
D. Stauffer, editor, Annual Reviews of Computational Physics, volume V,
pages 243-285, 1997. Copyright World Scientific Publishing Company.

Evolving Uniform and Non-uniform Cellular Automata Networks

Moshe Sipper

Logic Systems Laboratory
Swiss Federal Institute of Technology

IN-Ecublens, CH-1015 Lausanne, Switzerland
E-mail: Moshe.Sipper@di.epfl.ch

Natural evolution has “created” many parallel cellular systems, in which emergent
computation gives rise to impressive computational capabilities. In recent years
we are witness to a rapidly growing interest in such complex adaptive systems,
addressing, among others, the major problem of designing them to exhibit a spe-
cific behavior or solve a given problem. One possible approach, which we explore
in this paper, is to employ artificial evolution. The systems studied are based on
the cellular automata (CA) model, where a regular grid of cells is updated syn-
chronously in discrete time steps, according to a local, identical interaction rule.
We first present the application of a standard genetic algorithm to the evolution
of CAs to perform two non-trivial computational tasks, density and synchroniza-
tion, showing that high-performance systems can be attained. The evolutionary
process as well as the resulting emergent computation are then discussed. Next
we study two generalizations of the CA model, the first consisting of non-uniform
CAs, where cellular rules need not be identical for all cells. Introducing the cellu-

lar programming evolutionary algorithm, we apply it to six computational tasks,
demonstrating that high-performance systems can be evolved. The second gen-
eralization involves non-standard, evolving connectivity architectures, where we
demonstrate that yet better systems can be attained. Evolving, cellular systems
hold potential both scientifically, as vehicles for studying phenomena of interest
in areas such as complex adaptive systems and artificial life, as well as practi-
cally, showing a range of potential future applications ensuing the construction of
adaptive systems, and in particular ‘evolving ware’, evolware.

1 Introduction

Natural evolution has “created” many systems in which the actions of sim-
ple, locally-interacting components give rise to coordinated global information
processing. Insect colonies, cellular assemblies, the retina, and the immune
system, have all been cited as examples of systems in which emergent com-

putation occurs. This term refers to the appearance of global information
processing capabilities that are not explicitly represented in the system’s ele-
mentary components nor in their interconnections.

The parallel cellular systems “designed” by Nature display an impressive
capacity to successfully confront extremely difficult computational problems.
In recent years we are witness to a rapidly growing interest in such com-

plex adaptive systems;1–3 under this heading we find researchers from different

1

Draf
t



fields, studying diverse systems, natural- as well as human-made, with the un-
derlying two-fold goal of: (1) enhancing our understanding of the functionings
of natural systems, as well as of the ways by which they might have evolved,
and (2) mimicking Nature’s achievement, creating artificial systems based on
these principles, matching the problem-solving capacities of their natural coun-
terparts.

In this paper we shall attempt to gain insight into these issues, using the
well-known cellular automata (CA) model. CAs are dynamical systems in
which space and time are discrete; a cellular automaton consists of a regular
grid of cells, each of which can be in one of a finite number of possible states,
updated synchronously in discrete time steps, according to a local, identical in-
teraction rule. CAs exhibit three notable features, namely massive parallelism,
locality of cellular interactions, and simplicity of basic components (cells); thus,
they present an excellent point of departure for our forays into parallel cellular
systems. We shall study the original, classical model as well as a number of
generalized ones; these cellular automata networks are referred to henceforth
as cellular systems.

A major problem common to such local, parallel systems is the painstaking
task one is faced with in designing them to exhibit a specific behavior or solve a
particular problem. This results from the local dynamics of the system, which
renders the design of local interaction rules to perform global computational
tasks extremely arduous. Toward this end we turn to Nature, seeking inspira-
tion in the process of evolution. The idea of applying the biological principle
of natural evolution to artificial systems, introduced more than three decades
ago, has seen an impressive growth in the past few years. Usually grouped
under the term evolutionary algorithms or evolutionary computation, we find
the domains of genetic algorithms, evolution strategies, evolutionary program-
ming, and genetic programming. Central to all these different methodologies
is the idea of solving problems by evolving an initially random population of
possible solutions, through the application of “genetic” operators, such that in
time “fitter” (i.e., better) solutions emerge.4–11 We shall employ artificial evo-
lution, based on the genetic algorithms approach, to evolve (“design”) parallel
cellular systems.

As pointed out in Ref. 12, it is important to distinguish between emer-
gent computation in natural systems, and what is often called “emergent”
or “self-organizing” pattern formation, as found in weak turbulence, critical
phenomena, oscillating chemical reactions, and developmental morphogenesis.
They argued that the emergent patterns in such systems are subjective since
the existence of a pattern is decided only by an outside observer; emergent
computation also involves emergent patterns, but these are used by the sys-

2



tem itself to perform information processing.

Though the results described herein have been obtained through software
simulation, one of the major goals is to attain truly ‘evolving ware’, evolware,
with current implementations centering on hardware, while raising the pos-
sibility of using other forms of ware in the future, such as bioware.13,14 This
idea, whose origins can be traced to the cybernetics movement of the 1940s and
the 1950s, has recently resurged in the form of the nascent field of bio-inspired
systems and evolvable hardware.15 The field draws on ideas from the evolu-
tionary computation domain as well as on recent hardware developments. We
have recently implemented an evolving, on-line, autonomous hardware system
based on the cellular programming approach described in Section 5.14

Employing parallel cellular models, along with an evolutionary process
that acts as an idealized version of natural evolution, enables us to attain
progress in the pursuit of both aforementioned goals; this framework allows us
to investigate issues pertaining to evolving, emergent computation in natural
systems, as well as to derive methods by which successful, artificial systems
may be constructed.

The paper is organized as follows: the next two sections present introduc-
tory expositions of cellular automata and genetic algorithms. In Section 4 we
present the application of a genetic algorithm to evolve cellular automata to
perform two non-trivial computational tasks, density and synchronization. It
is shown that high-performance systems can be evolved for both tasks, after
which the evolutionary process as well as the resulting emergent computation
are discussed. In Section 5 we study a generalization of the original CA model,
non-uniform CAs, where cellular rules need not be identical for all cells. Intro-
ducing the cellular programming algorithm for co-evolving such CAs, we ap-
ply it to the above two tasks, as well as to several others, demonstrating that
high-performance systems can be attained. As opposed to the standard ge-
netic algorithm, where a population of independent problem solutions globally
evolves, cellular programming involves a grid of rules that co-evolves locally.
In Section 6 we generalize on a second aspect of CAs, namely their standard,
homogeneous connectivity. We study non-standard architectures, where each
cell has a small, identical number of connections, yet not necessarily from its
most immediate neighboring cells. We show that such architectures are com-
putationally more efficient than standard architectures in solving global tasks;
furthermore, it is shown that one can successfully evolve non-standard archi-
tectures through a two-level evolutionary process, in which the cellular rules
evolve concomitantly with the cellular connections. Finally, we present our
conclusions and directions for future research in Section 7.

3



2 Cellular automata

Cellular automata were originally conceived by Ulam and von Neumann in the
1940s to provide a formal framework for investigating the behavior of complex,
extended systems.16 CAs are dynamical systems in which space and time are
discrete. A cellular automaton consists of a regular grid of cells, each of which
can be in one of a finite number of k possible states, updated synchronously in
discrete time steps according to a local, identical interaction rule. The state
of a cell is determined by the previous states of a surrounding neighborhood
of cells.17,18

The infinite or finite cellular array (grid) is n-dimensional, where n = 1, 2, 3
is used in practice; in this work we shall concentrate on n = 1, 2, i.e., one- and
two-dimensional grids. The identical rule contained in each cell is essentially a
finite state machine, usually specified in the form of a rule table (also known
as the transition function), with an entry for every possible neighborhood con-
figuration of states. The neighborhood of a cell consists of the surrounding
(adjacent) cells; for one-dimensional CAs, a cell is connected to r local neigh-
bors (cells) on either side, where r is a parameter referred to as the radius

(thus, each cell has 2r + 1 neighbors, including itself). For two-dimensional
CAs, two types of cellular neighborhoods are usually considered: 5 cells, con-
sisting of the cell along with its four immediate nondiagonal neighbors, and
9 cells, consisting of the cell along with its eight surrounding neighbors. The
term configuration refers to an assignment of states to cells in the grid. When
considering a finite-sized grid, spatially periodic boundary conditions are fre-
quently applied, resulting in a circular grid for the one-dimensional case, and a
toroidal one for the two-dimensional case. A one-dimensional CA is illustrated
in Figure 1 (based on Ref. 6).

Over the years CAs have been applied to the study of general phenomeno-
logical aspects of the world, including communication, computation, construc-
tion, growth, reproduction, competition and evolution (see, e.g., Refs. 18, 19,
20, 21). One of the most well-known CA rules, namely the “game of life”,
was conceived by Conway in the late 1960s22,23 and was shown by him to be
computation-universal.24 A review of computation theoretic results is provided
in Ref. 25.

The question of whether cellular automata can model not only general phe-
nomenological aspects of our world, but also directly model the laws of physics
themselves was raised in Refs. 26, 27. A primary theme of this research
is the formulation of computational models of physics that are information-

preserving, and thus retain one of the most fundamental features of microscopic
physics, namely reversibility.27–29 CAs have been used to provide extremely

4



Rule table:

neighborhood: 111 110 101 100 011 010 001 000
output bit: 1 1 1 0 1 0 0 0

Grid:

t = 0 0 1 1 0 1 0 1 1 0 1 1 0 0 1 1

t = 1 1 1 1 1 0 1 1 1 1 1 1 0 0 1 1

Figure 1: Illustration of a one-dimensional, 2-state CA. The connectivity radius is r = 1,
meaning that each cell has two neighbors, one to its immediate left and one to its immediate
right. Grid size is N = 15. The rule table for updating the grid is shown on top. The
grid configuration over one time step is shown at the bottom. Spatially periodic boundary
conditions are applied, meaning that the grid is viewed as a circle, with the leftmost and
rightmost cells each acting as the other’s neighbor.

simple models of common differential equations of physics, such as the heat
and wave equations30 and the Navier-Stokes equation.31,32 CAs also provide a
useful discrete model for a branch of dynamical systems theory which studies
the emergence of well-characterized collective phenomena such as ordering, tur-
bulence, chaos, symmetry-breaking, fractality, etc’.33,34 The systematic study
of CAs in this context was pioneered by Wolfram and studied extensively by
him, identifying four qualitative classes of CA behavior (referred to as Wol-
fram classes), with analogs in the field of dynamical systems.17,35,36 Finally,
biological modeling has also been carried out using CAs (see, e.g., review in
Ref. 37).

3 Genetic algorithms

In the 1950s and the 1960s several researchers independently studied evolu-
tionary systems with the idea that evolution could be used as an optimization
tool for engineering problems. Central to all the different methodologies is
the notion of solving problems by evolving an initially random population of
candidate solutions, through the application of operators inspired by natural
genetics and natural selection, such that in time “fitter” (i.e., better) solutions
emerge.4–11 In this paper we shall concentrate on one type of evolutionary
algorithms, namely genetic algorithms.

