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To see a world in a grain of sand

And a heaven in a wild flower,

Hold infinity in the palm of your hand

And eternity in an hour.

William Blake, Auguries of Innocence
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Preface

There is grandeur in this view of life, with its several powers, having been
originally breathed into a few forms or into one; and that, whilst this planet
has gone cycling on according to the fixed law of gravity, from so simple a
beginning endless forms most beautiful and most wonderful have been, and
are being, evolved.

Charles Darwin, The Origin of Species

Natural evolution has “created” a multitude of systems in which the actions of

simple, locally-interacting components give rise to coordinated global information

processing. Insect colonies, cellular assemblies, the retina, and the immune sys-

tem, have all been cited as examples of systems in which emergent computation

occurs. This term refers to the appearance of global information-processing capa-

bilities that are not explicitly represented in the system’s elementary components

or in their interconnections.

The parallel cellular machines “designed” by nature exhibit striking problem-

solving capacities, while functioning within a dynamic environment. The central

question posed in this volume is whether we can mimic nature’s achievement,

creating artificial machines that exhibit characteristics such as those manifest by

their natural counterparts. Clearly, this ambitious goal is yet far off, however,

our intent is to take a small step toward it.

The first issue that must be addressed concerns the basic design of our system,

namely, we must choose a viable machine model. We shall present a number of

systems in this work, which are essentially generalizations of the well-known cel-

lular automata (CA) model. CAs are dynamical systems in which space and time

are discrete. A cellular automaton consists of an array of cells, each of which can

be in one of a finite number of possible states, updated synchronously in discrete

time steps, according to a local, identical interaction rule. CAs exhibit three no-

table features, namely, massive parallelism, locality of cellular interactions, and

simplicity of basic components (cells). Thus, they present an excellent point of

departure for our forays into parallel cellular machines.

Having chosen the machine model, we immediately encounter a major problem

common to such local, parallel systems, namely, the painstaking task one is faced

with in designing them to exhibit a specific behavior or solve a particular problem.

This results from the local dynamics of the system, which renders the design of

local interaction rules to perform global computational tasks extremely arduous.

Aiming to learn how to design such parallel cellular machines, we turn to nature,

seeking inspiration in the process of evolution. The idea of applying the biological

principle of natural evolution to artificial systems, introduced more than three

decades ago, has seen impressive growth in the past decade. Usually grouped

under the term evolutionary algorithms or evolutionary computation, we find the

domains of genetic algorithms, evolution strategies, evolutionary programming,
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and genetic programming. In this volume we employ artificial evolution, based on

the genetic-algorithms approach, to evolve (“design”) parallel cellular machines.

The book consists of three parts. After presenting the overall framework in

Chapter 1, including introductory expositions of cellular automata and genetic

algorithms, we move on to Chapter 2, the first part of this volume. We focus

on non-uniform cellular automata, the machine model which serves as a basis

for the succeeding parts. Such automata function in the same way as uniform

ones, the only difference being in the local cellular interaction rules that need

not be identical for all cells. In Chapter 2 we investigate the issue of universal

computation, namely, the construction of machines, embedded in cellular space,

whose computational power is equivalent to that of a universal Turing machine.

This is carried out in the context of 2-dimensional, 2-state, 5-neighbor cellular

space, that is not computation universal in the uniform case. We show that non-

uniform CAs can attain universal computation using systems that are simpler

than previous ones and are quasi-uniform, meaning that the number of distinct

rules is extremely small with respect to rule-space size, distributed such that a

subset of dominant rules occupies most of the grid. The final system presented

is minimal, with but two distinct rules. Thus, we demonstrate that simple, non-

uniform CAs comprise viable parallel cellular machines.

Chapter 3, the second part of this volume, investigates issues pertaining to

artificial life (ALife). We present a modified non-uniform CA model, with which

questions of evolution, adaptation, and multicellularity are addressed. Our ALife

system consists of a 2-dimensional grid of interacting “organisms” that may evolve

over time. We first present designed multicellular organisms that display several

interesting behaviors, including reproduction, growth, and mobility. We then

turn our attention to evolution in various environments, including an environ-

ment where competition for space occurs, an IPD (Iterated Prisoner’s Dilemma)

environment, a spatial-niches environment, and a temporal-niches one. Several

measures of interest are introduced, enabling us to glean the evolutionary process’

inner workings. This latter point is a prime advantage of ALife models, namely,

our enhanced investigative power in comparison to natural systems.

Our main conclusion from this part is that non-uniform CAs and their exten-

sions comprise austere yet versatile models for studying ALife phenomena. It is

hoped that the development of such ALife models will serve the two-fold goal of:

(1) increasing our understanding of biological phenomena, and (2) enhancing our

insight into artificial systems, thereby enabling us to improve their performance.

ALife research opens new doors, providing us with novel opportunities to explore

issues such as adaptation, evolution, and emergence, that are central both in

natural environments as well as man-made ones.

