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Abstract The study of arti�cial self-replicating structures or
machines has been taking place now for almost half a
century. My goal in this article is to present an overview of
research carried out in the domain of self-replication over the
past 50 years, starting from von Neumann’s work in the late
1940s and continuing to the most recent research efforts. I
shall concentrate on computational models, that is, ones that
have been studied from a computer science point of view, be
it theoretical or experimental. The systems are divided into
four major classes, according to the model on which they are
based: cellular
automata, computer programs, strings (or strands), or an
altogether different approach. With the advent of new
materials, such as synthetic molecules and nanomachines, it
is quite possible that we shall see this somewhat theoretical
domain of study producing practical, real-world applications.

1 Introduction

In the late 1940s eminent mathematician and physicist John von Neumann had become
interested in the question of whether a machine can self-replicate, that is, produce
copies of itself. Von Neumann wished to investigate the logic necessary for replication—
he was not interested in, nor did he have the tools for, building a working machine
at the biochemical or genetic level. Remember that at the time DNA had not yet been
discovered as the genetic material in nature.

The study of arti�cial self-replicating structures or machines has been taking place
now for almost half a century. Much of this work is motivated by the desire to un-
derstand the fundamental information-processing principles and algorithms involved in
self-replication, independent of their physical realization. An understanding of these
principles could prove useful in a number of ways. It may advance our knowledge of
biological mechanisms of replication by clarifying the conditions that any self-replicating
system must satisfy and by providing alternative explanations for empirically observed
phenomena. The fabrication of arti�cial self-replicating machines can also have diverse
applications, ranging from nanotechnology [22, 51] to space exploration [27].

My goal in this article is to present an overview of research carried out in the domain
of self-replication over the past 50 years, starting from von Neumann’s work. I shall
concentrate on computational models, that is, ones that have been studied from a
computer science point of view, be it theoretical or experimental. I shall only brie�y
touch upon other types of works (e.g., involving self-replicating molecules).

All the works described herein are represented in Figure 1, delineating both the
chronological development and the conceptual lineage. Furthermore, the �gure classi-
�es them into four classes, according to the model on which they are based: cellular au-
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Figure 1. Lineage of works in the area of self-replication. A solid line represents a close relationship between two
works, e.g., the later work may be an extension or implementation of the earlier one. A dashed line represents
a conceptual relationship between two works, e.g., the later work is based on some of the ideas laid down in the
earlier one.

tomata, computer programs, strings (or strands), or an altogether different approach. As
can be seen, a majority of the works are based on the cellular-automaton model, the one
originally used by von Neumann. The model, as well as the works that have employed
it, is described in the next section, followed by program-based approaches (Section 3),
string-based works (Section 4), and ending with a brief description of a few other sys-
tems (Section 5). Finally, I conclude in Section 6. The interested reader might also wish
to consult the online self-replication page at http://lslwww.ep�.ch/»moshes/selfrep/,
which includes—in addition to information on self-replicating systems—links to online
sites and demos.

Before proceeding I wish to note the following point concerning terminology: In a
recent paper, Sipper et al. [75] made a distinction between two terms, replication and
reproduction , which are often considered synonymous. Replication is an ontogenetic,
that is, developmental process, involving no genetic operators, resulting in an exact du-
plicate of the parent organism. Reproduction, on the other hand, is a phylogenetic, that
is, evolutionary process, involving genetic operators such as crossover and mutation,
thereby giving rise to variety and ultimately to evolution. In most works described
herein these two terms are considered synonymous and are used interchangeably
(indeed, most researchers seem to have opted for the somewhat less correct term
of reproduction).
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2 Cellular Automata-Based Works

The following section describes research into self-replication that is based on the cel-
lular automaton (CA) model. I �rst present the model itself (Section 2.1), followed
by a description of the works that employ it, divided into four categories: research
carried out within the framework of von Neumann’s CA model (Section 2.2), simple
self-replicating structures (Section 2.3), self-replicating structures with added computa-
tional capabilities (Section 2.4), and �nally, works in which the underlying CA model
has been altogether modi�ed (Section 2.5).

2.1 Cellular Automata
One of the central models used to study self-replication is that of cellular automata.
Indeed, they were originally conceived by Ulam and von Neumann in the 1940s with this
objective in mind—to provide a formal framework for investigating the self-replication
issue. CAs are dynamical systems in which space and time are discrete. A cellular
automaton consists of an array of cells, each of which can be in one of a �nite number
of possible states, updated synchronously in discrete time steps, according to a local,
identical interaction rule. The state of a cell at the next time step is determined by the
current states of a surrounding neighborhood of cells.

