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Definition
Evolutionary algorithms are a family of algorithms
inspired by the workings of evolution by natural selec-
tion, whose basic structure is to

. Produce an initial population of individuals, these
latter being candidate solutions to the problem at
hand

. Evaluate the �tness of each individual in accordance
with the problem whose solution is sought

. While termination condition not met do
a. Select �tter individuals for reproduction
b. Recombine (crossover) individuals
c. Mutate individuals
d. Evaluate �tness of modi�ed individuals

. End while

Evolutionary games is the application of evolu-
tionary algorithms to the evolution of game-playing
strategies for various games, including chess, backgam-
mon, and Robocode.

Motivation and Background
Ever since the dawn of arti�cial intelligence in the s,
games have been part and parcel of this lively �eld.
In , a year a�er the Dartmouth Conference that
marked the o�cial birth of AI, Alex Bernstein designed
a program for the IBM  that played two amateur
games of chess. In , Allen Newell, J.C. Shaw, and
Herbert Simon introduced a more sophisticated chess
program (beaten in thirty-�ve moves by a ten-year-old
beginner in its last o�cial game played in ). Arthur

L. Samuel of IBM spent much of the s working
on game-playing AI programs, and by  he had a
checkers program that could play at the master’s level.
In  and , Donald Michie described a simple
trial-and-error learning system for learning how to play
Tic-Tac-Toe (or Noughts and Crosses) called MENACE
(for Matchbox Educable Noughts and Crosses Engine).
�ese are but examples of highly popular games that
have been treated by AI researchers since the �eld’s
inception.

Why study games? �is question was answered by
Susan L. Epstein, who wrote:

�ere are two principal reasons to continue
to do research on games... First, human fas-
cination with game playing is long-standing
and pervasive. Anthropologists have cata-
loged popular games in almost every cul-
ture... Games intrigue us because they address
important cognitive functions... �e second
reason to continue game-playing research is
that some di�cult games remain to be won,
games that people play very well but com-
puters do not. �ese games clarify what our
current approach lacks. �ey set challenges
for us to meet, and they promise ample
rewards (Epstein, ).

Studying games may thus advance our knowledge
in both cognition and arti�cial intelligence, and, last
but not least, games possess a competitive angle which
coincides with our human nature, thus motivating both
researcher and student alike.

Even more strongly, Laird and van Lent proclaimed
that,

...interactive computer games are the killer
application for human-level AI. �ey are the
application that will soon need human-level
AI, and they can provide the environments for
research on the right kinds of problems that
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lead to the type of the incremental and integra-
tive research needed to achieve human-level
AI (Laird & van Lent, ).

Recently, evolutionary algorithms have proven a
powerful tool that can automatically “design” successful
game-playing strategies for complex games (Azaria &
Sipper, a,b; Hauptman & Sipper, b, a,b;
Shichel et al., ; Sipper et al., ).

Structure of the Learning System
Genetic Programming

Genetic Programming is a subclass of evolutionary
algorithms, wherein a population of individual LISP
programs is evolved, each program comprising func-
tions and terminals.�e functions are usually arithmetic
and logic operators that receive a number of arguments
as input and compute a result as output; the terminals
are zero-argument functions that serve both as con-
stants and as sensors, the latter being a special type of
function that queries the domain environment.

�e main mechanism behind genetic programming
is precisely that of a generic evolutionary algorithm
(Sipper, ; Tettamanzi & Tomassini, ), namely,
the repeated cycling through four operations applied to
the entire population: evaluate-select-crossover-mutate.
Starting with an initial population of randomly gener-
ated LISP programs, each individual is evaluated in the
domain environment and assigned a �tness value rep-
resenting how well the individual solves the problem
at hand. Being randomly generated, the �rst-generation
individuals usually exhibit poor performance. However,
some individuals are better than others, that is, (as in
nature) variability exists, and through the mechanism
of natural (or, in our case, arti�cial) selection, these
have a higher probability of being selected to parent the
next generation. �e size of the population is �nite and
usually constant.

Speci�cally, �rst a genetic operator is chosen at ran-
dom; then, depending on the operator, one or two indi-
viduals are selected from the current population using
a selection operator, one example of which is tourna-
ment selection: Randomly choose a small subset of indi-
viduals, and then select the one with the best �tness.
A�er the probabilistic selection of better individuals the
chosen genetic operator is used to construct the next
generation. �e most common operators are

Evolutionary Games. Figure . Genetic operators in gen-

etic programming. LISP programs are depicted as trees.

Crossover (top): Two subtrees (marked in bold) are

selected from the parents and swapped. Mutation (bot-

tom): A subtree (marked in bold) is selected from the

parent individual and removed. A new subtree is grown

instead

● Reproduction (unary): Copy one individual to the
next generation with no modi�cations. �e main
purpose of this operator is to preserve a small num-
ber of good individuals.