Genetic algorithms were invented by John Holland in the 1960s.11 His orig-

5



inal goal was not to design algorithms to solve specific problems, but rather
to formally study the phenomenon of adaptation as it occurs in Nature and
to develop ways in which the mechanisms of natural adaptation might be im-
ported into computer systems. Nowadays, genetic algorithms are ubiquitous,
having been successfully applied to numerous problems from different domains,
including optimization, automatic programming, machine learning, economics,
immune systems, ecology, population genetics, studies of evolution and learn-
ing, and social systems.6 For recent reviews of the current state of the art, the
reader is referred to Refs. 38, 39.

A genetic algorithm is an iterative procedure that consists of a constant-
size population of individuals, each one represented by a finite string of sym-
bols, known as the genome, encoding a possible solution in a given problem
space. This space, referred to as the search space, comprises all possible so-
lutions to the problem at hand; generally speaking, the genetic algorithm is
applied to spaces which are too large to be exhaustively searched. The symbol
alphabet used is often binary due to certain computational advantages pur-
ported in Ref. 11 (see also Ref. 10); this has been extended in recent years to
include character-based encodings, real-valued encodings, and tree representa-
tions.

The standard genetic algorithm proceeds as follows: an initial popula-
tion of individuals is generated at random or heuristically. Every evolutionary
step, known as a generation, the individuals in the current population are de-

coded and evaluated according to some predefined quality criterion, referred
to as the fitness, or fitness function. To form a new population (the next
generation), individuals are selected according to their fitness. Many selection
procedures are currently in use, one of the simplest being Holland’s original
fitness-proportionate selection, where individuals are selected with a proba-
bility proportional to their relative fitness. This ensures that the expected
number of times an individual is chosen is approximately proportional to its
relative performance in the population; thus, high-fitness (“good”) individuals
stand a better chance of “reproducing”, while low-fitness ones are more likely
to disappear.

Selection alone cannot introduce any new individuals into the population,
i.e., it cannot find new points in the search space; these are generated by
genetically-inspired operators, of which the most well-known are crossover and
mutation. Crossover is performed with probability pcross (the “crossover prob-
ability” or “crossover rate”) between two selected individuals, called parents,
by exchanging parts of their genomes (i.e., encodings) to form two new indi-
viduals, called offspring; in its simplest form, substrings are exchanged after
a randomly selected crossover point. This operator enables the evolutionary

6



process to move toward “promising” regions of the search space. The muta-
tion operator is introduced to prevent premature convergence to local optima
by randomly sampling new points in the search space. It is carried out by
flipping bits at random, with some (small) probability pmut. Genetic algo-
rithms are stochastic iterative processes that are not guaranteed to converge;
the termination condition may be specified as some fixed, maximal number
of generations or as the attainment of an acceptable fitness level. Figure 2
presents the standard genetic algorithm in pseudo-code format.

begin GA

g:=0 { generation counter }
Initialize population P (g)
Evaluate population P (g) { i.e., compute fitness values }
while not done do

g:=g+1
Select P (g) from P (g − 1)
Crossover P (g)
Mutate P (g)
Evaluate P (g)

end while

end GA

Figure 2: Pseudo-code of the standard genetic algorithm.

Let us consider the following simple example, due to Ref. 6, demonstrating
the genetic algorithm’s workings. The population consists of 4 individuals,
which are binary-encoded strings (genomes) of length 8; the fitness value equals
the number of ones in the bit string, with pcross = 0.7, and pmut = 0.001. More
typical values of the population size and the genome length are in the range
50-1000; also note that fitness computation in this case is extremely simple
since no complex decoding nor evaluation is necessary. The initial (randomly
generated) population might look like this:

Label Genome Fitness
A 00000110 2
B 11101110 6
C 00100000 1
D 00110100 3

Using fitness-proportionate selection we must choose 4 individuals (two
sets of parents), with probabilities proportional to their relative fitness values.

7



In our example, suppose that the two parent pairs are {B,D} and {B,C} (note
that A did not get selected as our procedure is probabilistic). Once a pair of
parents is selected, with probability pcross they cross over to form two offspring;
if they do not cross over, then the offspring are exact copies of each parent.
Suppose in our example that parents B and D cross over after the (randomly
chosen) first bit position to form offspring E=10110100 and F=01101110, and
parents B and C do not cross over, forming offspring that are exact copies of
B and C. Next, each offspring is subject to mutation with probability pmut

per bit. For example, suppose offspring E is mutated at the sixth position to
form E′=10110000, offspring F and C are not mutated at all, and offspring
B is mutated at the first bit position to form B′=01101110. The next gener-
ation population, created by the above operators of selection, crossover, and
mutation is therefore:

Label Genome Fitness
E′ 10110000 3
F 01101110 5
C 00100000 1
B′ 01101110 5

Note that in the new population, although the best individual with fitness
6 has been lost, the average fitness has increased. Iterating this procedure,
the genetic algorithm will eventually find a perfect string, i.e., with maximal
fitness value of 8.

The implementation of an evolutionary algorithm, an issue which usually
remains in the background, is quite costly in many cases, since populations
of solutions are involved possibly coupled with computation-intensive fitness
evaluations. One possible solution is to parallelize the process, an idea which
has been explored to some extent in recent years (see reviews in Refs. 38, 40);
while posing no major problems in principle, this may require judicious modifi-
cations of existing algorithms or the introduction of new ones in order to meet
the constraints of a given parallel machine. In Section 5 we shall study non-
uniform CAs, introducing the cellular programming algorithm, whose locality
renders it more amenable to parallel implementation and to the construction
of evolware.

4 Evolving uniform cellular automata

A major impediment preventing ubiquitous computing with CAs stems from
the difficulty of utilizing their complex behavior to perform useful computa-
tions. As noted in Ref. 41, the difficulty of designing CAs to have a specific

8



behavior or perform a particular task has severely limited their applications;
automating the design (programming) process would greatly enhance the via-
bility of CAs. One possible approach is to utilize artificial evolution techniques.

The application of genetic algorithms to the evolution of uniform cellu-
lar automata was initially studied in Ref. 42 and recently undertaken by the
EVCA (evolving CA) group.12,41,43–46 The goals of their research, as stated
in Ref. 41, are: (1) to better understand the ways in which CAs can per-
form computations; (2) to learn how best to use genetic algorithms to evolve
computationally useful CAs; and (3) to understand the mechanisms by which
evolution, as modeled by a genetic algorithm, can create complex, coordinated
global behavior in a system consisting of many locally interacting simple parts.

Typically, a CA performing a computation means that the input to the
computation is encoded as an initial configuration, the output is the configu-
ration after a certain number of time steps, and the intermediate steps that
transform the input to the output are considered to be the steps in the compu-
tation.6 The “program” emerges through “execution” of the CA rule in each
cell. Note that this use of CAs as computers differs from the less practi-
cal though theoretically interesting method of constructing a universal Turing
machine47 in a CA (for a comparison of these two approaches see Ref. 44; see
also Ref. 21).

The EVCA group employed a standard genetic algorithm, as outlined in
Section 3, to evolve uniform CAs to perform two computational tasks, namely
density and synchronization; their results are described in the next two sub-
sections. The CAs in question are one-dimensional with k = 2 and r = 3, i.e.,
2 possible states per cell, with each cell connected to its three left neighbors
and its three right ones (refer to Section 2). Spatially periodic boundary con-
ditions are used, resulting in a circular grid. A common method of examining
the behavior of one-dimensional CAs is to display a two-dimensional space-
time diagram, where the horizontal axis depicts the configuration at a certain
time t and the vertical axis depicts successive time steps (e.g., Figure 3).

4.1 The density task

The one-dimensional density task is to decide whether or not the initial config-
uration contains more than 50% 1s. Following Ref. 43, let ρ denote the density
of 1s in a grid configuration, ρ(t) the density at time t, and ρc the threshold
density for classification (in our case 0.5). The desired behavior (i.e., the result
of the computation) is for the CA to relax to a fixed-point pattern of all 1s if
ρ(t = 0) > ρc, and all 0s if ρ(0) < ρc. If ρ(0) = ρc, the desired behavior is
undefined (this situation shall be avoided by using odd grid sizes).

9



This task is an example of “useful computation” as characterized above;
the rule table applied to all cells is interpreted as a program performing a
computation, the initial configuration is interpreted as the input to the pro-
gram, and the CA runs for some specified number M of time steps or until
it converges to one of the two fixed-point patterns. The final configuration is
interpreted as the output.41

Designing an algorithm to perform the density task is trivial for systems
with a central controller of some kind, such as a standard computer with a
counter register, or a neural network with global connectivity; however, it is
difficult to do so using a decentralized, spatially-extended system such as a
CA.12 As noted in Ref. 41, the density task comprises a non-trivial compu-
tation for a small radius CA (r ≪ N , where N is the grid size); the density
is a global property of a configuration whereas a small-radius CA relies solely
on local interactions. Since the 1s can be distributed throughout the grid,
propagation of information must occur over large distances (i.e., O(N)). The
minimum amount of memory required for the task is O(logN) using a serial
scan algorithm, thus the computation involved corresponds to recognition of
a non-regular language. Note that the density task cannot be perfectly solved
by a uniform, two-state CA, as proven in Ref. 48; however, no upper bound is
currently available on the best possible imperfect performance.

A k = 2, r = 3 rule which successfully performs this task was discussed in
Ref. 42; this is the Gacs-Kurdyumov-Levin (GKL) rule, defined as follows:49,50

si(t+ 1) =

{

majority[si(t), si−1(t), si−3(t)] if si(t) = 0
majority[si(t), si+1(t), si+3(t)] if si(t) = 1

where si(t) is the state of cell i at time t.
Figure 3 depicts the behavior of the GKL rule on two initial configurations,

ρ(0) < ρc and ρ(0) > ρc. We observe that a transfer of information about
local neighborhoods takes place to produce the final fixed-point configuration.
Essentially, the rule’s “strategy” is to successively classify local densities with
the locality range increasing over time. In regions of ambiguity a “signal”
is propagated, seen either as a checkerboard pattern in space-time or as a
vertical white-to-black boundary.43 It should be emphasized that the GKL’s
success on the density task is a serendipitous effect since it was not invented
for the purpose of performing any particular computational task.41

The standard genetic algorithm employed in Refs. 41, 43 uses a randomly
generated initial population of uniform, size N = 149 CAs with k = 2, r = 3.
Each CA is represented by a bit string, delineating its rule table, containing the
next-state (output) bits for all possible neighborhood configurations, listed in
lexicographic order (i.e., the bit at position 0 is the state to which neighborhood

10



time
↓

(a) (b)

Figure 3: The density task: Operation of the GKL rule. CA is one-dimensional, uniform,
2-state, with connectivity radius r = 3. Grid size is N = 149. White squares represent cells
in state 0, black squares represent cells in state 1. The pattern of configurations is shown
through time (which increases down the page). (a) Initial density of 1s is ρ(0) ≈ 0.47 and
final density at time t = 150 is ρ(150) = 0. (b) Initial density of 1s is ρ(0) ≈ 0.53 and final
density at time t = 150 is ρ(150) = 1. The CA relaxes in both cases to a fixed pattern of all
0s or all 1s, correctly classifying the initial configuration.

configuration 0000000 is mapped to and so on until bit 127 corresponding to
neighborhood configuration 1111111). The bit string (“genome”) is of size
22r+1 = 128, resulting in a huge search space of size 2128.