In the third and main part of this volume, consisting of Chapters 4 through 8,

we focus on the evolution of parallel cellular machines that solve complex, global

computational tasks. In Chapter 4 we introduce the basic approach, denoted cel-

lular programming, whereby a non-uniform CA locally coevolves to solve a given
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task. Our approach differs from the standard genetic algorithm, where a pop-

ulation of independent problem solutions globally evolves. We demonstrate the

viability of our methodology by conducting an in-depth study of two global com-

putational problems, density and synchronization, which are successfully solved

by coevolved machines. In Chapter 5 we describe a number of additional com-

putational tasks, motivated by real-world problems, for which parallel cellular

machines were evolved via cellular programming. These tasks include counting,

ordering, boundary computation, thinning, and random number generation, sug-

gesting possible application domains for our systems.

Though most of the results described in this volume have been obtained

through software simulation, a prime motivation of our work is the attainment

of “evolving ware,” evolware, with current implementations centering on hard-

ware, while raising the possibility of using other forms in the future, such as

bioware. This idea, whose origins can be traced to the cybernetics movement of

the 1940s and the 1950s, has recently resurged in the form of the nascent field

of bio-inspired systems and evolvable hardware. The field draws on ideas from

evolutionary computation as well as on recent hardware developments. Chapter 6

presents the “firefly” machine, an evolving, online, autonomous hardware system

that implements the cellular programming algorithm, thus demonstrating that

evolware can indeed be attained.

Most classical software and hardware systems, especially parallel ones, exhibit

a very low level of fault tolerance, i.e., they are not resilient in the face of errors;

indeed, where software is concerned, even a single error can often bring an entire

program to a grinding halt. Future computing systems may contain thousands or

even millions of computing elements. For such large numbers of components, the

issue of resilience can no longer be ignored since faults will be likely to occur with

high probability. Chapter 7 looks into the issue of fault tolerance, examining the

resilience of our evolved systems when operating under faulty conditions. We find

that they exhibit graceful degradation in performance, able to tolerate a certain

level of faults.

A fundamental property of the original CA model is its standard, homoge-

neous connectivity, meaning that the cellular array is a regular grid, all cells

connected in exactly the same manner to their neighbors. In Chapter 8 we study

non-standard connectivity architectures, showing that these entail definite per-

formance gains, and that, moreover, one can evolve the architecture through a

two-level evolutionary process, in which the local cellular interaction rules evolve

concomitantly with the cellular connections.

Our main conclusion from the third part is that parallel cellular machines can

attain high performance on complex computational tasks, and that, moreover,

such systems can be evolved rather than designed. Chapter 9 concludes the

volume, presenting several possible avenues of future research.

Parallel cellular machines hold potential both scientifically, as vehicles for

studying phenomena of interest in areas such as complex adaptive systems and
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artificial life, as well as practically, showing a range of potential future applica-

tions, ensuing the construction of systems endowed with evolutionary, reproduc-

tive, regenerative, and learning capabilities. We hope this volume sheds light on

the behavior of such machines, the complex computation they exhibit, and the

application of artificial evolution to attain such systems.
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Chapter 1

Introduction

The White Rabbit put on his spectacles. “Where shall I begin, please your
Majesty?” he asked.
“Begin at the beginning,” the King said, very gravely, “and go on till you
come to the end: then stop.”

Lewis Carroll, Alice’s Adventures in Wonderland

1.1 Prologue

Natural evolution has “created” a multitude of systems in which the actions of

simple, locally-interacting components give rise to coordinated global information

processing. Insect colonies, cellular assemblies, the retina, and the immune sys-

tem, have all been cited as examples of systems in which emergent computation

occurs (Langton, 1989; Langton et al., 1992). This term refers to the appearance

of global information-processing capabilities that are not explicitly represented

in the system’s elementary components or in their interconnections (Das et al.,

1994). As put forward by Steels (1994), a system’s behavior is emergent if it can

only be defined using descriptive categories that are not necessary to describe

the behavior of the constituent components. As a simple example, consider the

regularities observed in the collective behavior of many molecules, entailing new

categories like temperature and pressure.

The parallel cellular machines “designed” by nature exhibit striking problem-

solving capabilities, while functioning within a dynamic environment. The central

question posed in this volume is whether we can mimic nature’s achievement,

creating artificial machines that exhibit characteristics such as those manifest by

their natural counterparts. Clearly, this ambitious goal is yet far off, however,

our intent is to take a small step toward it.

Our interest lies with systems in which many locally connected processors,

with no central control, interact in parallel to produce globally-coordinated be-

havior that is more powerful than can be done by individual components or linear

combinations of components. The first issue that must be addressed is that of the

basic design of our system, namely, we must choose a viable machine model. We
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shall present a number of systems in this volume, which are essentially generaliza-

tions of the well-known cellular automata (CA) model. CAs, described in detail

in the next section, exhibit three notable features, namely, massive parallelism,

locality of cellular interactions, and simplicity of basic components (cells). They

perform computations in a distributed fashion on a spatially-extended grid; as

such, they differ from the standard approach to parallel computation, in which

a problem is split into independent sub-problems, each solved by a different pro-

cessor, later to be combined in order to yield the final solution. CAs suggest a

new approach, in which complex behavior arises in a bottom-up manner from

non-linear, spatially-extended, local interactions (Mitchell et al., 1994b). Thus,

the CA model presents an excellent point of departure for our forays into parallel

cellular machines.