● Crossover (binary): Randomly select an internal
node in each of the two individuals and swap the
subtrees rooted at these nodes. An example is shown
in Fig. .

● Mutation (unary): Randomly select a node from the
tree, delete the subtree rooted at that node, and
then “grow” a new subtree in its stead. An exam-
ple is shown in Fig.  (the growth operator as well
as crossover and mutation are described in detail in
Koza, ).

�e generic genetic programming �owchart is
shown in Fig. . When one wishes to employ genetic
programming, one needs to de�ne the following six
desiderata:

. Program architecture
. Set of terminals
. Set of functions
. Fitness measure
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Evolutionary Games. Figure . Generic genetic program-

ming flowchart (based on Koza, ). M is the population

size, and Gen is the generation counter. The termination

criterion can be the completion of a fixed number of gen-

erations or the discovery of a good-enough individual

. Control parameters
. Manner of designating result and terminating run

Evolving Game-Playing Strategies

Recently, we have shown that complex and success-
ful game-playing strategies can be attained via genetic
programming. We focused on three games (Azaria &
Sipper, a,b; Hauptman & Sipper, b, a,b;
Shichel et al., ; Sipper et al., ):

. Backgammon. Evolves a full-�edged player for the
non-doubling-cube version of the game (Azaria &
Sipper, a,b; Sipper et al., ).

. Chess (endgames). Evolves a player able to play
endgames (Hauptman & Sipper, b, a,b;

Sipper et al., ). While endgames typically con-
tain but a few pieces, the problem of evaluation is
still hard, as the pieces are usually free to move all
over the board, resulting in complex game trees –
both deep and with high branching factors. Indeed,
in the chess lore much has been said and written
about endgames.

. Robocode. A simulation-based game in which
robotic tanks �ght to destruction in a closed
arena (robocode.alphaworks.ibm.com). �e pro-
grammers implement their robots in the Java pro-
gramming language, and can test their creations
either by using a graphical environment in which
battles are held, or by submitting them to a cen-
tral Web site where online tournaments regularly
take place. Our goal here has been to evolve
Robocode players able to rank high in the inter-
national league (Shichel et al., ; Sipper et al.,
).

A strategy for a given player in a game is a way of
specifying which choice the player is to make at every
point in the game from the set of allowable choices at
that point, given all the information that is available
to the player at that point (Koza, ). �e problem
of discovering a strategy for playing a game can be
viewed as one of seeking a computer program. Depend-
ing on the game, the program might take as input the
entire history of past moves or just the current state of
the game. �e desired program then produces the next
move as output. For some games one might evolve a
complete strategy that addresses every situation tack-
led.�is proved to work well with Robocode, which is a
dynamic game, with relatively few parameters and little
need for past history.

In a two-player game, such as chess or backgammon,
players move in turn, each trying to win against the
opponent according to speci�c rules (Hong, Huang, &
Lin, ). �e course of the game may be modeled
using a structure known as an adversarial game tree (or
simply game tree), in which nodes are the positions in
the game and edges are the moves. By convention, the
two players are denoted asMAX andMIN, whereMAX
is the player who moves �rst. �us, all nodes at odd-
numbered tree levels are game positions where MAX
moves next (labeled MAX nodes). Similarly, nodes on
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even levels are called MIN nodes, and represent posi-
tions in which MIN (opponent) moves next.

�e complete game tree for a given game is the tree
starting at the initial position (the root) and containing
all possible moves (edges) from each position. Terminal
nodes represent positions where the rules of the game
determine whether the result is a win, a draw, or a loss.
Although the game tree for the initial position is an
explicit representation of all possible paths of the game,
therefore theoretically containing all the information
needed to play perfectly, for most (nontrivial) games it
is extremely large, and constructing it is not feasible.
For example, the complete chess game tree consists of
roughly  nodes (Shannon, ).

When the game tree is too large to be generated
completely, only a partial tree (called a search tree)
is generated instead. �is is accomplished by invok-
ing a search algorithm, deciding which nodes are to be
developed at any given time and when to terminate the
search (typically at nonterminal nodes due to time con-
straints). During the search, some nodes are evaluated
by means of an evaluation function according to given
heuristics. �is is done mostly at the leaves of the tree.
Furthermore, search can start fromany position andnot
just at the beginning of the game.