The cellular array (grid) is n-dimensional, where n D 1, 2, 3 is used in practice; in
this article I shall concentrate on n D 2, that is, two-dimensional grids. The identical
rule contained in each cell is essentially a �nite state machine, usually speci�ed in
the form of a rule table (also known as the transition function), with an entry for
every possible neighborhood con�guration of states. The cellular neighborhood of
a cell consists of the surrounding (adjacent) cells. For one-dimensional CAs, a cell
is connected to r local neighbors (cells) on either side, as well as to itself, where r
is a parameter referred to as the radius (thus, each cell has 2r C 1 neighbors). For
two-dimensional CAs, two types of cellular neighborhoods are usually considered: �ve
cells, consisting of the cell along with its four immediate nondiagonal neighbors (also
known as the von Neumann neighborhood), and nine cells, consisting of the cell along
with its eight surrounding neighbors (also known as the Moore neighborhood). When
considering a �nite-sized grid, spatially periodic boundary conditions are frequently
applied, resulting in a circular grid for the one-dimensional case, and a toroidal one for
the two-dimensional case. For a formal de�nition of CAs, as well as additional material,
the reader is referred to [31, 50, 73, 86].

As an example, let us consider the parity rule (also known as the XOR rule) for a
two-state, �ve-neighbor, two-dimensional CA [73]. Each cell is assigned a state of 1 at
the next time step if the parity of its current state and the states of its four neighbors
is odd, and is assigned a state of 0 if the parity is even (alternatively, this may be
considered a modulo-2 addition). The rule table consists of entries of the form

0
1 1 0 7! 1

1

This means that if the current state of the cell is 1 and the states of the north, east,
south, and west cells are 0,0,1,1, respectively, then the state of the cell at the next time
step will be 1 (odd parity). The rule is completely speci�ed by the rule table given in
Figure 2a. Figure 2b shows a pattern produced by iterating this CA rule.

One of the reasons for the ubiquitous use of CAs as a vehicle for studies in self-
replication seems to be historical, due to von Neumann’s choice of model. However,
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Figure 2. Cellular automata: the parity rule. The cellular space is two-dimensional, two-state, with a � ve-cell
neighborhood. (a) Parity rule table. CNESW denotes the current states of the center, north, east, south, and west
cells, respectively. Snext is the cell’s state at the next time step. (b) Starting from a 20 £ 20 grid of cells in state 1,
with all other cells being in state 0, the above pattern is produced after 90 time steps.

his decision was by no means arbitrary: CAs exhibit both simplicity and rigor—one can
create an environment, or “universe,” as it is sometimes referred to, using simple basic
ingredients in a model that is mathematically rigorous.

2.2 Works Within the Framework of von Neumann’s Model
As noted above, von Neumann had become interested in the issue of self-replication in
the late 1940s, and following the suggestion of his colleague mathematician Stanislaw
Ulam had adopted the CA model to study this problem [84]. Von Neumann used two-
dimensional CAs with 29 states per cell and a �ve-cell neighborhood. He showed
that a universal computer can be embedded in such cellular space, namely, a device
whose computational power is equivalent to that of a universal Turing machine [33].
He also described how a universal constructor can be built, namely, a machine capable
of constructing, through the use of a “constructing arm,” any con�guration whose
description can be stored on its input tape. This universal constructor is therefore
capable, given its own description, of constructing a copy of itself, that is, of self-
replicating (Figure 3). The terms “machine” and “tape” refer here to con�gurations,
that is, patterns of states over the grid (indeed, the ability to describe such structures
formally is a major advantage of CAs). Note that self-replication is obtained as a special
case of universal construction, by having the constructor’s arti�cial “genome” (i.e., input
tape) contain a description of a universal constructor. This is quite a complex way of
setting about if one wishes to attain but self-replication: While universal construction
may represent a suf�cient condition for attaining self-replication, it is by no means a
necessary one, an observation that came to the fore with Langton’s work, described in
Section 2.3.

A noteworthy distinction apparent in von Neumann’s model of self-replication is the
double-faceted use of the information stored in the arti�cial genome: It �rst serves
as instructions to be interpreted so as to construct a new universal constructor, after
which this same genome is copied unmodi�ed, to be attached to the new offspring
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Figure 3. A schematic diagram of von Neumann’s self-replicating cellular automaton. The system is a universal
constructor (UC), namely, a machine (i.e., CA-embedded structure) capable of constructing, through the use of a
“constructing arm,” any con� guration whose description can be stored on its input tape. This universal constructor
is therefore capable, given its own description, of constructing a copy of itself, i.e., of self-replicating. (The machine
is not drawn to scale.)

constructor—so that it may replicate in its turn. This aspect is quite interesting in that
it bears strong resemblance to the genetic mechanisms of transcription (copying) and
translation (interpretation) employed by biological life—which were discovered during
the decade following von Neumann’s work.

Von Neumann’s model employs a complex transition rule, with the total number
of cells composing the universal constructor estimated at between 50,000 and 200,000
(the literature seems to disagree on the exact number). In the years that followed its
introduction a number of researchers had worked toward simplifying this system. In
the late 1960s Codd [16] reduced the number of states required for a self-replicating
universal constructor-computer from 29 to 8. His self-replicating structure comprised
about 100,000,000 cells [38]. A few years later Devore [17] simpli�ed Codd’s system,
devising a self-replicating automaton comprising about 100,000 cells [38]. Concurrently,
Smith [76] had opted for a different route: He noted that while von Neumann’s demon-
stration of the possibility of machine self-replication involved a book-length constructive
proof, a much shorter (two-page) existence proof could be had. Furthermore, whereas
von Neumann required both computation universality and construction universality of
his self-replicating machines, Smith [76] showed that computation universality alone
suf�ces. He noted that “the proof here reduces the problem of self-construction to a
computation problem, which means that no machinery beyond ordinary computation
theory is required for self-reproduction” (p. 710).