Upon settling the first issue, choosing the machine model, we immediately

encounter a major problem common to such local, parallel systems, namely, the

painstaking task one is faced with in designing them to exhibit a specific behavior

or solve a particular problem. This results from the local dynamics of the system,

which renders the design of local interaction rules to perform global computa-

tional tasks extremely arduous. Automating the design (programming) process

would greatly enhance the viability of such systems (Mitchell et al., 1994b). Thus,

the second issue is that of how to design such parallel cellular machines. Again,

we turn to nature, seeking inspiration in the process of evolution.

The idea of applying the biological principle of natural evolution to artificial

systems, introduced more than three decades ago, has seen impressive growth

in the past decade. Usually grouped under the term evolutionary algorithms

or evolutionary computation, we find the domains of genetic algorithms, evolu-

tion strategies, evolutionary programming, and genetic programming. Central to

all these different methodologies is the idea of solving problems by evolving an

initially random population of possible solutions, through the application of “ge-

netic” operators, such that in time “fitter” (i.e., better) solutions emerge (Bäck,

1996; Michalewicz, 1996; Mitchell, 1996; Schwefel, 1995; Fogel, 1995; Koza, 1992;

Goldberg, 1989; Holland, 1975). We shall employ artificial evolution to evolve

(“design”) parallel cellular machines.

The issues we investigate pertain to the fields of complex adaptive systems and

artificial life (ALife). The former is concerned with understanding the laws and

mechanisms by which global behavior emerges in locally-interconnected systems

of simple parts. As noted above, these abound in nature at various levels of

organization, including the physical, chemical, biological, and social levels. The

field has experienced rapid growth in the past few years (Coveney and Highfield,

1995; Kaneko et al., 1994; Kauffman, 1993; Pagels, 1989).

Artificial life is a field of study devoted to understanding life by attempting

to abstract the fundamental dynamical principles underlying biological phenom-

ena, and recreating these dynamics in other physical media, such as computers,

making them accessible to new kinds of experimental manipulation and testing
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(Langton, 1992b). Artificial life represents an attempt to vastly increase the role

of synthesis in the study of biological phenomena (Langton, 1994; see also Sipper,

1995a; Levy, 1992). As noted by Mayr (1982): “The question of what the major

current problems of Biology are cannot be answered, for I do not know of a sin-

gle biological discipline that does not have major unresolved problems . . . Still,

the most burning and as yet most intractable problems are those that involve

complex systems.”

We commence our study of parallel cellular machines with an exposition of

cellular automata and genetic algorithms. These serve as a basis for our work,

and are presented in the following two sections.

1.2 Cellular automata

1.2.1 An informal introduction

Cellular automata (CA) were originally conceived by Ulam and von Neumann

in the 1940s to provide a formal framework for investigating the behavior of

complex, extended systems (von Neumann, 1966). CAs are dynamical systems

in which space and time are discrete. A cellular automaton consists of an array

of cells, each of which can be in one of a finite number of possible states, updated

synchronously in discrete time steps, according to a local, identical interaction

rule. The state of a cell at the next time step is determined by the current states

of a surrounding neighborhood of cells (Wolfram, 1984b; Toffoli and Margolus,

1987).

The cellular array (grid) is n-dimensional, where n = 1, 2, 3 is used in practice;

in this volume we shall concentrate on n = 1, 2, i.e., one- and two-dimensional

grids. The identical rule contained in each cell is essentially a finite state machine,

usually specified in the form of a rule table (also known as the transition function),

with an entry for every possible neighborhood configuration of states. The cellular

neighborhood of a cell consists of the surrounding (adjacent) cells. For one-

dimensional CAs, a cell is connected to r local neighbors (cells) on either side, as

well as to itself, where r is a parameter referred to as the radius (thus, each cell has

2r+ 1 neighbors). For two-dimensional CAs, two types of cellular neighborhoods

are usually considered: 5 cells, consisting of the cell along with its four immediate

nondiagonal neighbors, and 9 cells, consisting of the cell along with its eight

surrounding neighbors. When considering a finite-sized grid, spatially periodic

boundary conditions are frequently applied, resulting in a circular grid for the

one-dimensional case, and a toroidal one for the two-dimensional case.

As an example, let us consider the parity rule (also known as the XOR rule)

for a 2-state, 5-neighbor, two-dimensional CA. Each cell is assigned a state of 1

at the next time step if the parity of its current state and the states of its four

neighbors is odd, and is assigned a state of 0 if the parity is even (alternatively,

this may be considered a modulo-2 addition). The rule table consists of entries
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CNESW Snext CNESW Snext CNESW Snext CNESW Snext
00000 0 01000 1 10000 1 11000 0

00001 1 01001 0 10001 0 11001 1

00010 1 01010 0 10010 0 11010 1

00011 0 01011 1 10011 1 11011 0

00100 1 01100 0 10100 0 11100 1

00101 0 01101 1 10101 1 11101 0

00110 0 01110 1 10110 1 11110 0

00111 1 01111 0 10111 0 11111 1

Table 1.1. Parity rule table. CNESW denotes the current states of the center,
north, east, south, and west cells, respectively. Snext is the cell’s state at the next
time step.

of the form:

0

1 1 0 7→ 1

1

This means that if the current state of the cell is 1 and the states of the north,

east, south, and west cells are 0, 0, 1, 1, respectively, then the state of the cell at

the next time step will be 1 (odd parity). The rule is completely specified by the

rule table given in Table 1.1. Figure 1.1 demonstrates patterns that are produced

by the parity CA.