Because we are searching for a winning strategy, we
need to �nd a good next move for the current player,
such that no matter what the opponent does therea�er,
the player’s chances of winning the game are as high
as possible. A well-known method called the minimax
search (Campbell & Marsland, ; Kaindl, ) has
traditionally been used, and it forms the basis for most
methods still in use today. �is algorithm performs a
depth-�rst search (the depth is usually predetermined),
applying the evaluation function to the leaves of the tree,
and propagating these values upward according to the
minimax principal: at MAX nodes, select the maximal
value, and atMIN nodes – theminimal value.�e value
is ultimately propagated to the position from which the
search had started.

With games such as backgammon and chess one
can couple a current-state evaluator (e.g., board evalu-
ator) with a next-move generator. One can then go on
to create a minimax tree, which consists of all possible
moves, counter moves, counter counter-moves, and so
on; for real-life games, such a tree’s size quickly becomes
prohibitive. �e approach we used with backgammon

and chess is to derive a very shallow, single-level tree,
and evolve “smart” evaluation functions. Our arti�cial
player is thus created by combining an evolved board
evaluator with a simple program that generates all next-
move boards (such programs can easily be written for
backgammon and chess).

In what follows, we describe the de�nition of the six
items necessary in order to employ genetic program-
ming, as delineated in the previous section: program
architecture, set of terminals, set of functions, �tness
measure, control parameters, and manner of designat-
ing result and terminating run. Due to lack of space
we shall elaborate upon one game – Robocode – and
only summarize the major results for backgammon and
chess.

Example: Robocode

Program Architecture A Robocode player is written as
an event-driven Java program. A main loop controls
the tank activities, which can be interrupted on various
occasions, called events. �e program is limited to four
lines of code, as we were aiming for the HaikuBot cat-
egory, one of the divisions of the international league
with a four-line code limit. �e main loop contains one
line of code that directs the robot to start turning the
gun (and the mounted radar) to the right. �is insures
that within the �rst gun cycle, an enemy tank will be
spotted by the radar, triggering a ScannedRobotEvent.
Within the code for this event, three additional lines
of code were added, each controlling a single actuator
and using a single numerical input that was supplied by
a genetic programming-evolved subprogram. �e �rst
line instructs the tank to move to a distance speci�ed
by the �rst evolved argument. �e second line instructs
the tank to turn to an azimuth speci�ed by the sec-
ond evolved argument. �e third line instructs the gun
(and radar) to turn to an azimuth speci�ed by the third
evolved argument (Fig. ).

Terminal and Function Sets We divided the termi-
nals into three groups according to their functional-
ity (Shichel et al., ) (Fig. ):

. Game-status indicators: A set of terminals that pro-
vide real-time information on the game status, such
as last enemy azimuth, current tank position, and
energy levels.
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Robocode Player’s Code Layout

while (true)
TurnGunRight(INFINITY); //main code loop

...
OnScannedRobot(){

MoveTank(<GP#1>);
TurnTankRight(<GP#2>);
TurnGunRight(<GP#3>);

}

Evolutionary Games. Figure . Robocode player’s code layout (HaikuBot division)

Energy() Returns the remaining energy of the player
Heading() Returns the current heading of the player
X() Returns the current horizontal position of the player
Y() Returns the current vertical position of the player
MaxX() Returns the horizontal battlefield dimension
MaxY() Returns the vertical battlefield dimension
EnemyBearing() Returns the current enemy bearing, relative to the current player’s heading
EnemyDistance() Returns the current distance to the enemy
EnemyVelocity() Returns the current enemy’s velocity
EnemyHeading() Returns the current enemy heading, relative to the current player’s heading
EnemyEnergy() Returns the remaining energy of the enemy
Constant() An ERC (Ephemeral Random Constant) in the range [-1,1]
Random() Returns a random real number in the range [-1,1]
Zero() Returns the constant 0

(a)

Add(F, F) Add two real numbers
Sub(F, F) Subtract two real numbers
Mul(F, F) Multiply two real numbers
Div(F, F) Divide first argument by second, if denominator non-zero, otherwise

return zero
Abs(F) Absolute value
Neg(F) Negative value
Sin(F) Sine function
Cos(F) Cosine function
ArcSin(F) Arcsine function
ArcCos(F) Arccosine function
IfGreater(F, F, F, F) If first argument greater than second, return value of third argument,

else return value of fourth argument
IfPositive(F, F, F) If first argument is positive, return value of second argument, else return

value of third argument
Fire(F) If argument is positive, execute fire command with argument as fire-

power and return 1; otherwise, do nothing and return 0

(b)

Evolutionary Games. Figure . Robocode representation. (a) Terminal set (b) Function set (F: Float)

. Numerical constants: Two terminals, one providing
the constant  and the other being an ephemeral
random constant (ERC). �is latter terminal is
initialized to a random real numerical value in
the range [-, ], and does not change during
evolution.