Despite the complexity of von Neumann’s self-replicating universal constructor, a
number of researchers have considered its implementation (or simulation) over the
years. Signorini [69, 70] concentrated on the 29-state transition rule, discussing its im-
plementation on a SIMD (single-instruction multiple-data) computer. Von Neumann’s
constructor is divided into many functional blocks known as organs. In addition to
implementing the transition rule, Signorini also presented the implementation of three
such organs: a pulser, a decoder, and a periodic pulser. To date, Pesavento’s more re-
cent work comes closest to a full simulation of von Neumann’s model [62]. A computer
simulation of the universal constructor—running on a standard workstation—even this
comes short of realizing the full model: Self-replication is not demonstrated because
the tape required to describe the constructor (i.e., the genome) is too large to simulate.
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(a) (b)

Figure 4. (a) Hardware implementation of the von Neumann cell using � eld-programmable gate arrays (FPGAs): top
face of the von Neumann module, including connection points to other cells and an LED display showing the current
state of the cell. (b) Hardware implementation of one of the organs of von Neumann’s universal constructor, known
as a pulser, using the module shown in (a). The above pulser P(11001) generates at the output cell (top right) the
sequence of excitations (signals) 11001, a �xed number of time steps after receiving an excitation (i.e., a 1 signal)
at the input cell (bottom left). Note that the 25 von Neumann modules are not arranged as a 5 £ 5 square—in
fact, the arrangement is that of a 7 £ 7 square, where unused cells are simply not implemented. This allows for the
construction of a larger organ for the price (literally) of a smaller one.

Interestingly, Pesavento used three more states per cell as compared with von Neumann
(32 vs. 29), which resulted in a substantially smaller constructor.

A recent addition to these implementation efforts is the work of Beuchat and Haenni
[6, 74], who constructed a hardware module that implements a single 29-state cell
of von Neumann’s model. Each module is embedded in a plastic box whose top
face contains a number of connection points and an LED display showing the current
state of the cell. Several such modules can be �tted together to produce a small
cellular array. The sides of the modules contain electrical contacts, which allow adjacent
cells to transmit information to each other without additional wiring. The cells were
implemented using the recent technology of recon�gurable processors, speci�cally,
�eld-programmable gate arrays (FPGAs) [50, 80]. To date, Beuchat and Haenni have
used this module to implement a 25-cell organ, known as a pulser. For example,
a pulser P(11001) generates at a designated output cell the sequence of excitations
(signals) 11001, a �xed number of time steps after receiving an excitation (i.e., a 1
signal) at a designated input cell. The machine is shown in Figure 4.

Going back to 1970, Burks [9] had edited a compendium of works on cellular
automata, in particular drawing inspiration from von Neumann’s work (Burks was
a close friend and colleague of von Neumann, and in fact had completed, posthu-
mously, the latter’s work on self-replication [84]). Of special interest are the �rst chap-
ter: “Von Neumann’s self-reproducing automata,” written by Burks himself; Chapter 4:
“Self-describing Turing machines and self-reproducing cellular automata,” by Thatcher;
Chapter 6: “Machine models of self-reproduction,” by Moore; and Chapter 8: “The
abstract theory of self-reproduction,” by Myhill.

In the early 1970s, partly inspired by Myhill’s chapter in Burks’s book, Case consid-
ered machines that construct distortions of themselves [11–13]. This includes the cases
of machines that eventually have a sterile descendant, those that after a delay of m
generations repeat every n generations, and those that are aperiodic over generations.
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Figure 5. Langton’s self-replicating loop. (a) Time step 0. (b) Time step 126. Sheath cells are denoted by dots. (See
Figure 6 for demonstration of a full replication cycle of a similar loop.)

He also discussed the biological meaning of periodicity over generations, where the
period n is greater than one. It was shown that there are no algorithms for deciding
of a progenitor machine many properties of its descendants. For example, there is no
algorithm for deciding of a progenitor that does not have sterile descendants whether
its descendants are periodic or aperiodic in subsequent generations.

Finally, also in the 1970s, Vitányi [81–83] modeled sexual reproduction within
von Neumann’s formal framework. He argued that the transition from asexual to sexual
reproduction necessitates a change in the number and structure of the genetic tapes
involved (the arti�cial genomes). To an asexually reproducing automaton only one
genetic tape is attached, that is, the description that enables the automaton to construct
cell for cell a replica of itself. The sexually reproducing automaton, however, must
possess two, nearly identical, genetic tapes of a deviating structure, that is, programs
partitioned into sections embodying the various construction and behavioral algorithms
to be executed. Vitányi showed that the recombination of the parents’ characteristics in
the offspring closely conforms to recombination in nature. He also discussed similarities
and differences with biological systems.