The CA model is both general and simple (Sipper, 1995c). Generality im-

plies two things: (1) the model supports universal computation (Chapter 2), and

(2) the basic units encode a general form of local interaction rather than some

specialized action (Chapter 3). Simplicity implies that the basic units of inter-

action are “modest” in comparison to Turing machines. If we imagine a scale

of complexity, with one end representing Turing machines, then the other end

represents simple machines, e.g., finite state automatons. The CA model is one

of the simplest, general models available. From the point of view of parallel cel-

lular machines, CAs exhibit three notable features, namely, massive parallelism,

locality of cellular interactions, and simplicity of basic components (cells).

1.2.2 Formal definitions

The following section provides formal definitions concerning the CA model, due

to Codd (1968). In the interest of simplicity we concentrate on two-dimensional

CAs (the general n-dimensional case can be straightforwardly obtained). Let I

denote the set of integers. To obtain a cellular space we associate with the set

I × I:
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(a) (b)

(c) (d)

Figure 1.1. Patterns produced by the parity rule, starting from a 20× 20 rect-
angular pattern. White squares represent cells in state 0, black squares represent
cells in state 1. (a) after 30 time steps (t = 30), (b) t = 60, (c) t = 90, (d)
t = 120.
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1. The neighborhood function g: I × I → 2I×I , defined by

g(α) = {α+ δ1, α+ δ2, . . . , α+ δn},

for all α ∈ I × I, where δi ∈ I × I (i = 1, 2, . . . , n), is fixed.

2. The finite automaton (V, υ0, f), where V is the set of cellular states, υ0 is

a distinguished element of V called the quiescent state, and f is the local

transition function from n-tuples of elements of V into V . The function f

is subject to the restriction

f(υ0, υ0, . . . , υ0) = υ0.

Essentially, there is a (two-dimensional) grid of interconnected cells, each

containing an identical copy of the finite automaton (V, υ0, f).1 The state υt(α)

of a cell α at time t is precisely the state of its associated automaton at time t.

Each cell α is connected to the n neighboring cells α+ δ1, α+ δ2, . . . , α+ δn. In

all that follows we assume that one of the neighbors of α is α itself and we adopt

the convention that δ1 = (0, 0).

The neighborhood state function ht: I × I → V n is defined by

ht(α) = (υt(α), υt(α+ δ2), . . . , υt(α+ δn)).

Now we can relate the neighborhood state of a cell α at time t to the cellular

state of that cell at time t+ 1 by

f(ht(α)) = υt+1(α).

The function f is referred to as the CA rule and is usually given in the form of a

rule table, specifying all possible pairs of the form (ht(α), υt+1(α)). Such a pair

is termed a transition or rule-table entry. When convenient, we omit the time

superscript t from ht.

An allowable assignment of states to all cells in the space is called a configu-

ration. Thus, a configuration is a function c from I × I into V , such that

{α ∈ I × I | c(α) 6= υ0}

is finite. Such a function is said to have finite support relative to υ0, and the set

above is denoted sup(c). This is in accordance with von Neumann who restricted

attention to the case in which all cells except a finite number are initially in the

quiescent state (von Neumann, 1966). Since f(υ0, υ0, . . . , υ0) = υ0 (i.e., a cell

whose neighborhood is entirely quiescent remains quiescent), at every time step

all cells except a finite number are in the quiescent state.

1For non-uniform cellular spaces, different cells may contain different transition functions,
i.e., f depends on α, fα (see next section).
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We now define the global transition function F. Let C be the class of all

configurations for a given cellular space. Then F is a function from C into C

defined by

F (c)(α) = f(h(α))

for all α ∈ I × I. Given any initial configuration c0, the function F determines a

sequence of configurations

c0, c1, . . . , ct, . . .

where

ct+1 = F (ct)

for all t.

The configurations c, c′ are disjoint if sup(c)∩ sup(c′) = φ. If c, c′ are disjoint

configurations, their union is defined by

(c ∪ c′)(α) =





c(α) if α ∈ sup(c)
c′(α) if α ∈ sup(c′)
υ0 otherwise

A natural metric to associate with any cellular space based on I × I is the

so-called city-block metric τ , defined by

τ(α, β) =| xα − xβ | + | yα − yβ |,

where α = (xα, yα) and β = (xβ, yβ).

The metric τ is extended to finite sets of cells by

τ(P,Q) = max
α∈P,β∈Q

τ(α, β),

where P , Q are any finite sets of cells. We call τ(P, P ) the diameter of P and

abbreviate it dia(P ). Note that the extended function is not a true metric since

in general τ(P, P ) 6= 0.

The extended function can now be applied to configurations as follows:

τ(c, d) = τ(sup(c), sup(d))

and

dia(c) = dia(sup(c)),

where c, d are any configurations.

We can now go on to define various notions related to propagation. Given a

cellular space (I × I, n, V, υ0, f) we have observed above that an initial configu-

ration c0 determines a sequence of configurations. We shall call such a sequence

a propagation and denote it by <c0>.

A propagation <c> is bounded if there exists an integer K such that for all t

τ(c, F t(c)) < K.
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Otherwise, < c > is an unbounded propagation. F t(c) denotes the result of t

applications of the global transition function F to configuration c.

