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ABSTRACT
We present work with the FINCH automatic evolutionary program-
ming tool to evolve code that generates Artificial Neural Networks
(ANNs) that perform desired tasks. We show how FINCH can be
used to evolve code that generates an ANN that performs a simple
classifying task with proficiency.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming; I.5.1 [Pattern
Recognition]: Models—Neural Networks

General Terms
Algorithms, Languages

Keywords
NeuroEvolution; FINCH

1. INTRODUCTION
The FINCH system developed by Orlov and Sipper [2] is an au-

tomated programming system that evolves unrestricted Java byte-
code programs. The system receives a seed method written in Java,
translates it to Java bytecode, and uses this seed to kick-start an evo-
lutionary process that generates programs that successfully solve a
given problem. Orlov and Sipper [2] used FINCH to evolve so-
lutions for some classical GP benchmarks such as symbolic re-
gression, trail navigation, and the intertwined spiral problem ex-
plored by Koza [1]. FINCH achieved consistent repeatable success
in evolving code that solved these benchmark problems.

In this work we try to look at FINCH from a different angle.
Unrestricted, automatically generated code can potentially prove
clumsy, buggy or otherwise problematic in the long run. If one
wants to use the product of automatic programming in the long run
one would want assurance of its stability. One way to gain such
assurance is to rely on handwritten, verified code. Herein we use
an indirect encoding scheme in conjunction with FINCH to evolve
code that interacts with handwritten code that implements an Artifi-
cial Neural Network (ANN) interface. The evolved function, rather
then being evaluated directly, builds an ANN that is in then evalu-
ated according to its proficiency in a given task.
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2. ANN INTERFACE
We have tried various ANN implementations, finally settling on

a simple implementation of an acyclic ANN in which links can be
added one by one using an interface. The ANN object is given
its number of inputs, outputs, and additional neurons at the time
of generation. It accepts input vectors that contain values from
{1,−1}.

We defined a simple interface that allows FINCH to alter the
structure of the ANN by adding links or changing existing ones.
The interface also allows for a node-adding option which we have
not yet implemented. It is easy to add more methods to the in-
terface, and during our work we added two more, called lock and
unlock, in an attempt to use them to control some undesired FINCH
behaviors.

Our current ANN FINCH interface includes the follwing meth-
ods:

• addLink(int,int,double) —Add a new link to the network.
The method recives two integer indices for the two sides of
the link, and a floating point value for the link’s weight.

• addNode(int) —Add a new artificial neuron node to the net-
work. Currently this method is unimplemented in all of our
ANN classes.

• lock() —Add a lock to the network. The idea here is algo-
rithm control. In our implemented classes locked networks
cannot run, and this allows us to put limitations on the num-
ber of calls to methods from the evolved method.

• unlock() —Remove a lock from the network. This is com-
plementary to the previous method.

3. THE TASKS
We focus on simple tasks, which we call “signal intensity tasks”,

where the expected output of the ANN depends only on the number
of 1s in the input vector. These include:

1. The intensity/size classifier —This type of network should
return 1 iff at least half of the inputs are 1s.

2. Counting network —This type of network should return an
output with the same number of 1s as the input vector.

In order to evolve code in FINCH a seed Java method is re-
quired. As we did not want to inject our knowledge of the prob-
lems into FINCH we decided to use randomly generated code as the
seed individual. Initially the code comprised of addLink() method
calls that used randomly generated parameters. We abandoned this
approach because it caused technical difficulties in the form of
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crossover failures and exceptions during runs. Instead we opted for
evolving a method that manipulated 40 Java variables (the seed was
again randomly generated) and then called another method which
added links to the ANN in a way depending on these same vari-
ables. For example, see Equation 1 that contains an example of a
line of code from the seed method, and Equation 2 that contains a
line of code from the ANN building method that uses some of the
same variables.

v_i6 = 689 + v_i7; (1)

ann.addLink(v_i6 + 599, v_i5 + 720, v_d7 +−2.706); (2)

In Figure 1 we see a small neural network. Our system allows for
links to have any hidden or output neuron as their destination, but
makes sure the source comes before the destination in a predecided
node ordering.

Figure 1: A small example of an artificial neural network that
has 2 inputs, 4 hidden neurons and 3 output neurons. Flow
in the network is from top to bottom. Links in the network,
represented here by arrows, can either go down to a lower level,
or go right in the same level.

4. RESULTS

4.1 Intensity/Size Classifier
It is not difficult to handcraft a relatively simple ANN for this

task. It is however more difficult for FINCH to find an effective
ANN without any prior knowledge of the suitable ANN structure.
In our intensity classifier experiments we used the following run
parameters:

• ANNs with 16 inputs, 3 outputs, and 6 hidden nodes (25
nodes total).

• Population size 300.

• Generation limit of 20.

• Tournament selection with a tournament size of 4.

• Uniform crossover with xo probability of 0.9.

• fitness is evaluated over 2000 random inputs.

This setup routinely resulted in networks that responded cor-
rectly for over 80% of inputs.

4.2 Counting Network
In this task the network should match the number of 1s in the

output to the number of 1s in the input. This task is solved by a
trivial network if the size of the input and output arrays is the same,
but it is trickier when there are less outputs than there are inputs (in
this case we make sure only to test on inputs with less 1s than the
total number of outputs). Using a small number of outputs allows
us to turn counting into a more managable task. In our counting
network experiments we used the following run parameters:

• ANNs with 16 inputs, 3 outputs, and 6 hidden nodes (25
nodes total).

• Population size 600.

• Generation limit of 100.

• Tournament selection with a tournament size of 4.

• Uniform crossover with xo probability of 0.9.

• fitness is evaluated over 2000 random inputs.

This setup managed to occasionally hit upon the right solution
in this more difficult task (compared with intensity classification)
and get a score of 100%. In other runs FINCH achieved substantial
progress over the initial seed individual. We see this as a sign that
our system shows promise though it probably still requires some
work.

5. CONCLUSIONS
We have shown that FINCH shows promise in the previously un-

explored avenue of evolving code that builds useful computational
entities. This indirect encoding approach can lead to interesting
results in the future.

More work is still required to make FINCH a competative flex-
ible tool for neuroevolution but the potential is there. With more
work FINCH can be used as the basis for a developmental evo-
lutionary algorithm to evolve programs that build computational
entities such as ANNs.

6. ACKNOWLEDGMENTS
Amit Benbassat is partially supported by the Lynn and William

Frankel Center for Computer Sciences. This research was sup-
ported by the Israel Science Foundation (grant no. 123/11).

7. REFERENCES
[1] J. R. Koza. Genetic Programming: On the Programming of

Computers by Means of Natural Selection. MIT Press,
Cambridge, MA, USA, 1992.

[2] M. Orlov and M. Sipper. Flight of the finch through the java
wilderness. IEEE Transactions on Evolutionary Computation,
15(2):166–182, 2011.

1720