Each uniform CA (rule) in the population is run for a maximum number
of M time steps, where M is selected anew for each rule from a Poisson distri-
bution with mean 320. A rule’s fitness is defined as the fraction of cell states
correct at the last time step, averaged over 100−300 initial configurations. At
each generation a new set of configurations is generated at random, uniformly
distributed over densities, i.e., ρ(0) ∈ [0.0, 1.0]. All rules are tested on this set
and the population of the next generation is created by copying the top half of
the current population (ranked according to fitness) unmodified; the remaining
half of the next generation population is created by applying the genetic oper-
ators of crossover and mutation to selected rules from the current population.
Note that while these operators act on the local mappings comprising a CA
rule table (the “genotype”), selection is performed according to the dynamical
behavior of the CA over a sample of initial configurations (the “phenotype”).

Ref. 41 pointed out that sampling initial configurations with uniform dis-
tribution over ρ ∈ [0.0, 1.0] is biased with respect to an unbiased distribution,

11



which is binomially distributed over ρ ∈ [0.0, 1.0], and very strongly peaked
at ρ = 0.5. Their preliminary experiments indicated that such a biased distri-
bution is needed in order for the genetic algorithm to make progress in early
generations. They found that in later generations this distribution tends to
impede the genetic algorithm, because, as increasingly fitter rules are evolved,
the initial configurations sample becomes less and less “challenging” for the
evolutionary process (we shall re-encounter the unbiased versus biased issue in
Section 6).

Using the genetic algorithm highly successful rules were found, with the
best fitness values being in the range 0.93 − 0.95. Under the above fitness
function, the GKL rule has fitness ≈ 0.98; the genetic algorithm never found
a rule with fitness above 0.95.41,43

In Refs. 41, 43, the evolutionary process, mediated by the genetic algo-
rithm, was found to undergo a series of “epochs of innovation”. The onset
of an epoch is defined to be the generation at which a rule with a significant
innovation in strategy is discovered. The onset generation of each epoch cor-
responded to a marked jump in the best fitness measured in the population.
Four epochs of innovation were identified. The first epoch involves rules that
specialize in low ρ(0) or high ρ(0); there are two best-performing strategies-
rules that always relax to a fixed point of all 0s and rules that always relax
to a fixed point of all 1s. Thus, these rules have fitness values of 0.5, hav-
ing correctly classified half of the random initial configurations. At epoch 2,
the genetic algorithm discovers rules that, while similar in behavior to epoch 1
rules, correctly classify some additional initial configurations with extreme ρ(0)
(i.e., a “low-ρ(0) specialist” that classifies some very high-ρ(0) initial configu-
rations, and vice versa). Epoch 3 is characterized by a major innovation, upon
the genetic algorithm’s discovery of two distinct “block-expanding” strategies:
go to the fixed point of all zeros (ones) unless there is a sufficiently large block
of adjacent ones (zeros) in the initial configuration- if so, expand that block.
Epoch 4 begins when no additional improvements are made; from that time
on, the best fitness values remain approximately constant.

Ref. 41 analyzed the mechanisms by which the genetic algorithm evolved
such strategies. This analysis uncovered interesting aspects of the algorithm,
including a number of impediments that prevented it from discovering (on
most runs) better-performance rules. A primary impediment is the algorithm’s
tendency to break the task’s symmetries by producing low-ρ(0) or high-ρ(0)
specialists. A pressure toward symmetry-breaking is effectively built into the
fitness function, since specializing on one half of the initial configurations is
an easy way to obtain higher fitness than that of a random rule. Symmetry-
breaking thus produces a short-term gain for the genetic algorithm, but later

12



prevents it from making further improvements. Another impediment of the
genetic algorithm applied to the density task is the biased sample of initial
configurations, as discussed above. Interestingly, most of the identified imped-
iments are also forces that help the genetic algorithm in the initial stages of
its search.

Another interesting result of Ref. 43 concerns the λ parameter introduced
in Refs. 51, 52 in order to study the structure of the space of CA rules. The
λ of a given CA rule is the fraction of non-quiescent output states in the rule
table, where the quiescent state is arbitrarily chosen as one of the possible k

states. For binary-state CAs the quiescent state is usually 0 and therefore λ

equals the fraction of output 1 bits in the rule table.

In recent years it has been speculated that computational capability can
be associated with phase transitions in CA rule space.51–53 This phenomenon,
generally referred to as the “edge of chaos”, asserts that dynamical systems are
partitioned into ordered regimes of operation and chaotic ones with complex
regimes arising on the edge between them. These complex regimes are hypoth-
esized to give rise to computational capabilities. For CAs this means that there
exist critical λ values at which phase transitions occur. The “edge of chaos”
idea is similar to that of self-organized criticality studied by physicists.54,55

One of the main results of Ref. 43 regarding the density task is that most of
the rules evolved to perform it are clustered around λ ≈ 0.43 or λ ≈ 0.57. This
is in contrast to Ref. 42, where most rules are clustered around λ ≈ 0.24 or
λ ≈ 0.83, which correspond to λc values, i.e., critical values near the transition
to chaos.

The results obtained in Ref. 43 concerning the density task, coupled with
a theoretical argument given in their paper lead to the conclusion that the λ

value of successful rules performing the density task is more likely to be close
to 0.5, i.e., depends upon the ρc value. They argued that for this class of
computational tasks, the λc values associated with an edge of chaos are not
correlated with the ability of rules to perform the task. More recently, Ref. 56
have re-examined this issue, suggesting that in order to find out whether there
is an edge of chaos and if so, whether evolution can take us to it, one must define
a good measure of complexity. It was suggested that convergence time is such a
measure, and demonstrated that on average critical rules converge more slowly
than non-critical rules; furthermore, genetic evolution driven by convergence
time produces a wide variety of complex rules. However, other results suggest
that this may not always be a correct measure for a transition.57

How are we to comprehend the emergent computation exhibited by the
evolved CAs? Understanding the results of an evolutionary algorithm is a
general problem; typically the algorithm is set to find high-fitness individuals,

13



without specifying how these should be attained. In many cases it is difficult
to understand the precise manner by which an evolved, high-fitness individual
works.6 In the case of CAs, the problem becomes even more difficult, since
the emergent “program” is generally impossible to extract from the bits of
the rule table.a As in natural evolution, it is very difficult to understand the
“phenotype” (algorithm) from studying the “genotype” (rule table).

One possible approach, proposed in Refs. 58, 59, is to examine the space-
time patterns created by the CA, and to reconstruct from these the “algo-
rithm”. They have developed a general method for analyzing the “intrinsic”
computation embedded in space-time patterns in terms of “regular domains”,
“particles”, and “particle interactions”; this is part of their “computational me-
chanics” framework for understanding computation in physical systems, based
on concepts from formal computation theory. A “regular domain” is, roughly, a
homogeneous region of space-time in which the same “pattern” appears (these
can sometimes be identified by simple observation, as in Figure 3). The notion
of a domain can be formalized by describing its pattern using the minimal
deterministic finite automaton (DFA)47 that accepts all and only those spatial
configurations that are consistent with the pattern. Once a CA’s regular do-
mains have been detected, nonlinear filters can be constructed to filter them
out, leaving just the deviations from these regularities. The resulting filtered
space-time diagram reveals the propagation of domain walls; if these walls re-
main spatially localized over time, then they are called “particles”. These parti-
cles are a primary mechanism for carrying information (or “signals”) over long
space-time distances. Logical operations on the signals are performed when
the particles interact. The collection of domains, domain walls, particles, and
particle interactions for a CA represents the basic information-processing ele-
ments embedded in the CA’s behavior- the CA’s “intrinsic” computation. The
application of computational mechanics to the understanding of rules evolved
by the genetic algorithm is discussed in Refs. 45, 46, 12, 6.

4.2 The synchronization task

The second task investigated by the EVCA group is the one-dimensional syn-
chronization task:46 given any initial configuration, the CA must reach a final
configuration, within M time steps, that oscillates between all 0s and all 1s on
successive time steps (e.g., Figure 7). As noted in Ref. 46, this is perhaps the
simplest, non-trivial synchronization task.

The task is non-trivial since synchronous oscillation is a global property

aThis can be compared to the weights of an artificial neural network, attained via some
learning process, which do not yield to analysis through direct observation.

14



of a configuration, whereas a small radius CA employs only local interactions.
Thus, while local regions of synchrony can be directly attained, it is more
difficult to design CAs in which spatially distant regions are in phase. Since
out-of-phase regions can be distributed throughout the lattice, transfer of in-
formation must occur over large distances (i.e., O(N)) to remove these phase
defects and produce a globally synchronous configuration. Ref. 46 reported
that in 20% of the evolutionary runs the genetic algorithm discovered CAs
that successfully solve the task. As with the density problem, they found that
the evolutionary process progresses through a series of “epochs of innovation”,
five of which were identified for the synchronization task; furthermore, they
applied computational mechanics to study the evolved, emergent computation.

It is interesting to point out that the phenomenon of synchronous oscil-
lations occurs in Nature, a striking example of which is exhibited by fireflies;
thousands such creatures may flash on and off in unison, having started from
totally uncoordinated flickerings.60 Each insect has its own rhythm, which
changes only through local interactions with its neighbors’ lights. Another in-
teresting case involves pendulum clocks; when several of these are placed near
each other, they soon become synchronized by tiny coupling forces transmitted
through the air or by vibrations in the wall to which they are attached (for a
review on synchronous oscillations in Nature see Ref. 61).

5 Co-evolving non-uniform CAs by cellular programming

5.1 Non-uniform CAs

Up to this point we have been studying the classical CA model, using a stan-
dard genetic algorithm to evolve such CAs to perform non-trivial computa-
tional tasks. In the next two sections we study two generalizations of the
original CA. We first consider non-uniform CAs, which function in the same
way as uniform ones, the only difference being in the cellular rules that need
not be identical for all cells. In the next section we generalize on a second as-
pect of CAs, namely their standard, homogeneous connectivity, demonstrating
that (non-uniform) cellular rules can co-evolve concomitantly with the cellular
connections, to produce higher-performance systems.

We first turn our attention to non-uniform CAs. These have been in-
vestigated in Ref. 62 that discusses a one-dimensional CA in which a cell
probabilistically selects one of two rules at each time step. They showed that
complex patterns appear characteristic of (Wolfram) class IV behavior (see
also Ref. 63). Ref. 64 presents two generalizations of cellular automata,
namely discrete neural networks and automata networks; these are compared

15



to the original model from a computational point of view which considers the
classes of problems such models can solve. Our interest below lies in studying
the non-uniform CA model from a computational aspect as well as from an
evolutionary one.