Suppose propagation < c > is unbounded. It may be possible to limit its

growth by adjoining to configuration c at time 0 some other (disjoint) configu-

ration. Accordingly, we define a boundable propagation < c> as one for which

there exists a disjoint configuration d such that c∪ d is bounded. In this case we

say that d bounds c. If no d bounds a given c, <c> is said to be an unboundable

propagation.

1.2.3 Non-uniform CAs

The basic model we employ in this volume is an extension of the original CA

model, termed non-uniform cellular automata. Such automata function in the

same way as uniform ones, the only difference being in the cellular rules that

need not be identical for all cells. Note that non-uniform CAs share the basic

“attractive” properties of uniform ones (massive parallelism, locality of cellular

interactions, simplicity of cells). From a hardware point of view we observe that

the resources required by non-uniform CAs are identical to those of uniform ones

since a cell in both cases contains a rule. Although simulations of uniform CAs on

serial computers may optimize memory requirements by retaining a single copy

of the rule, rather than have each cell hold one, this in no way detracts from

our argument. Indeed, one of the primary motivations for studying CAs stems

from the observation that they are naturally suited for hardware implementation

with the potential of exhibiting extremely fast and reliable computation that is

robust to noisy input data and component failure (Gacs, 1985). As noted in the

preface, one of our goals is the attainment of “evolving ware,” evolware, with

current implementations centering on hardware, while raising the possibility of

using other forms in the future, such as bioware (see Chapter 6).

Note that the original, uniform CA model is essentially “programmed” at an

extremely low level (Rasmussen et al., 1992); a single rule is sought that must

be universally applied to all cells in the grid, a task that may be arduous even

if one takes an evolutionary approach. For non-uniform CAs search-space sizes

(Section 1.3) are vastly larger than with uniform CAs, a fact that initially seems as

an impediment. However, as we shall see in this volume, the model presents novel

dynamics, offering new and interesting paths in the study of complex adaptive

systems and artificial life.

1.2.4 Historical notes

This section presents some historical notes and references concerning CAs and is

by no means a complete account of CA history. We shall present several other

results, that are more closely linked with our own work, in the relevant chapters

ahead (for more detailed accounts, refer to Gutowitz, 1990; Toffoli and Margolus,

1987; Preston, Jr. and Duff, 1984).
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PARENT

OFFSPRING

UC

UCCONSTRUCTING

ARM

TAPE

TAPE

Figure 1.2. A schematic diagram of von Neumann’s self-reproducing CA, essen-
tially a universal constructor (UC) that is given, as input, its own description.

The CA model was originally introduced in the late 1940s by Ulam and von

Neumann and used extensively by the latter to study issues related with the logic

of life (von Neumann, 1966). In particular, von Neumann asked whether we can

use purely mathematical-logical considerations to discover the specific features of

biological automata that make them self-reproducing.

Von Neumann used two-dimensional CAs with 29 states per cell and a 5-cell

neighborhood. He showed that a universal computer can be embedded in such cel-

lular space, namely, a device whose computational power is equivalent to that of

a universal Turing machine (Hopcroft and Ullman, 1979). He also described how

a universal constructor may be built, namely, a machine capable of constructing,

through the use of a “constructing arm,” any configuration whose description

can be stored on its input tape. This universal constructor is therefore capa-

ble, given its own description, of constructing a copy of itself, i.e., self reproduce

(Figure 1.2). The terms ‘machine’ and ‘tape’ refer here to configurations, i.e.,

patterns of states (as defined in Section 1.2.2). The mechanisms von Neumann

proposed for achieving self-reproducing structures within a cellular automaton

bear strong resemblance to those employed by biological life, discovered during

the following decade. Von Neumann’s universal computer-constructor was sim-

plified by Codd (1968) who used an 8-state, 5-neighbor cellular space (we shall

elaborate on these issues in Chapters 2 and 3).

Over the years CAs have been applied to the study of general phenomeno-

logical aspects of the world, including communication, computation, construc-
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tion, growth, reproduction, competition, and evolution (see, e.g., Burks, 1970;

Smith, 1969; Toffoli and Margolus, 1987; Perrier et al., 1996). One of the most

well-known CA rules, the “game of life,” was conceived by Conway in the late

1960s (Gardner, 1970; Gardner, 1971) and was shown by him to be computation-

universal (Berlekamp et al., 1982). For a review of computation-theoretic results,

refer to Culik II et al. (1990).

The question of whether cellular automata can model not only general phe-

nomenological aspects of our world, but also directly model the laws of physics

themselves was raised by Toffoli (1977) and by Fredkin and Toffoli (1982). A

primary theme of this research is the formulation of computational models of

physics that are information-preserving, and thus retain one of the most funda-

mental features of microscopic physics, namely, reversibility (Fredkin and Toffoli,

1982; Margolus, 1984; Toffoli, 1980). This approach has been used to provide

extremely simple models of common differential equations of physics, such as the

heat and wave equations (Toffoli, 1984) and the Navier-Stokes equation (Hardy

et al., 1976; Frisch et al., 1986). CAs also provide a useful model for a branch

of dynamical systems theory which studies the emergence of well-characterized

collective phenomena, such as ordering, turbulence, chaos, symmetry-breaking,

and fractality (Vichniac, 1984; Bennett and Grinstein, 1985).

