We first delineate the success statistics relating to the
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Fig.12. Summary of results of 65 evolutionary runs. The histogram depicts the
number of systems exhibiting a given fitness value at the end of the evolutionary
run. The fitness considered is that of the best individual of the run.

evolutionary algorithm. Then, we present the diagnostic performance of two
selected evolved fuzzy systems that exemplify our approach.

A total of 65 evolutionary runs were performed, all of which found systems
whose fitness exceeds 0.83. In particular, considering the best individual per
run (i.e., the evolved system with the highest fitness value), 42 runs led to a
fuzzy system whose fitness exceeds 0.88 , and of these, 6 runs found systems
whose fitness exceeds 0.9; these results are summarized in Figure 12.

Table 8 shows the results of the best systems obtained. The maximum
number of rules per system was fixed at the outset to be between ten and
twenty-five.

Table 8. Results of the best systems evolved. Results are divided into four classes,
in accordance with the maximum number of rules-per-system, going from 10-rule
systems to 25-rule ones. Shown below are the fitness values of the top systems as
well as the average fitness per class, along with the number of rules which effectively
used by the system (Rcss) and the average number of variables per rule (V;.).

Maximum number Best individual Average per class
of rules Fitness Regy Vi Fitness Regy Vi

10 0.8910 9 2.22 0.8754 9.17  2.52
15 0.8978 12 2.50 0.8786 12.03 2.62
20 0.9109 17 2.41 0.8934 14.15 2.59
25 0.9154 17 2.70 0.8947 15.78 2.76

As mentioned before, our fitness function includes two syntactic criteria
to favor the evolution of good diagnostic systems exhibiting interpretable
rule bases (see Section 3). Concerning the simplicity of the rule base, rules
that are encoded in a genotype but that never fire are removed from the
phenotype (the final system), rendering it more interpretable. Moreover, to
improve readability, the rules are allowed (and encouraged) to contain don’t-
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care conditions. The relatively low values of R.¢¢ and V;. in Table 8 confirm
the reinforced interpretability of the evolved fuzzy systems.

Table 9 shows the diagnostic performance measures of two selected evolved
systems. The first system, which is the top one over all 65 Fuzzy CoCo runs,
is a 17-rule system exhibiting a sensitivity of 99.47% (i.e., it detects all but
one of the positive cases), and a specificity of 68.69% (i.e., 226 of the 329 neg-
ative cases are correctly detected as benign). The second system is the best
found when searching for ten-rule systems. The sensitivity and the specificity
of this 9-rule system are, respectively, 98.40% and 64.13%. As mentioned in
Section 5, the usual positive predictive value (PPV) of mammography ranges
between 15 and 35%. As shown in Table 9, Fuzzy CoCo increases this value
beyond 60%—64.36% for the 17-rule system—while still exhibiting a very
high sensitivity.

Table 9. Diagnostic performance of two selected evolved systems. Shown below
are the sensitivity, the specificity, the accuracy, and the positive predictive value
(PPV) of two selected evolved systems. In parentheses are the values, expressed
in number of cases, leading to such performance measures. The 17-rule system is
the top system. The 9-rule system is the best found when searching for ten-rule
systems.

17-rule 9-rule
Sensitivity 99.47% (186,/187) 98.40% (184/187)
Specificity 68.69% (226,/329) 64.13% (211/329)
Accuracy 79.84% (412/516) 76.55% (395/516)
PPV 64.36% (186,/289) 60.93% (184/302)

7 Concluding Remarks

We presented Fuzzy CoCo, a fuzzy modeling technique based on cooperative
coevolution, along with an application to breast-cancer diagnosis. In fuzzy
modeling, the interpretability-accuracy trade-off is of crucial import, impos-
ing several conditions on the input and output membership functions as well
as on the rule definition. In evolutionary fuzzy modeling these conditions
are translated both into restrictions on the choice of fuzzy parameters and
into criteria included in the fitness function. We designed Fuzzy CoCo to be
highly configurable, thus facilitating the management of the interpretability-
accuracy trade-off.

Applying Fuzzy CoCo to breast-cancer diagnosis we concentrated on in-
creasing the interpretability of solutions by the mechanisms proposed earlier,
obtaining excellent results. We note, however, that the consistency of the en-
tire rule base and its compatibility with the specific domain knowledge can
only be assessed by further interaction with medical experts (radiologists,
oncologists).
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In the future we wish to test some novel ideas that could improve Fuzzy
CoCo: 1) Coevolution of N,.+1 species, one species for each of the N, rules in
addition to the membership-function species. 2) Coexistence of several Fuzzy
CoCo instances (each one set to evolve systems with a different number of
rules), permitting migration of individuals among them so as to increase the
exploration and the diversity of the search process. 3) Apply the strategy of
rising and death of species proposed by Potter and DeJong [19] in order to
evolve systems with variable numbers of rules and membership functions.
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