2.3 Simple Self-Replicating Structures
In 1984, Langton observed that although the capacity for universal construction, as
discussed in the previous subsection, is a suf�cient condition for self-replication, it is
not a necessary one. Furthermore, he remarked that natural systems are probably not
capable of universal construction. Langton therefore set out to discover what kind of
logical organization is necessary for an automaton to be able to replicate itself; that is,
he sought a small structure that could accomplish but one task—self-replication [42, 43].

Langton’s self-replicating structure is a loop constructed in a two-dimensional, eight-
state, �ve-neighbor cellular space and is based on one of Codd’s elements, known
as a periodic emitter [16] (Figure 5). The 86-cell loop is basically a closed data path,
consisting of a string of core cells in state 1, surrounded by sheath cells in state 2 (this
latter state is represented by dots in Figure 5). Data paths are capable of transmitting
data in the form of signals, which are packets of two cotraveling states: the signal state
itself (state 4, 5, 6, or 7) followed by the state 0. The signals contained within the
loop cycle through it, composing the instructions for replication, that is, the arti�cial
genome. As each such signal encounters the arm junction it is duplicated, with one
copy propagating back around the loop again and the other copy propagating down
the arm, where it is translated as an instruction when it reaches the end of the arm.
In executing the instructions the arm extends itself and folds, ultimately resulting in a
daughter loop, also containing the genome needed to replicate.

As did von Neumann, Langton emphasized the two different modes in which in-
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formation is used, interpreted (translation) and uninterpreted (transcription). In his
loop, translation is accomplished when the instruction signals are executed as they
reach the end of the construction arm, and upon collision of signals with other signals.
Transcription is accomplished by the duplication of signals at the arm junctions.

Langton’s loop, being stripped of any construction capabilities, is strikingly simple,
can be easily simulated, and accomplishes its intended task: self-replication. Following
in his footsteps, Byl [10] devised a smaller self-replicating loop, comprising 12 cells and
embedded in a six-state cellular space. Reggia et al. [67] constructed yet smaller loops,
sheathed as well as unsheathed, the smallest comprising just �ve cells, embedded in
a six-state cellular space. They also studied cellular spaces exhibiting both weak and
strong rotational symmetry (brie�y, weak rotational symmetry means that some cell
states are directionally oriented while with strong rotational symmetry all cell states are
viewed as being unoriented [67]).

Ibánez et al. [34] devised a number of loops in a 16-state cellular space. Replica-
tion in their system is based not on having a �xed arti�cial genome, undergoing both
translation and transcription, but rather on self-inspection, where the description of the
object to be replicated (the genome) is dynamically constructed concomitantly with its
interpretation. I will return to this point in Section 4. Another interesting property of
their approach concerns the fact that the loops are not necessarily square ones as with
Langton-like loops.

Morita and Imai [55–57] designed simple self-replicating loops in reversible cellular
automata. A reversible cellular automaton is a special type of CA in which every
grid con�guration of states has at most one predecessor. Roughly speaking, it is a
“backward-deterministic” CA. A prime motivation for studying such systems stems from
the observation that computers based on reversible logic can be more ef�cient (e.g.,
faster, smaller, larger memories, lower energy consumption) [4, 5].

Stauffer and Sipper [77] observed that though CAs have been ubiquitously used over
the years to study the issue of self-replication, the L-systems model [44, 63] is naturally
suited for modeling growth processes, of which replication is a special case. They
showed that L-systems can be used to specify self-replicating structures and explored
the relationship between L-systems and CAs. The loop they devised—a small one,
similar to those of Reggia et al. [67]—is depicted in Figure 6. Stauffer and Sipper
concluded that the bridge between CAs and L-systems seems to offer a promising
approach in the study of self-replication, and, more generally, of growth processes in
CAs.

The self-replicating structures described up to this point were all designed by hand,
a dif�cult and time-consuming process. Lohn and Reggia [46, 47] and Lohn [45] used
genetic algorithms [52, 53] to discover automatically automata rules that govern emer-
gent self-replicating processes. Given dynamically evolving automata, one of the most
dif�cult tasks is that of identifying effective �tness functions for self-replicating struc-
tures. Lohn and Reggia were able to solve the �tness problem, thereby demonstrating
that self-replicating structures can be evolved. Chou and Reggia [14] asked whether
self-replication can come about spontaneously. They demonstrated the possibility
of creating a CA universe—a “primordial soup”—in which self-replicating structures
are not inoculated ab initio but rather emerge in a spontaneous manner (cf. Koza’s
work—Section 3). Their CA model incorporates a number of interesting features,
including (a) the division of the cellular state into substates (bit �elds), which facil-
itates the emergence of self-replication (Morita and Imai [55–57] presented a similar
idea—the partitioned CA), (b) support of extended replication, in which the offspring
structure may differ in size from its parent, and (c) the ability to handle collisions be-
tween structures, a situation that in previous models usually led to utter chaos. These
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Figure 6. A self-replicating loop devised by Stauffer and Sipper [77]. The cellular space is two-dimensional, � ve-
neighbor, with nine states per cell. Numbers at bottom of images denote time steps. The initial loop at time step 0
is replicated after 44 time steps.
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qualities render their CA somewhat more robust than previous models and give rise to
interesting dynamics.