The systematic study of CAs in this context was pioneered by Wolfram and

studied extensively by him (Wolfram, 1983; Wolfram, 1984a; Wolfram, 1984b).

He investigated CAs and their relationships to dynamical systems, identifying

the following four qualitative classes of CA behavior, with analogs in the field of

dynamical systems (the latter are shown in parenthesis; see also Langton, 1986;

Langton, 1992a):

1. Class I relaxes to a homogeneous state (limit points).

2. Class II converges to simple separated periodic structures (limit cycles).

3. Class III yields chaotic aperiodic patterns (chaotic behavior of the kind

associated with strange attractors).

4. Class IV yields complex patterns of localized structures, including propagat-

ing structures (very long transients with no apparent analog in continuous

dynamical systems).

Figure 1.3 demonstrates these four classes using one-dimensional CAs (as studied

by Wolfram). Finally, biological modeling has also been carried out using CAs

(Ermentrout and Edelstein-Keshet, 1993).

Non-uniform CAs have been investigated by Vichniac et al. (1986) who dis-

cuss a one-dimensional CA in which a cell probabilistically selects one of two rules

at each time step. They showed that complex patterns appear characteristic of

class IV behavior (see also Hartman and Vichniac, 1986). Garzon (1990) presents

two generalizations of cellular automata, namely, discrete neural networks and
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time
↓

(a) (b)

(c) (d)

Figure 1.3. Wolfram classes. One dimensional CAs are shown, where the hor-
izontal axis depicts the configuration at a certain time t and the vertical axis
depicts successive time steps (increasing down the page). CAs are binary (2
states per cell) with radius r = 2 (two neighbors on both sides of the cell). (a)
Class I (totalistic rule 4). (b) Class II (totalistic rule 24). (c) Class III (totalistic
rule 12). (d) Class IV (totalistic rule 20).
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automata networks. These are compared to the original model from a compu-

tational point of view which considers the classes of problems such models can

solve. Our interest in this volume is in examining the non-uniform CA model

from a computational aspect as well as an evolutionary one.

1.3 Genetic algorithms

In the 1950s and the 1960s several researchers independently studied evolution-

ary systems with the idea that evolution could be used as an optimization tool

for engineering problems. Central to all the different methodologies is the no-

tion of solving problems by evolving an initially random population of candidate

solutions, through the application of operators inspired by natural genetics and

natural selection, such that in time “fitter” (i.e., better) solutions emerge (Bäck,

1996; Michalewicz, 1996; Mitchell, 1996; Schwefel, 1995; Fogel, 1995; Koza, 1992;

Goldberg, 1989; Holland, 1975). In this volume we shall concentrate on one type

of evolutionary algorithms, namely, genetic algorithms (Holland, 1975).

Holland’s original goal was not to design algorithms to solve specific problems,

but rather to formally study the phenomenon of adaptation as it occurs in nature

and to develop ways in which the mechanisms of natural adaptation might be

imported into computer systems. Nowadays, genetic algorithms are ubiquitous,

having been successfully applied to numerous problems from different domains,

including optimization, automatic programming, machine learning, economics,

operations research, immune systems, ecology, population genetics, studies of

evolution and learning, and social systems (Mitchell, 1996). For a recent review

of the current state of the art, refer to Tomassini (1996).

A genetic algorithm is an iterative procedure that consists of a constant-size

population of individuals, each one represented by a finite string of symbols,

known as the genome, encoding a possible solution in a given problem space.

This space, referred to as the search space, comprises all possible solutions to the

problem at hand. Generally speaking, the genetic algorithm is applied to spaces

which are too large to be exhaustively searched. The symbol alphabet used is

often binary due to certain computational advantages put forward by Holland

(1975) (see also Goldberg, 1989). This has been extended in recent years to in-

clude character-based encodings, real-valued encodings, and tree representations

(Michalewicz, 1996).

The standard genetic algorithm proceeds as follows: an initial population

of individuals is generated at random or heuristically. Every evolutionary step,

known as a generation, the individuals in the current population are decoded and

evaluated according to some predefined quality criterion, referred to as the fitness,

or fitness function. To form a new population (the next generation), individuals

are selected according to their fitness. Many selection procedures are currently in

use, one of the simplest being Holland’s original fitness-proportionate selection,

where individuals are selected with a probability proportional to their relative
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fitness. This ensures that the expected number of times an individual is chosen is

approximately proportional to its relative performance in the population. Thus,

high-fitness (“good”) individuals stand a better chance of “reproducing,” while

low-fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals into the population, i.e.,

it cannot find new points in the search space; these are generated by genetically-

inspired operators, of which the most well known are crossover and mutation.