Note that non-uniform CAs share the basic “attractive” properties of uni-
form ones, namely massive parallelism, locality of cellular interactions, and
simplicity of cells (Section 1). From a hardware point of view we observe that
the resources required by non-uniform CAs are identical to those of uniform
ones since a cell in both cases contains a rule. Although simulations of uniform
CAs on serial computers may optimize memory requirements by retaining a
single copy of the rule, rather than have each cell hold one, this in no way de-
tracts from our argument. Indeed, one of the primary motivations for studying
CAs stems from the observation that they are naturally suited for hardware
implementation with the potential of exhibiting extremely fast and reliable
computation that is robust to noisy input data and component failure.65 As
noted in Section 1, one of our goals is the attainment of truly ‘evolving ware’,
evolware, with current implementations centering on hardware, while raising
the possibility of using other forms of ware in the future, such as bioware.13,14

Note that the original, uniform CA model is essentially “programmed” at
an extremely low-level;66 a single rule is sought that must be applied univer-
sally to all cells in the grid, a task that may be arduous even if one takes
an evolutionary approach. For non-uniform CAs search space sizes are vastly
larger than with uniform CAs, a fact that initially seems as an impediment.
However, we have found that the model presents novel dynamics, offering new
and interesting paths in the study of complex adaptive systems.

We have previously applied the non-uniform CA model to the investiga-
tion of artificial life issues,67–69 and have also demonstrated its computation-
universality.70,71 The latter involves the demonstration that non-uniform CAs
are equivalent to universal Turing machines in terms of computational power.47

The universal systems presented are simpler than previous ones and are quasi-
uniform, meaning that the number of distinct rules is extremely small with
respect to rule space size; furthermore, the rules are distributed such that a
subset of dominant rules occupies most of the grid. We have also introduced
the cellular programming algorithm, by which non-uniform CAs are co-evolved
to perform computations; as opposed to the standard genetic algorithm, where
a population of independent problem solutions globally evolves (Section 3), our
approach involves a grid of rules that co-evolves locally.13,71–76 In what follows
we focus our attention on the co-evolution of non-uniform CAs, first present-
ing the cellular programming algorithm, followed by its application to several
computational tasks, including density and synchronization.

16



5.2 The cellular programming algorithm

We study 2-state, non-uniform CAs, in which each cell may contain a different
rule. A cell’s rule table is encoded as a bit string, known as the “genome”, con-
taining the next-state (output) bits for all possible neighborhood configurations
(as explained in Section 4.1). Rather than employ a population of evolving,
uniform CAs, as with the standard genetic algorithm, our algorithm involves a
single, non-uniform CA of size N , with cell rules initialized at random.b Initial
configurations are then generated at random, in accordance with the task at
hand, and for each one the CA is run for M time steps (in our simulations we
used M ≈ N so that computation time is linear with grid size). Each cell’s
fitness is accumulated over C = 300 initial configurations, where a single run’s
score is 1 if the cell is in the correct state after M time steps, and 0 otherwise.
After every C configurations evolution of rules occurs by applying crossover
and mutation. This evolutionary process is performed in a completely local

manner, where genetic operators are applied only between directly connected
cells; it is driven by nfi(c), the number of fitter neighbors of cell i after c con-
figurations. The pseudo-code of our algorithm is delineated in Figure 4. In
our simulations, the total number of initial configurations per evolutionary run
was in the range [105, 106].c

Crossover between two rules is performed by selecting at random (with
uniform probability) a single crossover point and creating a new rule by com-
bining the first rule’s bit string before the crossover point with the second rule’s
bit string from this point onward. Mutation is applied to the bit string of a
rule with probability 0.001 per bit.

There are two main differences between our algorithm and the standard
genetic algorithm (Section 3): (a) A standard genetic algorithm involves a
population of evolving, uniform CAs; all CAs are ranked according to fitness,
with crossover occurring between any two individuals in the population. Thus,
while the CA runs in accordance with a local rule, evolution proceeds in a
global manner. In contrast, our algorithm proceeds locally in the sense that
each cell has access only to its locale, not only during the run but also during
the evolutionary phase, and no global fitness ranking is performed. (b) The
standard genetic algorithm involves a population of independent problem solu-

bTo increase rule diversity in the initial grid, the rule tables were randomly chosen so
as to be uniformly distributed among different λ values. Note that our algorithm is not
necessarily restricted to a single, non-uniform CA since an ensemble of distinct grids can
evolve independently in parallel.

cBy comparison, Refs. 41, 43 employed a genetic algorithm with a population size of 100,
which was run for 100 generations; every generation each CA was run on 100 − 300 initial
configurations, resulting in a total of [106, 3 · 106] configurations per evolutionary run.

17



for each cell i in CA do in parallel

initialize rule table of cell i
fi = 0 { fitness value }

end parallel for

c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state then

fi = fi + 1
end if

end parallel for

c = c+ 1
if c mod C = 0 then { evolve every C configurations}

for each cell i do in parallel

compute nfi(c) { number of fitter neighbors }
if nfi(c) = 0 then rule i is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,

followed by mutation
else if nfi(c) = 2 then replace rule i with the crossover of the two fitter

neighboring rules, followed by mutation
else if nfi(c) > 2 then replace rule i with the crossover of two randomly

chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)

end if

fi = 0
end parallel for

end if

end while

Figure 4: Pseudo-code of the cellular programming algorithm.

18



Table 1: List of computational tasks for which non-uniform CAs were evolved via cellular
programming.

Task Description Grid

Density Decide whether the initial configuration 1D, r=1
contains a majority of 0s or of 1s 2D, 5-neighbor

Synchronization Given any initial configuration, relax to an 1D, r=1
oscillation between all 0s and all 1s 2D, 5-neighbor

Ordering Order initial configuration so that 0s are 1D, r=1
placed on the left and 1s are placed
on the right

Rectangle- Find the boundaries of a randomly-placed, 2D, 5-neighbor
Boundary random-sized non-filled rectangle

Thinning Find thin representations of rectangular 2D, 5-neighbor
patterns

Random Number Generate “good” sequences of pseudo- 1D, r=1
Generation random numbers

tions; the CAs in the population are assigned fitness values independent of one
another, and interact only through the genetic operators in order to produce
the next generation. In contrast, our CA co-evolves since each cell’s fitness
depends upon its evolving neighbors.d

This latter point comprises a prime difference between our algorithm and
parallel genetic algorithms, which have attracted attention over the past few
years. These aim to exploit the inherent parallelism of evolutionary algorithms,
thereby decreasing computation time and enhancing performance.38–40 A num-
ber of models have been suggested, among them coarse-grained, island mod-
els,77–79 and fine-grained, grid models.80,81 The latter resemble our system in
that they are massively parallel and local; however, the co-evolutionary aspect
is missing. As we wish to attain a system displaying global computation, the in-
dividual cells do not evolve independently as with genetic algorithms (be they
parallel or serial), i.e., in a “loosely-coupled” manner, but rather co-evolve,
thereby comprising a “tightly-coupled” system.

In the subsections below we apply the cellular programming algorithm to
six computational tasks, “revisiting” the density and synchronization prob-
lems, as well as studying four additional ones, which are motivated by real-
world applications; these tasks are summarized in Table 1.

dThis may also be considered a form of symbiotic cooperation, which falls, as does co-
evolution, under the general heading of “ecological” interactions (see Ref. 6, pages 182-183).

19



5.3 The density task revisited

Our first application of the cellular programming algorithm involves the co-
evolution of non-uniform CAs to perform the density task.72 While the work
reported in Section 4 concentrated solely on one-dimensional, uniform CAs
with radius r = 3, we studied, in addition to r = 3 non-uniform CAs, also
minimal radius, r = 1 ones, as well as two-dimensional grids. We found that
high-performance systems can be evolved in all cases; below, we review some
of our results pertaining to r = 1 CAs and two-dimensional grids. Remember
that with r = 1, each cell has access only to its own state and that of its two
adjoining neighbors. Note that uniform, one-dimensional, 2-state, r = 1 CAs
are not computation-universal82 nor do they exhibit class IV behavior.17,35

For the cellular programming algorithm we used randomly generated initial
configurations, uniformly distributed over densities in the range [0.0, 1.0], with
the size N = 149 CA being run for M = 150 time steps (as noted above,
computation time is thus linear with grid size). Fitness scores are assigned
to each cell following the presentation of an initial configuration, according to
whether the cell is in the correct state after M time steps or not (as described
in Section 5.2). In what follows, the performance measure reported is defined
as the average fitness of all grid cells over the last C configurations, normalized
to the range [0.0, 1.0].e

The search space of one-dimensional, non-uniform, r = 1 CAs is extremely
large; since each cell contains one of 28 possible rules, this space is of size
(28)149 = 21192. In contrast, the size of uniform, r = 1 CA rule space is small,
consisting of only 28 = 256 rules; this enabled us to test each and every one of
these rules on the density task, a feat not possible for larger values of r. We
found that the maximal performance of uniform CAs is 0.83.f Applying cellular
programming yielded non-uniform CAs that exhibit performance values as high
as 0.93; furthermore, these consist of a grid with a small number of distinct
rules, one of which is “dominant”, a situation referred to as quasi-uniformity
(see Section 5.1). Thus, one of our major results is that co-evolved, quasi-
uniform, r = 1 CAs outperform any possible uniform, r = 1 CA.72

Figure 5 demonstrates the operation of one such co-evolved CA along with
a rules map, depicting the distribution of rules within the grid by assigning
a unique color to each distinct rule. In this example, the grid consists of 146
cells containing rule 226, 2 cells containing rule 224 and one cell containing

eThis is somewhat different than the performance measures defined in Refs. 41, 43; for a
discussion of this issue see Ref. 75.

fThe fitness (performance) measure for uniform CAs is identical to that of the evolved
non-uniform CAs, i.e., the number of cells in the correct state after M time steps, averaged
over the presented random initial configurations, normalized to the range [0.0, 1.0].

20



rule 234.g The non-dominant rules act as “buffers”, preventing information
from flowing too “freely”, and making local corrections to passing signals. A
detailed investigation of the evolutionary process, engendered by application
of the cellular programming algorithm, as well as the resulting systems can be
found in Refs. 71, 72.

(a) (b)

Figure 5: One-dimensional density task: Operation of a co-evolved, non-uniform, r = 1 CA.
Grid size is N = 149. Top figures depict space-time diagrams, bottom figures depict rule
maps. (a) Initial density of 1s is 0.40, final density is 0. (b) Initial density of 1s is 0.60, final
density is 1.

Both the density and synchronization tasks can be extended in a straight-
forward manner to two-dimensional grids.h Applying our algorithm to the
evolution of such CAs to perform the density task yielded notably higher per-
formance than the one-dimensional case, with peak values of 0.99; furthermore,
computation time, i.e., the number of time steps taken by the CA until con-
vergence to the correct final pattern, is shorter (we shall elaborate upon these
improved results in Section 6). Figure 6 demonstrates the operation of one such

gRule numbers are given in accordance with Wolfram’s convention,35 representing the
decimal equivalent of the binary number encoding the rule table. For example, the rule
depicted in Figure 1 is rule 232.

hSpatially periodic boundary conditions are applied, resulting in a toroidal grid.