. Fire command: �is special function is used to cur-
tail one line of code by not implementing the �re
actuator in a dedicated line.

Fitness Measure We explored two di�erent modes of
learning: using a �xed external opponent as teacher,
and coevolution – letting the individuals play against



Encyclopedia of Machine Learning Chapter No: 00004 Page Proof Page 6 14-11-2009 #6

 Encyclopedia of Machine Learning

each other; the former proved better. However, not just
one but three external opponents were used to measure
performance; these adversaries were downloaded from
theHaikuBot league (robocode.yajags.com).�e�tness
value of an individual equals its average fractional score
(over three battles).

Control Parameters and Run Termination �e major
evolutionary parameters (Koza, ) were population
size – , generation count – between  and ,
selection method – tournament, reproduction prob-
ability – , crossover probability – ., and muta-
tion probability – .. An evolutionary run terminates
when �tness is observed to level o�. Since the game
is highly nondeterministic a “lucky” individual might
attain a higher �tness value than better overall individ-
uals. In order to obtain a more accurate measure for the
evolved players, we let each of them do battle for 
rounds against  di�erent adversaries (one at a time).
�e results were used to extract the top player – to be
submitted to the international league.

Results We submitted our top player to the HaikuBot
division of the international league. At its very �rst tour-
nament it came in third, later climbing to �rst place of 
(robocode.yajags.com/20050625/haiku-1v1.html). All
other  programs, defeated by our evolved strategy,
were written by humans. For more details on GP-
Robocode see Shichel et al., () and Azaria, Haupt-
man, and Shichel ().

Backgammon and Chess: Major Results

Backgammon We pitted our top evolved backgammon
players against Pubeval, a free, public-domain board
evaluation function written by Tesauro. �e program –
which plays well – has become the de facto yardstick
used by the growing community of backgammon-
playing program developers. Our top evolved player
was able to attain a win percentage of .% in a tour-
nament against Pubeval, about % higher (!) than the
previous top method. Moreover, several evolved strate-
gies were able to surpass the % mark, and most of
them outdid all previous works. For more details on
GP-Gammon, see Azaria and Sipper (a) andAzaria
et al. ().

Chess (endgames) We pitted our top evolved chess-
endgame players against two very strong external oppo-
nents: () A program we wrote (“Master”) based upon
consultation with several high-ranking chess players
(the highest being Boris Gutkin, ELO , Inter-
national Master); () CRAFTY – a world-class chess
program, which �nished second in the  World
Computer Speed Chess Championship (www.cs.biu.ac.
il/games/). Speed chess (“blitz”) involves a time-limit
per move, which we imposed both on CRAFTY and on
our players. Not only did we thus seek to evolve good
players, but ones who play well and fast. Results are
shown in Table . As can be seen, GP-EndChess man-
ages to hold its own, and even win, against these top
players. For more details on GP-EndChess see Azaria
et al., () and Hauptman and Sipper (b).

Evolutionary Games. Table  Percent of wins, advan-

tages, and draws for the best GP-EndChess player in the

tournament against two top competitors

%Wins %Advs %Draws

Master . . .

CRAFTY . . .

Deeper analysis of the strategies developed
(Hauptman & Sipper, a) revealed several impor-
tant shortcomings, most of which stemmed from the
fact that they used deep knowledge and little search
(typically, they developed only one level of the search
tree). Simply increasing the search depth would not
solve the problem, since the evolved programs exam-
ine each board very thoroughly, and scanning many
boards would increase time requirements prohibitively.
And so we turned to evolution to �nd an optimal way
to overcome this problem: How to add more search
at the expense of less knowledgeable (and thus less
time-consuming) node evaluators, while attaining bet-
ter performance. In Hauptman and Sipper (b)
we evolved the search algorithm itself, focusing on the
Mate-In-N problem: �nd a keymove such that evenwith
the best possible counterplays, the opponent cannot
avoid being mated in (or before) move N. We showed
that our evolved search algorithms successfully solve
several instances of the Mate-In-N problem, for the
hardest ones developing % less game-tree nodes than
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CRAFTY. Improvement is thus not over the basic alpha-
beta algorithm, but over a world-class program using all
standard enhancements (Hauptman & Sipper, b).

Finally, in Hauptman and Sipper (a), we exam-
ined a strong evolved chess-endgame player, focusing
on the player’s emergent capabilities and tactics in the
context of a chess match. Using a number of meth-
ods we analyzed the evolved player’s building blocks
and their e�ect on play level. We concluded that evo-
lution has found combinations of building blocks that
are far from trivial and cannot be explained through
simple combination – thereby indicating the possible
emergence of complex strategies.

Cross References
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7Genetic Algorithms
7Genetic Programming
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