2.4 Adding Computational Capabilities to Self-Replicating Structures
The previous two subsections presented works that can be considered to occupy two
extremes of the replication complexity scale: on one end there are the highly com-
plex universal constructor-computers, and on the opposite end one �nds the simple
structures that can do nothing but self-replicate (Figure 7).

Tempesti [78] asked whether one can start at the low end of the complexity spectrum,
namely, with simple self-replicating structures, and add functionalities to these entities,
ultimately attaining complex machines that are nonetheless completely realizable. He
took a �rst step in this direction, devising a self-replicating system resembling that
of Langton’s—with the added capability of attaching to the automaton an executable
program that is duplicated and executed in each of its copies. The program is stored
within the loop, interlaced with the replication code (Figure 8).

Perrier, Sipper, and Zahnd [61] went beyond Tempesti’s demonstration of �nite com-
putation, constructing a self-replicating loop that is capable of implementing any pro-
gram, written in a simple yet universal programming language. The system consists
of three parts—loop, program, and data—all of which are replicated, followed by the
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(a)

(b)

Figure 8. Tempesti’s loop is a self-replicating automaton, with the added capability of attaching an executable program
that is duplicated and executed in each of its copies. This is demonstrated above for a simple program that writes
out (after the loop’s replication) LSL, acronym of the Logic Systems Laboratory. (a) Time step 240: the program is
being copied into the daughter loop. (b) Time step 341: the program is being executed in the daughter loop. The
cellular space is two-dimensional, nine-neighbor, with 10 states per cell.

program’s execution on the given data. Their loop was simulated in its entirety, thus
demonstrating a viable, self-replicating machine with programmable capabilities (Fig-
ure 9).

Chou and Reggia [15] have recently shown that self-replicating loops can be used to
solve the NP-complete problem known as satis�ability (SAT). Given a Boolean predi-
cate like (x1 _ x2 _ :x3) ^ (:x1 _ :x2 _ x3), the problem is to �nd the assignment of
Boolean values to the binary variables x1, x2, and x3 that satis�es the predicate, that is,
makes it evaluate to True (if such an assignment exists). In the above works of Tem-
pesti and Perrier et al., the program embedded in each loop is copied unchanged from
parent to child so that all replicated loops carry out the same program. Chou and Reg-
gia took a different approach in which each replicant receives a distinct partial solution
that is modi�ed during replication. Under a form of arti�cial selection, replicants with
promising solutions proliferate while those with failed solutions are lost. The process
is demonstrated in Figure 10. This work shows how a cellular automaton can be used
as a truly massively parallel machine to solve a dif�cult problem. This is in contrast to
many works (including von Neumann’s seminal one) where the highly parallel CA is
used in a completely serial manner (e.g., by embedding a sequential Turing machine).
As noted by Burks [84] (page 157): “Thus von Neumann’s cellular structure allows for
an inde�nite amount of parallelism. But in designing his self-reproducing automaton
von Neumann did not make much use of the potential parallelism of his cellular struc-
ture. Rather, his self-reproducing automaton works like a serial digital computer. . . .”
Chou and Reggia observed that their system can be considered a form of DNA comput-
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Figure 9. A self-replicating loop with programmable capabilities [61]. The system consists of three parts—loop,
program, and data—all of which are replicated, followed by the program’s execution on the given data. The cellular
space is two-dimensional, � ve-neighbor, with 63 states per cell. P denotes a state belonging to the set of program
states, D denotes a state belonging to the set of data states. Note that though the number of states seems prohibitive
(63), the vast majority of entries in the rule table are identity transformations (i.e., ones that do not change the state
of the central cell). This renders the automaton completely realizable (the transition rule is actually much simpler
than that of von Neumann’s even though it involves more states per cell).
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Figure 10. Solving the satis� ability (SAT) problem with self-replicating loops [15]. Shown above for a three-variable
problem: (:x1 _ x3 ) ^ (x1 _ :x2 ) ^ (x2 _ :x3 ). The initial con� guration of the cellular automaton contains a single
loop with three embedded binary bits (marked by A’s). This loop self-replicates in the cellular space, with each
daughter loop differing by one bit from the parent, thus resulting in a parallel enumeration process. This is coupled
with arti� cial selection that culls un� t solutions, by eliminating the loops that represent them (each loop represents
one possible SAT solution). In the end only two loops remain, containing the two truth assignments for the predicate
in question: x1, x2 , x3 D 0, 0, 0 or 1, 1, 1.

ing [1] in a cellular automaton using self-replicating loops in a vastly parallel fashion.
Furthermore, molecular implementations can be imagined, for example, using synthetic
self-replicators [66].