21



0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

Figure 6: Two-dimensional density task: Operation of a co-evolved, non-uniform, 2-state,
5-neighbor CA. Grid size is N = 225 (15 × 15). Initial density of 1s is 0.51, final density is
1. Numbers at bottom of images denote time steps.

co-evolved CA. Qualitatively, we observe the CA’s “strategy” of successively
classifying local densities, with the locality range increasing over time; “com-
peting” regions of density 0 and density 1 are manifest, ultimately relaxing to
the correct fixed point.

5.4 The synchronization task revisited

Applying cellular programming to the synchronization task yielded (on most
runs) quasi-uniform, r = 1 CAs with a fitness value of 1, i.e., perfect perfor-
mance is attained.i As for the density task, we tested all possible uniform, r = 1
CAs on this task, finding that the highest performance value is 0.84. Thus, we
note again that non-uniform CAs can be co-evolved to successfully solve this

iThe term ‘perfect’ is used here in a stochastic sense since we cannot exhaustively test
all 2149 possible initial configurations nor are we in possession to date of a formal proof;
nonetheless, we have tested our best-performance CAs on numerous configurations, for all
of which synchronization was attained.

22



task, their performance surpassing that of all uniform, r = 1 CAs. Figure 7
depicts the operation of two CAs: a high-performance uniform CA and a co-
evolved, non-uniform CA. We have also experimented with two-dimensional
grids obtaining highly successful results as with the one-dimensional case.

(a) (b)

Figure 7: One-dimensional synchronization task: Operation of two r = 1 CAs. Grid size is
N = 149. Initial configurations were generated at random. Top figures depict space-time
diagrams, bottom figures depict rule maps. (a) Uniform rule 31 (one of the best-performance
uniform CAs for this task). (b) A co-evolved, non-uniform, r = 1 CA.

5.5 The ordering task

In this task, the non-uniform, one-dimensional, r = 1 CA, given any initial
configuration, must reach a final configuration in which all 0s are placed on
the left side of the grid and all 1s on the right side. This means that there
are N(1 − ρ(0)) 0s on the left and Nρ(0) 1s on the right, where ρ(0) is the
density of 1s at time 0, as defined in Section 4.1 (thus, the final density equals
the initial one, however the configuration consists of a block of 0s on the left,
followed by a block of 1s on the right). The ordering task may be considered a
variant of the density task and is clearly non-trivial following our reasoning of
Section 4.1. It is interesting in that the output is not a uniform configuration
of all 0s or all 1s as with the density and synchronization tasks. Applying

23



cellular programming yielded quasi-uniform, r = 1 CAs with fitness values as
high as 0.93, one of which is depicted in Figure 8; as with the previous tasks we
were able to ascertain that this performance level is better than the maximal
uniform, r = 1 CA performance, which is 0.71.

(a) (b)

Figure 8: One-dimensional ordering task: Operation of a co-evolved, non-uniform, r = 1
CA. Top figures depict space-time diagrams, bottom figures depict rule maps. (a) Initial
density of 1s is 0.315, final density is 0.328. (b) Initial density of 1s is 0.60, final density is
0.59.

5.6 Image processing tasks

The possibility of applying CAs to perform image processing tasks arises as a
natural consequence of their architecture; in a two-dimensional CA, a cell (or
a group of cells) can correspond to an image pixel, with the CA’s dynamics
designed so as to perform a desired image processing task. Earlier work in this
area, carried out mostly in the 1960s and the 1970s, was treated in Ref. 83,
with more recent applications presented in Refs. 84, 85.

The next two tasks involve image processing operations. The first is a two-
dimensional boundary computation: given an initial configuration consisting
of a non-filled rectangle, the CA must reach a final configuration in which the
rectangular region is filled, i.e., all cells within the confines of the rectangle

24



are in state 1, and all other cells are in state 0. Initial configurations consist
of random-sized rectangles placed randomly on the grid (in our simulations,
cells within the rectangle in the initial configuration were set to state 1 with
probability 0.3; cells outside the rectangle were set to 0). Note that boundary
cells can also be absent in the initial configuration. This operation can be con-
sidered a form of image enhancement, used, e.g., for treating corrupted images.
Using cellular programming, non-uniform CAs were evolved with performance
values of 0.99, one of which is depicted in Figure 9.

0 1 2 3

4 5 6 7

Figure 9: Two-dimensional rectangle-boundary task: Operation of a co-evolved, non-
uniform, 2-state, 5-neighbor CA. Grid size is N = 225 (15 × 15). Numbers at bottom
of images denote time steps.

Upon studying the (two-dimensional) rules map of the co-evolved, non-
uniform CA, we found that the grid is quasi-uniform, with one dominant rule
present in most cells. This rule maps the cell’s state to zero if the number of
neighboring cells in state 1 (including the cell itself) is less than two, otherwise
mapping the cell’s state to one;j thus, growing regions of 1s are more likely to
occur within the rectangle confines than without.

The second task is that of thinning (also known as skeletonization), a fun-
damental preprocessing step in many image processing and pattern recognition
algorithms. When the image consists of strokes or curves of varying thickness
it is usually desirable to reduce them to thin representations located along the

jThis is referred to as a totalistic rule, in which the state of a cell depends only on the
sum of the states of its neighbors at the previous time step, and not on their individual
states.35

25



approximate middle of the original figure. Such “thinned” representations are
typically easier to process in later stages, entailing savings in both time and
storage space.86

In Ref. 86 four sets of binary images were considered, two of which consist
of rectangular patterns oriented at different angles. The algorithms presented
therein employ a two-dimensional grid with a 9-cell neighborhood; each parallel
step consists of two sub-iterations in which distinct operations take place. The
set of images considered by us includes rectangular patterns oriented either
horizontally or vertically; while more restrictive than that of Ref. 86, it is
noted that we employ a smaller neighborhood (5-cell) and do not apply any
sub-iterations.

Figure 10 demonstrates the operation of a co-evolved CA performing the
thinning task. Although the evolved grid does not compute perfect solutions,
we observe, nonetheless, good thinning “behavior” upon presentation of rect-
angular patterns as defined above (Figure 10a); furthermore, partial success is
demonstrated when presented with more difficult images involving intersecting
lines (Figure 10b).

0 1 2 3

(a)

0 1 2 3

(b)

Figure 10: Two-dimensional thinning task: Operation of a co-evolved, non-uniform, 2-state,
5-neighbor CA. Grid size is N = 1600 (40× 40). Numbers at bottom of images denote time
steps. (a) Two separate lines. (b) Two intersecting lines.

26



5.7 Random number generation

Random numbers are needed in a variety of applications, yet finding good
random number generators, or randomizers, is a difficult task.87,88 To generate
a random sequence on a digital computer, one starts with a fixed length seed,
then iteratively applies some transformation to it, progressively extracting as
long as possible a random sequence. In the last decade cellular automata have
been used to generate random numbers.9,89,90

In Refs. 73, 74 we applied the cellular programming algorithm to evolve
random number generators. Essentially, the cell’s fitness score for a single
configuration (refer to Figure 4) is the entropy of the temporal bit sequence
of that cell; higher entropy implies better fitness. This fitness measure was
used to drive the evolutionary process, after which standard tests were applied
to evaluate the quality of the evolved CAs. Our results suggest that good
generators can indeed be evolved; these exhibit behavior at least as good as that
of previously described CAs, with notable advantages arising from the existence
of a “tunable” algorithm for obtaining random number generators.73,74

6 Co-evolving cellular architectures by cellular programming

In the previous section we presented the cellular programming approach, by
which non-uniform CAs can be co-evolved to perform computational tasks.
Such CAs comprise a generalization of the original CA model, by removing
the uniformity-of-rules constraint. In this section we generalize on a second
aspect of CAs, namely their standard, homogeneous connectivity.

In Section 5.3 we noted that the density task can be extended in a straight-
forward manner to two-dimensional grids, resulting in markedly higher evolved
performance coupled with shorter computation times, in comparison to the
one-dimensional case. This finding is intuitively understood by observing
that a two-dimensional, locally-connected grid can be embedded in a one-
dimensional grid with local and distant connections. This can be achieved, for
example, by aligning the rows of the two-dimensional grid so as to form a one-
dimensional array; the resulting embedded one-dimensional grid has distant
connections of order

√
N , where N is the grid size. Since the density task is

global it is likely that the observed superior performance of two-dimensional
grids arises from the existence of distant connections that enhance information
propagation across the grid.

Motivated by this observation concerning the effect of connection lengths
on performance, we set out in Refs. 75, 76 to quantitatively study the rela-
tionship between performance and connectivity on the global density task, in

27



one-dimensional CAs; the results are summarized below (for a detailed account
the reader is referred to the aforementioned papers).

We use the term architecture to denote the connectivity pattern of CA
cells. In the standard one-dimensional model a cell is connected to r local
neighbors on either side (in addition to a self-connection), where r is the ra-
dius (Section 2). The model we consider is that of non-uniform CAs with
non-standard architectures, in which cells need not necessarily contain the
same rule nor be locally connected; however, as with the standard CA model,
each cell has a small, identical number of impinging connections. In what fol-
lows the term neighbor refers to a directly connected cell. We employed the
cellular programming algorithm to evolve cellular rules for non-uniform CAs
whose architectures are fixed (yet non-standard) during the evolutionary run,
or evolve concomitantly with the rules; these are referred to as fixed or evolving
architectures, respectively. Note that this bears some resemblance to Kauff-
man’s NK model55,91 in that connections as well as rules are heterogeneous;
however, in our case, while these are initially assigned at random, they then
evolve to perform a veritable computation, whereas Kauffman used random

boolean networks to study issues related to fitness landscapes engendered by
arbitrarily complex epistatic couplings. Furthermore, the K parameter, denot-
ing the number of connections per cell, may vary from K = 1 to K = N , the
latter representing a fully connected grid; in our case, the number of impinging
connections per cell is kept small (i.e., we concentrate on very small K values).

We consider one-dimensional, symmetrical architectures where each cell
has four neighbors, with connection lengths of a and b, as well as a self-
connection. Spatially periodic boundary conditions are used, resulting in a
circular grid. This type of architecture belongs to the general class of circulant
graphs,92 and is denoted by CN (a, b), where N is the grid size, a, b the con-

nection lengths (Figure 11). The distance between two cells on the circulant is
the number of connections one must traverse on the shortest path connecting
them.

We surmised that attaining high performance on global tasks requires rapid
information propagation throughout the CA, and that the rate of information
propagation across the grid inversely depends on the average cellular distance
(acd). It is straightforward to show that every CN (a, b) architecture is iso-
morphic to a CN (1, d′) architecture, for some d′, referred to as the equivalent

d′.75,76 We may therefore study the performance of CN (1, d) architectures, our
conclusions being applicable to the general CN (a, b) case.