Crossover is performed with probability pcross (the “crossover probability” or

“crossover rate”) between two selected individuals, called parents, by exchanging

parts of their genomes (i.e., encodings) to form two new individuals, called off-

spring. In its simplest form, substrings are exchanged after a randomly-selected

crossover point. This operator tends to enable the evolutionary process to move

toward “promising” regions of the search space. The mutation operator is intro-

duced to prevent premature convergence to local optima by randomly sampling

new points in the search space. It is carried out by flipping bits at random, with

some (small) probability pmut. Genetic algorithms are stochastic iterative pro-

cesses that are not guaranteed to converge. The termination condition may be

specified as some fixed, maximal number of generations or as the attainment of

an acceptable fitness level. Figure 1.4 presents the standard genetic algorithm in

pseudo-code format.

begin GA
g:=0 { generation counter }
Initialize population P (g)
Evaluate population P (g) { i.e., compute fitness values }
while not done do

g:=g+1
Select P (g) from P (g − 1)
Crossover P (g)
Mutate P (g)
Evaluate P (g)

end while
end GA

Figure 1.4. Pseudo-code of the standard genetic algorithm.

Let us consider the following simple example, due to Mitchell (1996), demon-

strating the genetic algorithm’s workings. The population consists of 4 individ-

uals, which are binary-encoded strings (genomes) of length 8. The fitness value

equals the number of ones in the bit string, with pcross = 0.7 and pmut = 0.001.

More typical values of the population size and the genome length are in the range

50-1000. Note that fitness computation in this case is extremely simple, since no

complex decoding or evaluation is necessary. The initial (randomly generated)
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population might look like this:

Label Genome Fitness
A 00000110 2
B 11101110 6
C 00100000 1
D 00110100 3

Using fitness-proportionate selection we must choose 4 individuals (two sets of

parents), with probabilities proportional to their relative fitness values. In our

example, suppose that the two parent pairs are {B,D} and {B,C} (note that A

did not get selected as our procedure is probabilistic). Once a pair of parents is

selected, crossover is effected between them with probability pcross, resulting in

two offspring. If no crossover is effected (with probability 1 − pcross), then the

offspring are exact copies of each parent. Suppose, in our example, that crossover

takes place between parents B and D at the (randomly chosen) first bit position,

forming offspring E=10110100 and F=01101110, while no crossover is effected be-

tween parents B and C, forming offspring that are exact copies of B and C. Next,

each offspring is subject to mutation with probability pmut per bit. For example,

suppose offspring E is mutated at the sixth position to form E′=10110000, off-

spring B is mutated at the first bit position to form B′=01101110, and offspring

F and C are not mutated at all. The next generation population, created by the

above operators of selection, crossover, and mutation, is therefore:

Label Genome Fitness
E′ 10110000 3
F 01101110 5
C 00100000 1
B′ 01101110 5

Note that in the new population, although the best individual with fitness 6 has

been lost, the average fitness has increased. Iterating this procedure, the genetic

algorithm will eventually find a perfect string, i.e., with maximal fitness value of

8.

The implementation of an evolutionary algorithm, an issue which usually

remains in the background, is quite costly in many cases, since populations of so-

lutions are involved, coupled with computation-intensive fitness evaluations. One

possible solution is to parallelize the process, an idea which has been explored to

some extent in recent years (see reviews by Tomassini, 1996; Cantú-Paz, 1995).

While posing no major problems in principle, this may require judicious modifi-

cations of existing algorithms or the introduction of new ones in order to meet the

constraints of a given parallel machine. The models and algorithms introduced

in this volume are inherently parallel and local, lending themselves more readily

to implementation. Indeed, we have already noted that one of our major goals

is to attain evolware, i.e., real-world, evolving machines, an issue which shall be

explored in Chapter 6.



Chapter 2

Universal Computation in
Quasi-Uniform
Cellular Automata

There never was in the world two opinions alike, no more than two hairs or
two grains; the most universal quality is diversity.

Michael de Montaigne, Of the Resemblance of Children to their Fathers

2.1 Introduction

In this chapter we consider the issue of universal computation in two-dimensional

CAs, namely, the construction of machines, embedded in cellular space, whose

computational power is equivalent to that of a universal Turing machine (Hopcroft

and Ullman, 1979). The first such machine was described by von Neumann

(1966), who used 29-state, 5-neighbor cells. Codd (1968) provided a detailed de-

scription of a computer embedded in an 8-state, 5-neighbor cellular space, thus

reducing the complexity of von Neumann’s machine. Banks (1970) described a

2-state and a 3-state automaton (both 5-neighbor) which support universal com-

putation with an infinite and finite initial configuration, respectively. A cellular

space with a minimal number of states (two) and a 9-cell neighborhood proven

to support universal computation (with a finite initial configuration) involves the

“game of life” rule (Berlekamp et al., 1982). One-dimensional CAs have also

been shown to support universal computation (Smith, 1992; Smith, 1971). For

a review of computation-theoretic results related to this issue, refer to Culik II

et al. (1990).

Codd (1968) proved that there does not exist a computation-universal, uni-

form, 2-state, 5-neighbor CA with a finite initial configuration. In this chapter

we introduce computation-universal, non-uniform CAs, embedded in such space

(Sipper, 1995b). We present three implementations, noting a tradeoff between

state-space complexity (i.e., the structures of the elemental components) and



16 Universal Computation in Quasi-Uniform Cellular Automata

rule-space complexity (i.e., the number of distinct rules). Section 2.2 presents

the details of our basic system, consisting of ten different cell rules, which are re-

duced to six in Section 2.3. Both sections involve an infinite initial configuration.

Section 2.4 describes the implementation of a universal machine using a finite

initial configuration. A quasi-uniform automaton is discussed in Section 2.5, pre-

senting a minimal implementation consisting of two rules. A discussion of our

results follows in Section 2.6.