2.5 Modifying the Underlying CA Model
In this last subsection on CA-based works I describe a number of approaches in which
the underlying model is no longer that of the classical, Ulam–von Neumann CA. Ar-
bib [2, 3] presented a universal array in which the self-replicating structure is simpler to
program (with respect to von Neumann’s system) yet built of more complex elemental
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cells. The basic unit, or cell, is a �nite automaton that can execute an internal program
of up to 20 instructions. Arbib [2] noted that von Neumann had

. . . shown that one may construct self-reproducing universal arrays using as
basic cells �nite automata with only 29 states. The price we pay for the
simplicity of the components is that the coding of the array is enormously
complicated, and the operation of the array requires many many steps to
simulate one cycle of an ordinary Turing machine. (p. 179)

With respect to his model he noted that

The price we pay for the simplicity of programming and operation is that our
cells are more complicated. . . . The point of our construction is not that very
simple or very complex components can be used to build a self-reproducing
automaton; but rather that, given components of one level of complexity, we
may use them to obtain self-reproducing aggregates of an arbitrarily higher level
of complexity. . . . (p. 179)

Mange and his colleagues have been developing the Embryonics (Embryonic Elec-
tronics) project since 1993, whose ultimate objective is the construction of large-scale
integrated circuits, exhibiting properties such as self-repair (healing), self-replication,
and evolution, found until now only in living beings [48–50]. Such systems will be more
robust than current-day ones, able to function within complex dynamic environments,
which not only cannot be fully speci�ed in advance, but furthermore may change in
time. Essentially, Embryonics is a CA-based approach in which three biologically in-
spired principles are employed: multicellular organization, cellular differentiation, and
cellular division.

The Embryonics team developed an arti�cial cell, dubbed biodule (biological mod-
ule), that is used as an elementary unit from which multicellular organisms can on-
togenetically develop [68, 75] to perform useful tasks. One of these organisms—the
“biowatch”—is shown in Figure 11. Cellular differentiation takes place by having each
cell compute its coordinates (i.e., position) within a one- or two-dimensional space, af-
ter which it can extract the speci�c gene within the arti�cial genome responsible for the
cell’s functionality (each cell contains the entire genome). Cellular division occurs when
a mother cell, the zygote, arbitrarily placed within the grid, multiplies to �ll a large por-
tion of the space, thus forming a multicellular organism. In addition to self-replication,
this arti�cial organism also exhibits self-repair capabilities, another biologically inspired
phenomenon, lacking in the systems presented up until now. Mange et al. observed
that such self-replicating machines are multicellular arti�cial organisms, in the sense
that each of the several cells composing the organism contains one copy of the com-
plete genome. In this respect, most other self-replicating automata described herein
can be considered unicellular organisms: There is a single genome describing (and
contained within) the entire machine (e.g., the Langton-like and von Neumann-like
loops, described above).

Sipper [71–73] devised a small, �ve-cell, self-replicating loop, embedded in a two-
dimensional, nine-neighbor, three-state cellular space. The underlying model is that of
a nonuniform cellular automaton, in which the local update rule need not be identical
for all grid cells (as is the case with the classical CA model). Furthermore, the cells are
somewhat more complex than those of the original CA: Whereas a cell in the original
model accesses the states of its neighbors but may change only its own state, Sipper’s
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Figure 11. Embryonics project: the biowatch. An arti� cial “organism” designed to count minutes (from 00 to 59)
and seconds (from 00 to 59), composing in effect a modulo-3600 counter that is able to self-replicate and self-repair.
It is implemented using eight biodule cells, the basic unit of the Embryonics project.

model allows state changes of neighboring cells and rule copying into them (this latter
characteristic can be considered a form of cellular movement).

Lohn and Reggia’s CA model [45–47], used in their evolutionary experiments (Sec-
tion 2.3), is also different from the classical CA. Similar to Sipper, they considered
movable automata, called effector automata, embedded in a cellular space. Further-
more, they introduced a new method of automata input, called orientation-insensitive
input, which was shown to increase the yield of self-replicating structures found by
evolution.

3 Self-Replicating Programs

As we saw in Section 2.5, Arbib [2, 3]—while remaining within the cellular frame-
work—considered the use of more complex cells, composing an internal program of
up to 20 instructions. Departing altogether from the cellular model, Bratley and Millo [7]
and Burger, Brill, and Machi [8] devised self-replicating computer programs. Core War,
a computer game initiated by Dewdney in the 1980s, gained wide attention at the
time [18–21]. Basically, it involves a virtual computer environment in which computer
programs “do battle” with each other, the object being to destroy other programs and
to occupy more virtual territory. Dewdney, then a columnist with Scienti�c American,
invited readers to submit programs, conducting tournaments in his computer. Some of
the Core War programs were able to self-replicate.