To study the effects of different architectures on performance, the cellular
programming algorithm was applied to the evolution of cellular rules using
fixed, non-standard architectures. We performed numerous evolutionary runs

28



Figure 11: A C8(2, 3) circulant graph. Each node is connected to four neighbors, with
connection lengths of 2 and 3.

using CN (1, d) architectures with different values of d, recording the maximal
performance attained during the run (for the definition of performance refer to
Section 5.3). Our results showed that markedly higher performance is attained
for values of d corresponding to low acd values and vice versa. While perfor-
mance behaves in a rugged, non-monotonic manner as a function of d, we have
found that it is linearly correlated with acd (with a correlation coefficient of
0.99, and a negligible p value).

These results demonstrate that performance is strongly dependent upon
the architecture, with higher performance attainable by using different archi-
tectures than that of the standard CA model. As each CN (a, b) architecture is
isomorphic to a CN (1, d) one, and as we have found that performance is corre-
lated with acd in the CN (1, d) case, it follows that the performance of general
CN (a, b) architectures is also correlated with acd. As an example of such an
architecture, the operation of a co-evolved, C149(3, 5) CA on the density task
is demonstrated in Figure 12.

Having shown that cellular programming can be applied to the evolution of
non-uniform CAs with fixed, non-standard architectures, we now ask whether
a-priori specification of the connectivity parameters (a, b or d) is indeed nec-
essary, or can an efficient architecture co-evolve along with the cellular rules.
Moreover, can heterogeneous architectures, where each cell may have different
di or (ai,bi) connection lengths, achieve high performance? Below we denote by
CN (1, di) and CN (ai, bi) heterogeneous architectures with one or two evolving
connection lengths per cell, respectively. Note that these are the cell’s input
connections, on which information is received; as connectivity is heterogeneous,
input and output connections may be different, the latter specified implicitly
by the input connections of the neighboring cells.

In order to evolve the architecture as well as the rules, the cellular program-
ming algorithm of Section 5.2 is modified, such that each cellular “genome”

29



(a) (b)

Figure 12: The density task: Operation of a co-evolved, non-uniform, C149(3, 5) CA. (a)
Initial density of 1s is 0.48. (b) Initial density of 1s is 0.51. Note that computation time,
i.e., the number of time steps until convergence to the correct final pattern, is shorter than
that of the GKL rule (Figure 3). Furthermore, it can be qualitatively observed that the
computational “behavior” is different than GKL, as is to be expected due to the different
connectivity architecture.

consists of two “chromosomes”. The first, encoding the rule table, is identi-
cal to that delineated in Section 5.2, while the second chromosome encodes
the cell’s connections. The two-level dynamics engendered by the concomitant
evolution of rules and connections markedly increases the size of the space
searched by evolution. Our results demonstrated that high performance can
be attained, nonetheless, surpassing, in fact, that of the fixed-architecture CAs.
Figure 13 demonstrates the operation of a co-evolved, C129(1, di) CA on the
density task.

In Section 4.1 we noted that Refs. 41, 43 discussed two possible choices of
initial configurations, either uniformly distributed over densities in the range
[0.0, 1.0], or binomially distributed over initial densities. In our studies of non-
uniform CAs as applied to the density task (Section 5.3) we concentrated on
the former distribution; nonetheless, we find that evolved, non-uniform CAs
can attain high performance even when applying the more difficult binomial
distribution. Observing the results presented in Table 2, we note that perfor-
mance exceeds that of previously evolved CAs, coupled with markedly shorter
computation times (as demonstrated, e.g., by Figure 13). It is important to
note that this is achieved using only 5 connections per cell, as compared to 7
used by the fixed, standard-architecture CAs. It is most likely that our CAs
could attain even better results using a higher number of connections per cell,

30



(a) (b)

Figure 13: The density task: Operation of a co-evolved, non-uniform, C129(1, di) CA. (a)
Initial density of 1s is 0.496. (b) Initial density of 1s is 0.504. Note that computation time
is shorter than that of the fixed-architecture CA and markedly shorter than the GKL rule.

since this entails a notable reduction in acd.
In summary, our main findings concerning the co-evolution of cellular ar-

chitectures are:

1. The performance of fixed-architecture CAs solving global tasks depends
strongly and linearly on their average cellular distance. Compared with
the standard CN (1, 2) architecture, considerably higher performance can
be attained at very low connectivity values, by selecting a CN (1, d) or
CN (a, b) architecture with a low acd value, such that d, a, b ≪ N .

2. High performance architectures can be co-evolved using the cellular pro-
gramming algorithm, thus obviating the need to specify in advance the
precise connectivity scheme. Furthermore, as was shown in Ref. 75, it is
possible to evolve such architectures that exhibit low connectivity cost

per cell k as well as high performance.

7 Concluding remarks and future research

In this paper we explored the evolution of parallel cellular systems, embodied
by cellular automata networks, pursuing the two-fold goal of: (1) enhancing
our understanding of the fundamental principles of emergent computation in

kThis is defined as di for the CN (1, di) case and ai + bi for CN (ai, bi).

31



Table 2: A comparison of performance and computation times of the best CAs. P
129,104 is

a measure introduced by Mitchell et al., representing the fraction of correct classifications
performed by the CA of size N = 129 over 104 initial configurations randomly chosen from
a binomial distribution over initial densities. T

129,104 denotes the average computation time

over the 104 initial configurations, i.e., the average number of time steps until convergence
to the final pattern. #c is the number of connections per cell. The CAs designated by (1),
(2), and (3) are three of our co-evolved CAs; those designated by φi are CAs reported by
Mitchell et al.

desig- rule(s) architecture #c P129,104 T129,104

nation

CA (1) evolved, non-uniform evolved, non-std. 5 0.791 17

CA (2) evolved, non-uniform evolved, non-std. 5 0.788 27

CA (3) evolved, non-uniform evolved, non-std. 5 0.781 12

φ100 evolved, uniform fixed, standard 7 0.775 72

φ11102 evolved, uniform fixed, standard 7 0.751 80

φ17083 evolved, uniform fixed, standard 7 0.743 107

GKL designed, uniform fixed, standard 7 0.825 74

natural systems, as well as of the ways by which it might have evolved, and
(2) mimicking Nature’s achievement, creating artificial systems based on these
principles, matching the problem-solving capacities of their natural counter-
parts.

Specifically, applying a standard genetic algorithm to the evolution of cel-
lular automata, the EVCA group demonstrated that high-performance systems
can be attained for two non-trivial, global computational tasks, density and
synchronization. They observed that evolution progresses through a series of
“epochs of innovation”, ending with highly fit individuals, though held back
by a number of impediments, such as symmetry-breaking and the sampling of
initial configurations. It was shown that for the density task, the critical λc

values associated with an edge of chaos are not necessarily correlated with the
ability of rules to perform the task. We also outlined the computational me-
chanics framework which is used to understand the rules and strategies evolved
by the genetic algorithm.

We then studied two generalizations of the original CA model. The first
consists of non-uniform CAs, where cellular rules need not be identical for
all cells. Introducing the cellular programming algorithm for co-evolving such
CAs, we applied it to six computational tasks, demonstrating that high-performance
systems can be attained. As opposed to the standard genetic algorithm, where
a population of independent problem solutions globally evolves, cellular pro-
gramming involves a grid of rules that co-evolves locally. This renders it more

32



amenable to implementation as ‘evolving ware’, evolware. The second general-
ization of the original CA model involved non-standard, evolving architectures,
where we demonstrated that yet higher-performance systems can be attained.

The work reported herein represents a first step in an exciting, nascent
domain. While results to date are encouraging, there are still several possible
avenues of future research, some of which have been explored to a certain
extent, while others await to be pursued; we have attempted to assemble some
of these below:

1. What classes of computational tasks are most suitable for such evolving
cellular systems? and, what possible applications do they entail? We
have noted feasible application areas such as image processing and ran-
dom number generation. Clearly, more research is necessary in order to
elaborate these directions as well as to find new ones.

2. Computation in cellular systems. How are we to understand the emer-
gent, global computation arising in our locally-connected systems? This
issue is interesting both from a theoretical point of view as well as from
a practical one, where it may help guide our search for suitable classes
of tasks for such systems.

3. Studying the evolutionary process. Both the standard genetic algorithm
used to evolve uniform CAs and the local cellular programming algorithm
used to co-evolve non-uniform CAs present interesting dynamics worthy
of further study. We wish to enhance our understanding of how evolution
creates complex, global behavior in such locally interconnected systems
of simple parts.

4. Modifications of the evolutionary algorithms. The representation of CA
rules (i.e., the “genome”) used in the experiments reported herein consists
of a bit string containing a lexicographic listing of all possible neighbor-
hood configurations (Section 4.1). It has been noted in Ref. 93 that
this representation is fairly low-level and brittle since a change of one bit
in the rule table can have a large effect on the computation performed.
They evolved uniform CAs to perform the density task using other bit-
string representations, as well as a novel, higher-level one consisting of
condition-action pairs; it was demonstrated that better performance is
attained when employing the latter. More recently, Refs. 94, 95 used ge-
netic programming,9 in which a rule is represented by a LISP expression,
to evolve uniform CAs to perform the density task; this resulted in a
CA which outperforms the best known uniform, r = 3 density classifier,
namely the GKL rule. These experiments demonstrate that changing

33



the bit-string representation, i.e., the encoding of the “genome”, may
entail notable performance gains; indeed, this issue is of prime import
where evolutionary algorithms in general are concerned (for a discussion
see, e.g., Ref. 6, chapter 5). Such encodings could be incorporated in
the evolutionary algorithms presented herein. We noted in Section 5.2
that fitness in the cellular programming algorithm is assigned locally to
each cell; another possibility might be to assign fitness scores to blocks
of cells, in accordance with their mutual degree of success on the task at
hand. The cellular programming algorithm in particular presents novel
dynamics due its local, co-evolutionary nature, and it is clear that there
is much yet to be explored.

5. Modifications of the cellular system model. We presented a number of
generalizations of the CA model, including non-uniformity of rules, non-
standard architectures, and heterogeneous architectures. Other possible
modifications include: (1) The application of asynchronous state up-
dating, an issue which we had previously investigated in Ref. 68 in a
somewhat different model (currently synchronous updating is applied,
i.e., all cells are updated at once).96 (2) Non-deterministic updating,
also connected with the issue of robustness, namely how resistant are
our systems in the face of errors (e.g., how is the computation affected
when a small probability of error is introduced in the updating of cell
states?).96 (3) Three-dimensional grids (and tasks). In this paper we
studied one- and two-dimensional grids; ultimately, three-dimensional
systems may be built, enabling new kinds of phenomena to emerge, in
analogy to the physical world.97 As a simple observation consider the fact
that signal paths are more collision-prone in two dimensions whereas in
three dimensions they may pass each other unperturbed (for example,
the mammalian brain). We also noted in Section 6 the advantages of
two-dimensional grids in terms of signal propagation, with respect to
one-dimensional grids; following this reasoning, three-dimensional arrays
could result in yet better systems.75 Current technology is mostly two-
dimensional (e.g., integrated circuits are basically composed of one or
more 2D layers). Future systems, based, e.g., on molecular computing,98

will be three-dimensional, possibly displaying an array of biological phe-
nomena, including self-repair, self-reproduction, growth and evolution.99

One of the motivations for the above modifications of the cellular system
model is the desire to attain realistic systems that are more amenable to
implementation as evolware.