The question of whether open-ended evolution can be embedded within a computer
was posed by Ray, who devised a virtual world called Tierra, consisting of computer
programs that can undergo evolution [64, 65]. In contrast to evolutionary computa-
tion techniques where �tness is de�ned by the user [23, 52], the Tierra “creatures”
(programs) receive no such direction. Rather, they compete for the natural resources
of their computerized environment, namely, CPU time and memory. Because only a
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�nite amount of these are available, the virtual world’s natural resources are limited, as
in nature, serving as the basis for competition between creatures. Ray inoculated his
system with a single, self-replicating organism, called the “Ancestor,” which is the only
engineered (manmade) creature in Tierra. He then set his system loose and witnessed
the emergence of an ecosystem within the Tierra world, including organisms of various
sizes, parasites, hyperparasites, and so on. The evolved parasites, for example, are
small creatures that use the replication code of larger organisms (such as the Ances-
tor) to self-replicate. In this manner they proliferate rapidly without the need for the
excess replication code. Being an ecologist, Ray was particularly interested in the emer-
gence of such diverse ecological communities, using them to examine experimentally
ecological and evolutionary processes, such as competitive exclusion and coexistence,
host /parasite density-dependent population regulation, the effect of parasites in en-
hancing community diversity, evolutionary arms races, punctuated equilibria, and the
role of chance and historical factors in evolution. He concluded that such “evolution in
a bottle” may prove to be a valuable tool for the study of evolution and ecology. Ray
has recently extended his Tierra environment to run on the Internet, rather than on a
single computer, hoping that by increasing the scale of the system, new phenomena
may arise that have not been observed on a single computer.

Working within the genetic programming framework [37], which essentially involves
the evolution of Lisp programs, Koza [38] reported on the spontaneous emergence of
computer programs. These exhibited the ability to reproduce asexually, as well as to
reproduce by combining parts from two parents. Generating 12,500,000 programs at
random, composed of a small number of elemental units (known as functions and
terminals in Lisp jargon), Koza [38] discovered that a few of them were self-replicators.
Thus, he showed that “spontaneous emergence of self-reproducing computer programs
is possible” (p. 244). Koza [38] concluded, “The fact that spontaneous emergence can
occur with a probability of the order of 10¡6 to 10¡9 with a function set such as F
suggests that many fruitful experiments on spontaneous emergence and evolutionary
self-improvement can be conducted at this time” (p. 259).

4 Self-Replicating Strings

In this section we shall describe a number of works with stringlike elements as the
basic component. The arti�cial molecular machines introduced by Laing [39–41] are
chains (possibly folded and interconnected) of basic moleculelike constituents. As put
by Laing [41]:

The basic components of our system consist of strands or strings of primitive
constituent �nite state automata, these component strings being in sliding
contact. . . . A primitive constituent of a string can be in an activated or passive
state. An active primitive constituent in contact with a passive constituent of
another string will interact with the passive constituent in precisely de�ned ways
only. These ways include changing the state of the contacted passive primitive,
reacting to the state of the contacted passive primitive, sliding to the next
neighbor of the contacted passive primitive. Since one string (an active string)
can be designed to play the part of any Turing machine �nite-state read-head,
and another string (a passive string) can be designed to play the part of a Turing
machine tape, we can carry out any Turing computation in this kinematic
machine system.

Figure 12 shows a Turing machine in this format.
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Figure 12. A Turing machine in Laing’s kinematic machine format [41]. The lower string consists of program primitives
that if activated will act on the passive “tape” primitives of which the upper string is composed. There are three
primitives that are mainly employed in the passive tape: N (null), 0 (zero), and 1 (one). The program primitives include:
P0 (print zero), P1 (print one), F (forward), B (backward), H (halt), TN, T0, and T1 (conditional transfer primitives), A
(activation), AD (activate and detach), and C (conversion).

Replication in Laing’s model is achieved by self-inspection , where the description of
the object to be replicated (the genome) is dynamically constructed concomitantly with
its interpretation. This is different from the other systems described herein (except
that of Ibánez et al. [34]) where the genome is essentially predetermined (either by
direct design or by arti�cial evolution). Laing [41] noted, “The capacity of a system
generally to explore its own structure and produce a complete description of it for its
perusal and use (for example, in generation and evaluation of behavioral options open
to it) seems a valuable one, and if such a prima facie advantageous capacity is not
exhibited anywhere in naturally occurring systems, this in itself seems of interest” (p.
455). As noted in Section 2.3, the self-replicating loops devised by Ibánez et al. [34],
though implemented in a cellular automaton space, are also based on self-inspection
methods.

Morris [59] studied self-replication within the typogenetics framework. Typogenetics
was �rst introduced by Hofstadter [32] as a formal system for describing operations
on DNA strands. A typogenetics string, or strand, has a double aspect: It is a coded
message prescribing operations, and it is the very operand or data those operations
will work on. Self-replication in typogenetics can be achieved in two ways [59]: (a) A
string can extend itself horizontally along one level and then cut itself into two pieces
that are either already replicas of their parent or will beget such replicas, or (b) it can
use a copy operation to create a double strand that will separate into two daughters
that are either already copies of their parent or will grow into such copies. Varetto [79]
also studied the self-replication issue using the typogenetics model.
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5 Other Works

As noted in Section 1, I have concentrated in this article on computational models, that
is, ones that have been studied from a computer science point of view, be it theoretical
or experimental. In this section I make a brief note of some other approaches.