6. Scaling. This involves two separate issues: the evolutionary algorithm

34



and the evolved solutions.

(a) How does the evolutionary algorithm scale with grid size? Though
to date experiments have been conducted with different grid sizes,
a more in-depth inquiry is needed. Note that as the cellular pro-
gramming algorithm is local it scales better in terms of hardware
resources than the standard (global) genetic algorithm; adding grid
cells requires only local connections whereas the standard genetic al-
gorithm includes global operators such as fitness ranking and crossover.

(b) How can larger grids be obtained from smaller (evolved) ones, i.e.,
how can evolved solutions be scaled? This has been purported as
an advantage of uniform CAs, since one can directly use the evolved
rule in a grid of any desired size. However, this form of simple scal-
ing does not bring about task scaling; as demonstrated, e.g., in Ref.
12 for the density task, performance decreases as grid size increases.
For non-uniform CAs quasi-uniformity may facilitate scaling since
only a small number of rules must ultimately be considered. To date
we have attained successful systems for the random number gener-
ation task using a simple scaling scheme involving the duplication
of the rules grid;73 we are currently exploring a more sophisticated
scaling approach, with preliminary encouraging results.

7. Hierarchy. The idea of decomposing a system into a hierarchy of lay-
ers, each carrying out a different function, is ubiquitous in natural as
well as artificial systems. As an example of the former, one can cite the
human visual system, which begins with low-level image processing in
the retina, ending in high-level operations, such as face-recognition, per-
formed in the visual cortex. Artificial, feed-forward neural networks are
an example of artificial systems exhibiting a layered structure. This idea
can be incorporated within our framework, thereby obtaining a hierarchi-
cal system, composed of evolving, layered grids; this could improve the
system’s performance, facilitate its scaling, and indeed enable entirely
new (possibly more difficult) tasks to be confronted.

8. Implementation. As discussed above, this is a major motivation driving
this work, the goal being to construct evolware.

Evolving, cellular systems hold potential both scientifically, as vehicles for
studying phenomena of interest in areas such as complex adaptive systems
and artificial life, as well as practically, showing a range of potential future
applications ensuing the construction of adaptive systems. We hope this paper

35



has shed some light on the behavior of parallel cellular systems, the complex
computation they exhibit, and the application of artificial evolution to their
construction.

Acknowledgments

I wish to thank Daniel Mange, Melanie Mitchell, and Eduardo Sanchez for
their valuable comments and suggestions. I am grateful to Eytan Ruppin
for his general support and for our enjoyable mutual collaboration on the co-
evolution of cellular architectures. I thank Dietrich Stauffer for his careful
reading of this manuscript and his many helpful suggestions. I am especially
grateful to Marco Tomassini for our many stimulating discussions and mutual
work, results of which are disseminated throughout this paper.

References

1. P. Coveney and R. Highfield. Frontiers of Complexity: The Search for Order
in a Chaotic World. Faber and Faber, London, 1995.

2. K. Kaneko, I. Tsuda, and T. Ikegami, editors. Constructive Complexity and
Artificial Reality, Proceedings of the Oji International Seminar on Complex
Systems- from Complex Dynamical Systems to Sciences of Artificial Reality,
volume 75, Nos. 1-3 of Physica D, August 1994.

3. H. R. Pagels. The Dreams of Reason: The Computer and the Rise of the
Sciences of Complexity. Bantam Books, New York, 1989.

4. T. Bäck. Evolutionary Algorithms in Theory and Practice: Evolution Strate-
gies, Evolutionary Programming, Genetic Algorithms. Oxford University
Press, New York, 1996.

5. Z. Michalewicz. Genetic Algorithms + Data Structures = Evolution Programs.
Springer-Verlag, Heidelberg, third edition, 1996.

6. M. Mitchell. An Introduction to Genetic Algorithms. MIT Press, Cambridge,
MA, 1996.

7. H.-P. Schwefel. Evolution and Optimum Seeking. John Wiley & Sons, New
York, 1995.

8. D. B. Fogel. Evolutionary Computation: Toward a New Philosophy of Machine
Intelligence. IEEE Press, Piscataway, NJ, 1995.

9. J. R. Koza. Genetic Programming: On the Programming of Computers by
Means of Natural Selection. The MIT Press, Cambridge, Massachusetts, 1992.

10. D. E. Goldberg. Genetic Algorithms in Search, Optimization and Machine
Learning. Addison-Wesley, 1989.

11. J. H. Holland. Adaptation in Natural and Artificial Systems: An Introduc-
tory Analysis with Applications to Biology, Control, and Artificial Intelligence.
University of Michigan Press, Ann Arbor, Michigan, 1975. (Second edition,
Cambridge, MA: MIT Press, 1992).

36



12. J. P. Crutchfield and M. Mitchell. The evolution of emergent computation.
Proceedings of the National Academy of Sciences USA, 92(23):10742–10746,
1995.

13. M. Sipper. Designing evolware by cellular programming. In T. Higuchi,
M. Iwata, and W. Liu, editors, Proceedings of the First International Con-
ference on Evolvable Systems: From Biology to Hardware (ICES96), volume
1259 of Lecture Notes in Computer Science, pages 81–95. Springer-Verlag,
Heidelberg, 1997.

14. M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, and M. Tomassini.
Online autonomous evolware. In T. Higuchi, M. Iwata, and W. Liu, editors,
Proceedings of the First International Conference on Evolvable Systems: From
Biology to Hardware (ICES96), volume 1259 of Lecture Notes in Computer
Science, pages 96–106. Springer-Verlag, Heidelberg, 1997.

15. E. Sanchez and M. Tomassini, editors. Towards Evolvable Hardware, volume
1062 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg, 1996.

16. J. von Neumann. Theory of Self-Reproducing Automata. University of Illinois
Press, Illinois, 1966. Edited and completed by A. W. Burks.

17. S. Wolfram. Universality and complexity in cellular automata. Physica D,
10:1–35, 1984.

18. T. Toffoli and N. Margolus. Cellular Automata Machines. The MIT Press,
Cambridge, Massachusetts, 1987.

19. A. Burks, editor. Essays on Cellular Automata. University of Illinois Press,
Urbana, Illinois, 1970.

20. A. Smith. Cellular automata theory. Technical Report 2, Stanford Electronic
Lab., Stanford University, 1969.

21. J.-Y. Perrier, M. Sipper, and J. Zahnd. Toward a viable, self-reproducing
universal computer. Physica D, 97:335–352, 1996.

22. M. Gardner. The fantastic combinations of John Conway’s new solitaire game
“life”. Scientific American, 223(4):120–123, October 1970.

23. M. Gardner. On cellular automata, self-reproduction, the Garden of Eden and
the game “life”. Scientific American, 224(2):112–117, February 1971.

24. E. R. Berlekamp, J. H. Conway, and R. K. Guy. Winning Ways for your
Mathematical Plays, volume 2, chapter 25, pages 817–850. Academic Press,
New York, 1982.

25. K. Culik II, L. P. Hurd, and S. Yu. Computation theoretic aspects of cellular
automata. Physica D, 45:357–378, 1990.

26. T. Toffoli. Cellular automata mechanics. Technical Report 208, Comp. Comm.
Sci. Dept., The University of Michigan, 1977.

27. E. Fredkin and T. Toffoli. Conservative logic. International Journal of Theo-
retical Physics, 21:219–253, 1982.

28. N. Margolus. Physics-like models of computation. Physica D, 10:81–95, 1984.
29. T. Toffoli. Reversible computing. In J. W. De Bakker and J. Van Leeuwen,

editors, Automata, Languages and Programming, pages 632–644. Springer-
Verlag, 1980.

37



30. T. Toffoli. Cellular automata as an alternative to (rather than an approxi-
mation of) differential equations in modeling physics. Physica D, 10:117–127,
1984.

31. J. Hardy, O. De Pazzis, and Y. Pomeau. Molecular dynamics of a classical
lattice gas: Transport properties and time correlation functions. Physical
Review A, 13:1949–1960, 1976.

32. U. Frisch, B. Hasslacher, and Y. Pomeau. Lattice-gas automata for the Navier-
Stokes equation. Physical Review Letters, 56:1505–1508, 1986.

33. G. Vichniac. Simulating physics with cellular automata. Physica D, 10:96–115,
1984.

34. C. Bennett and G. Grinstein. Role of irreversibility in stabilizing complex and
nonenergodic behavior in locally interacting discrete systems. Physical Review
Letters, 55:657–660, 1985.

35. S. Wolfram. Statistical mechanics of cellular automata. Reviews of Modern
Physics, 55(3):601–644, July 1983.

36. S. Wolfram. Cellular automata as models of complexity. Nature, 311:419–424,
October 1984.

37. G. B. Ermentrout and L. Edelstein-Keshet. Cellular automata approaches to
biological modeling. Journal of Theoretical Biology, 160:97–133, 1993.

38. M. Tomassini. Evolutionary algorithms. In E. Sanchez and M. Tomassini, ed-
itors, Towards Evolvable Hardware, volume 1062 of Lecture Notes in Computer
Science, pages 19–47. Springer-Verlag, Heidelberg, 1996.

39. M. Tomassini. A survey of genetic algorithms. In D. Stauffer, editor, Annual
Reviews of Computational Physics, volume III, pages 87–118. World Scientific,
Singapore, 1995.

40. E. Cantú-Paz. A summary of research on parallel genetic algorithms. Technical
Report 95007, Illinois Genetic Algorithms Laboratory, University of Illinois at
Urbana-Champaign, Urbana, IL, July 1995.

41. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Evolving cellular automata to
perform computations: Mechanisms and impediments. Physica D, 75:361–391,
1994.

42. N. H. Packard. Adaptation toward the edge of chaos. In J. A. S. Kelso,
A. J. Mandell, and M. F. Shlesinger, editors, Dynamic Patterns in Complex
Systems, pages 293–301. World Scientific, Singapore, 1988.

43. M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Revisiting the edge of chaos:
Evolving cellular automata to perform computations. Complex Systems, 7:89–
130, 1993.

44. M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dynamics, computation,
and the “edge of chaos”: A re-examination. In G. Cowan, D. Pines, and
D. Melzner, editors, Complexity: Metaphors, Models, and Reality, pages 491–
513. Addison-Wesley, Reading, MA, 1994.

45. R. Das, M. Mitchell, and J. P. Crutchfield. A genetic algorithm discovers
particle-based computation in cellular automata. In Y. Davidor, H.-P. Schwe-
fel, and R. Männer, editors, Parallel Problem Solving from Nature- PPSN III,

38



volume 866 of Lecture Notes in Computer Science, pages 344–353, Heidelberg,
1994. Springer-Verlag.