In 1959 Lionel Penrose, aided by his son Roger, built simple mechanical units or
bricks, an ensemble of which were placed in a box, which was then shaken. As
described by Penrose [60]:

In fanciful terms, we visualized the process of mechanical self-replication
proceeding somewhat as follows: Suppose we have a sack or some other
container full of units jostling one another as the sack is shaken and distorted in
all manner of ways. In spite of this, the units remain detached from one another.
Then we put into the sack a prearranged connected structure made from units
exactly similar to those already within the sack. . . . Now we agitate the sack
again in the same random and vigorous manner, with the seed structure jostling
about among the neutral units. This time we �nd that replicas of the seed
structure have been assembled from the formerly neutral or “lifeless” material.
(p. 106)

Other simple mechanical models are those of Jacobson [35], who built a replicator
using toy train parts running around a track, and Morowitz [58], who also constructed
a simple physical replicator. Finally, two other early works are those of Kemeny [36],
who discussed, among others, von Neumann’s model, and Moore [54], who speculated
on applications for machines that can reproduce.

Freitas, Jr. [24] presented the �rst quantitative engineering analysis of a complete self-
replicating interstellar probe, with special attention to material, structural, and functional
closure issues, referring to the possibility of �nding the materials necessary for repli-
cation in the immediate environment (e.g., on the moon, in case of a lunar replicator).
Some far-future space applications of machine replication technology were examined
in two subsequent works [26, 30]. In 1980 NASA convened a committee of experts to
conduct an in-depth study of various issues related to space exploration. One of the
issues studied was the possibility of planting a “seed” factory on the moon that would
then self-replicate to populate a large surface, using local lunar material [25, 27–29].
This study also introduced the concept of closure engineering, studying qualitative clo-
sure (can all parts be made?), quantitative closure (can enough parts be made?), and
throughput closure (can parts be made fast enough?). (Apart from Laing, whose work
was described in Section 4, and Freitas, Jr., both of whom participated in the NASA
study, von Tiesenhausen and Darbro’s work [85] also served as a precursor.)

Finally, it is worth mentioning the recent efforts in creating self-replicating molecules,
one example of which is the work of Rebek, Jr. [66]:

Imagine a molecule that likes its own shape: �nding a copy of itself, it will �t
neatly with its twin, forming for a while a complete entity. If the original
molecule is presented with the component parts of itself, it will assemble these
into additional replicas. The process will continue as long as the supply of
components lasts. My colleagues and I . . . have designed such self-assembling
molecules and crafted them in the laboratory. . . . Our organic molecules,
although they operate outside of living systems, help to elucidate some of the
essential principles of self-replication. (p. 48)
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It is interesting to note the prima facie similarity between this system and that of
Penrose.

6 Concluding Remarks

My aim herein has been to present an overview of the major research efforts carried
out over the past 50 years in the area of self-replication. As we approach the new
millennium, it seems that there is a rekindling of interest in this issue. This partly stems
from the appearance on the scene of new materials, such as synthetic molecules and
nanomachines, that may ultimately be used to implement self-replicating structures on
a very small scale.

While these past decades have been characterized by VLSI technology (very large-
scale integrated circuits), perhaps the next few decades will see the coming of VSRM—
very small-scale replicating machines.
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phylogenetic, ontogenetic, and epigenetic view of bio-inspired hardware systems. IEEE
Transactions on Evolutionary Computation, 1(1), 83–97.

76. Smith, A. R. (1992). Simple nontrivial self-reproducing machines. In C. G. Langton,
C. Taylor, J. D. Farmer, & S. Rasmussen (Eds.), Arti�cial life II (pp. 709–725). Redwood
City, CA: Addison-Wesley. (Originally part of Smith’s Ph.D. dissertation: Cellular Automata
Theory, Tech. Rep. No. 2, Digital Systems Laboratory, Stanford University, Stanford, CA,
1969).

77. Stauffer, A., & Sipper, M. (1998). On the relationship between cellular automata and
L-systems: The self-replication case. Physica D, 116 (1–2), 71–80.

78. Tempesti, G. (1995). A new self-reproducing cellular automaton capable of construction
and computation. In F. Morán, A. Moreno, J. J. Merelo, & P. Chacón (Eds.), ECAL’95: Third
European Conference on Arti�cial Life (vol. 929 of Lecture Notes in Computer Science, pp.
555–563). Heidelberg: Springer-Verlag.

256 Arti�cial Life Volume 4, Number 3



M. Sipper Self-Replication: An Overview

79. Varetto, L. (1993). Typogenetics: An arti�cial genetic system. Journal of Theoretical Biology,
160, 185–205.

80. Villasenor, J., & Mangione-Smith, W. H. (1997, June). Con�gurable computing. Scienti�c
American, 276 (6), 54–59.
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