46. R. Das, J. P. Crutchfield, M. Mitchell, and J. E. Hanson. Evolving globally
synchronized cellular automata. In L. J. Eshelman, editor, Proceedings of
the Sixth International Conference on Genetic Algorithms, pages 336–343, San
Francisco, CA, 1995. Morgan Kaufmann.

47. J. E. Hopcroft and J. D. Ullman. Introduction to Automata Theory Languages
and Computation. Addison-Wesley, Redwood City, CA, 1979.

48. M. Land and R. K. Belew. No perfect two-state cellular automata for density
classification exists. Physical Review Letters, 74(25):5148–5150, June 1995.

49. P. Gacs, G. L. Kurdyumov, and L. A. Levin. One-dimensional uniform arrays
that wash out finite islands. Problemy Peredachi Informatsii, 14:92–98, 1978.

50. P. Gonzaga de Sá and C. Maes. The Gacs-Kurdyumov-Levin automaton
revisited. Journal of Statistical Physics, 67(3/4):507–522, 1992.

51. C. G. Langton. Computation at the edge of chaos: Phase transitions and
emergent computation. Physica D, 42:12–37, 1990.

52. C. G. Langton. Life at the edge of chaos. In C. G. Langton, C. Taylor,
J. D. Farmer, and S. Rasmussen, editors, Artificial Life II, volume X of SFI
Studies in the Sciences of Complexity, pages 41–91, Redwood City, CA, 1992.
Addison-Wesley.

53. W. Li, N. H. Packard, and C. G. Langton. Transition phenomena in cellular
automata rule space. Physica D, 45:77–94, 1990.

54. P. Bak, C. Tang, and K. Wiesenfeld. Self-organized criticality. Physical Review
A, 38(1):364–374, July 1988.

55. S. A. Kauffman. The Origins of Order. Oxford University Press, New York,
1993.

56. H. Gutowitz and C. Langton. Mean field theory of the edge of chaos. In
F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, ECAL’95: Third
European Conference on Artificial Life, volume 929 of Lecture Notes in Com-
puter Science, pages 52–64, Heidelberg, 1995. Springer-Verlag.

57. D. Stauffer and L. de Arcangelis. Dynamics and strong size effects of a boot-
strap percolation problem. International Journal of Modern Physics C, 7:739–
745, 1996.

58. J. E. Hanson and J. P. Crutchfield. The attractor-basin portrait of a cellular
automaton. Journal of Statistical Physics, 66:1415–1462, 1992.

59. J. P. Crutchfield and J. E. Hanson. Turbulent pattern bases for cellular
automata. Physica D, 69:279–301, 1993.

60. J. Buck. Synchronous rhythmic flashing of fireflies II. The Quarterly Review
of Biology, 63(3):265–289, September 1988.

61. S. H. Strogatz and I. Stewart. Coupled oscillators and biological synchroniza-
tion. Scientific American, 269(6):102–109, December 1993.

62. G. Y. Vichniac, P. Tamayo, and H. Hartman. Annealed and quenched in-
homogeneous cellular automata. Journal of Statistical Physics, 45:875–883,
1986.

39



63. H. Hartman and G. Y. Vichniac. Inhomogeneous cellular automata. In
E. Bienenstock, F. Fogelman, and G. Weisbuch, editors, Disordered Systems
and Biological Organization, pages 53–57. Springer-Verlag, Heidelberg, 1986.

64. M. Garzon. Cellular automata and discrete neural networks. Physica D,
45:431–440, 1990.

65. P. Gacs. Nonergodic one-dimensional media and reliable computation. Con-
temporary Mathematics, 41:125, 1985.

66. S. Rasmussen, C. Knudsen, and R. Feldberg. Dynamics of programmable
matter. In C. G. Langton, C. Taylor, J. D. Farmer, and S. Rasmussen, editors,
Artificial Life II, volume X of SFI Studies in the Sciences of Complexity, pages
211–254, Redwood City, CA, 1992. Addison-Wesley.

67. M. Sipper. Non-uniform cellular automata: Evolution in rule space and for-
mation of complex structures. In R. A. Brooks and P. Maes, editors, Artificial
Life IV, pages 394–399, Cambridge, Massachusetts, 1994. The MIT Press.

68. M. Sipper. Studying artificial life using a simple, general cellular model.
Artificial Life, 2(1):1–35, 1995. The MIT Press, Cambridge, MA.

69. M. Sipper. An introduction to artificial life. Explorations in Artificial Life
(special issue of AI Expert), pages 4–8, September 1995. Miller Freeman, San
Francisco, CA.

70. M. Sipper. Quasi-uniform computation-universal cellular automata. In
F. Morán, A. Moreno, J. J. Merelo, and P. Chacón, editors, ECAL’95: Third
European Conference on Artificial Life, volume 929 of Lecture Notes in Com-
puter Science, pages 544–554, Heidelberg, 1995. Springer-Verlag.

71. M. Sipper. Evolution of Parallel Cellular Machines: The Cellular Program-
ming Approach. Springer-Verlag, Heidelberg, 1997.

72. M. Sipper. Co-evolving non-uniform cellular automata to perform computa-
tions. Physica D, 92:193–208, 1996.

73. M. Sipper and M. Tomassini. Generating parallel random number genera-
tors by cellular programming. International Journal of Modern Physics C,
7(2):181–190, 1996.

74. M. Sipper and M. Tomassini. Co-evolving parallel random number generators.
In H.-M. Voigt, W. Ebeling, I. Rechenberg, and H.-P. Schwefel, editors, Parallel
Problem Solving from Nature - PPSN IV, volume 1141 of Lecture Notes in
Computer Science, pages 950–959. Springer-Verlag, Heidelberg, 1996.

75. M. Sipper and E. Ruppin. Co-evolving architectures for cellular machines.
Physica D, 99:428–441, 1997.

76. M. Sipper and E. Ruppin. Co-evolving cellular architectures by cellular pro-
gramming. In Proceedings of IEEE Third International Conference on Evolu-
tionary Computation (ICEC’96), pages 306–311, 1996.

77. T. Starkweather, D. Whitley, and K. Mathias. Optimization using distributed
genetic algorithms. In H.-P. Schwefel and R. Männer, editors, Parallel Problem
Solving from Nature, volume 496 of Lecture Notes in Computer Science, page
176, Heidelberg, 1991. Springer-Verlag.

78. J. P. Cohoon, S. U. Hedge, W. N. Martin, and D. Richards. Punctuated

40



equilibria: A parallel genetic algorithm. In J. J. Grefenstette, editor, Proceed-
ings of the Second International Conference on Genetic Algorithms, page 148.
Lawrence Erlbaum Associates, 1987.

79. R. Tanese. Parallel genetic algorithms for a hypercube. In J. J. Grefen-
stette, editor, Proceedings of the Second International Conference on Genetic
Algorithms, page 177. Lawrence Erlbaum Associates, 1987.

80. M. Tomassini. The parallel genetic cellular automata: Application to global
function optimization. In R. F. Albrecht, C. R. Reeves, and N. C. Steele, edi-
tors, Proceedings of the International Conference on Artificial Neural Networks
and Genetic Algorithms, pages 385–391. Springer-Verlag, 1993.

81. B. Manderick and P. Spiessens. Fine-grained parallel genetic algorithms. In
J. D. Schaffer, editor, Proceedings of the Third International Conference on
Genetic Algorithms, page 428. Morgan Kaufmann, 1989.

82. K. Lindgren and M. G. Nordahl. Universal computation in simple one-
dimensional cellular automata. Complex Systems, 4:299–318, 1990.

83. K. Preston, Jr. and M. J. B. Duff. Modern Cellular Automata: Theory and
Applications. Plenum Press, New York, 1984.

84. A. Broggi, V. D’Andrea, and G. Destri. Cellular automata as a computational
model for low-level vision. International Journal of Modern Physics C, 4(1):5–
16, 1993.

85. G. Hernandez and H. J. Herrmann. Cellular-automata for elementary image-
enhancement. CVGIP: Graphical Models and Image Processing, 58(1):82–89,
January 1996.

86. Z. Guo and R. W. Hall. Parallel thinning with two-subiteration algorithms.
Communications of the ACM, 32(3):359–373, March 1989.

87. S. K. Park and K. W. Miller. Random number generators: Good ones are
hard to find. Communications of the ACM, 31(10):1192–1201, October 1988.

88. F. Schmid and N. B. Wilding. Errors in Monte Carlo simulations using shift
register random number generators. International Journal of Modern Physics
C, 6(6):781–787, 1995.

89. S. Wolfram. Random sequence generation by cellular automata. Advances in
Applied Mathematics, 7:123–169, June 1986.

90. P. D. Hortensius, R. D. McLeod, and H. C. Card. Parallel random number
generation for VLSI systems using cellular automata. IEEE Transactions on
Computers, 38(10):1466–1473, October 1989.

91. D. Stauffer and N. Jan. Size effects in Kauffman type evolution for rugged
fitness landscapes. Journal of Theoretical Biology, 168:211–218, 1994.

92. F. Buckley and F. Harary. Distance in Graphs. Addison-Wesley, Redwood
City, CA, 1990.

93. M. Land and R. K. Belew. Towards a self-replicating language for computation.
In J. R. McDonnell, R. G. Reynolds, and D. B. Fogel, editors, Evolutionary
programming IV: Proceedings of the Fourth Annual Conference on Evolution-
ary Programming, pages 403–413, Cambridge, Massachusetts, 1995. The MIT
Press.

41



94. D. Andre, F. H Bennett III, and J. R. Koza. Evolution of intricate long-
distance communication signals in cellular automata using genetic program-
ming. In C. Langton and T. Shimohara, editors, Artificial Life V: Proceedings
of the Fifth International Workshop on the Synthesis and Simulation of Living
Systems, Cambridge, MA, 1996. The MIT Press.

95. D. Andre, F. H Bennett III, and J. R. Koza. Discovery by genetic programming
of a cellular automata rule that is better than any known rule for the majority
classification problem. In J. R. Koza, D. E. Goldberg, D. B. Fogel, and R. L.
Riolo, editors, Genetic Programming 1996: Proceedings of the First Annual
Conference, pages 3–11, Cambridge, MA, 1996. The MIT Press.

96. M. Sipper, M. Tomassini, and M. S. Capcarrère. Designing cellular automata
using a parallel evolutionary algorithm. Nuclear Instruments & Methods in
Physics Research, Section A, 389(1-2):278–283, 1997.

97. H. de Garis. “Cam-Brain” ATR’s billion neuron artificial brain project: A
three year progress report. In Proceedings of IEEE Third International Con-
ference on Evolutionary Computation (ICEC’96), pages 886–891, 1996.

98. K. E. Drexler. Nanosystems: Molecular Machinery, Manufacturing and Com-
putation. John Wiley, New York, 1992.

99. D. Mange and A. Stauffer. Introduction to embryonics: Towards new self-
repairing and self-reproducing hardware based on biological-like properties. In
N. M. Thalmann and D. Thalmann, editors, Artificial Life and Virtual Reality,
pages 61–72, Chichester, England, 1994. John Wiley.

42