2.2 A universal 2-state, 5-neighbor non-uniform CA

In order to prove that a two-dimensional CA is computation universal we pro-

ceed along the lines of similar works and implement the following components

(Berlekamp et al., 1982; Nourai and Kashef, 1975; Banks, 1970; Codd, 1968; von

Neumann, 1966):1

1. Signals and signal pathways (wires). We must show how signals can be

made to turn corners, to cross, and to fan out.

2. A functionally-complete set of logic gates. A set of operations is said to be

functionally complete (or universal) if and only if every switching function

can be expressed entirely by means of operations from this set (Kohavi,

1970). We shall use the NAND function (gate) for this purpose (this gate

comprises a functionally-complete set and is used extensively in VLSI since

transistor switches are inherently inverters, Millman and Grabel, 1987).

3. A clock that generates a stream of pulses at regular intervals.

4. Memory. Two types are discussed: finite and infinite.

In the following sections we describe the implementations of the above components.2

2.2.1 Signals and wires

A wire in our system consists of a path of connected propagation cells, each

containing one of the propagation rules. A signal consists of a state, or succession

of states, propagated along the wire. There are four propagation cell types (i.e.,

four different rules), one for each direction: right, left, up, and down (Table 2.1).

Figure 2.1a shows a wire constructed from propagation cells. Figures 2.1b-d

demonstrate signal propagation along the wire. Note that all cells which are

not part of the machine (i.e., its components) contain the NC (No Change) rule

(Table 2.1) which simply preserves its initial state indefinitely.

1Another approach is one in which a row of cells simulates the squares on a Turing machine
tape while at the same time simulating the head of the Turing machine. This has been applied
to one-dimensional CAs (Smith, 1992; Smith, 1971; Banks, 1970).

2Note- the terms ‘gate’ and ‘cell’ are used interchangeably throughout this chapter.
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Designation Rule S

Right ∗
propagation x ∗ ∗ 7→ x →
cell ∗

Left ∗
propagation ∗ ∗ x 7→ x ←
cell ∗

Up ∗
propagation ∗ ∗ ∗ 7→ x ↑
cell x

Down x
propagation ∗ ∗ ∗ 7→ x ↓
cell ∗

NAND y
Cell x ∗ ∗ 7→ x | y

∗

Designation Rule S

Exclusive Or y
(XOR) cell x ∗ ∗ 7→ x⊕ y ⊕
(type a) ∗

Exclusive Or x
(XOR) cell ∗ ∗ y 7→ x⊕ y ⊕
(type b) ∗

Exclusive Or ∗
(XOR) cell ∗ ∗ x 7→ x⊕ y ⊕
(type c) y

Exclusive Or ∗
(XOR) cell y ∗ ∗ 7→ x⊕ y ⊕
(type d) x

No Change ∗
(NC) cell ∗ x ∗ 7→ x ·

∗

Table 2.1. Cell types (rules). Rules are given in the form of “templates” rather
than delineating the entire table. Each rule template specifies the transition from
the current neighborhood configuration to the new state of the central cell. ‘∗’
denotes the set of states {0, 1}. x,y ∈ {0, 1} denote specific states. ‘⊕’ is the XOR
function (modulo-2 addition), ‘|’ is the NAND function. S is the symbol used
to denote this cell type in the figures ahead. For example, the right propagation
rule template specifies that when the state of the west cell is x then the state of
the central cell (at the next time step) becomes x. This rule is depicted as a ‘→’
symbol in the figures ahead.
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· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ↑ →→→→→→→→→→→→→ · · · ·
· · · · · · · · · ← ↑ · · · · · · · · · · · ↓ · · · ·
→→→→→→→→→→→ · · · · · · · · · · · ↓ · · · ·
· · · · · · · · · · · · · · · · · · · · · · ↓ · · · ·

(a) cellular arrangement

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ↑ →→→→→→→→→→→→→ · · · ·
· · · · · · · · · ← ↑ · · · · · · · · · · · ↓ · · · ·
1 0 1→→→→→→→→ · · · · · · · · · · · ↓ · · · ·
· · · · · · · · · · · · · · · · · · · · · · ↓ · · · ·

(b) propagation of signal: time = 0

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · 1→→→→→→→→→→→→→ · · · ·
· · · · · · · · · 0 1 · · · · · · · · · · · ↓ · · · ·
→→→→→→→→→→→ · · · · · · · · · · · ↓ · · · ·
· · · · · · · · · · · · · · · · · · · · · · ↓ · · · ·

(c) propagation of signal: time = 11

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · ↑ →→→→→→→→→→→→→ · · · ·
· · · · · · · · · ← ↑ · · · · · · · · · · · 1 · · · ·
→→→→→→→→→→→ · · · · · · · · · · · 0 · · · ·
· · · · · · · · · · · · · · · · · · · · · · 1 · · · ·

(d) propagation of signal: time = 27

Figure 2.1. Signal propagation along a wire.
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A wire in our system possesses a distinct direction, a characteristic which

is highly desirable as it simplifies signal propagation (Codd, 1968). In most

cases signals must propagate solely in one direction, and should bi-directional

propagation be required then two parallel wires in opposite directions may be

used. We note in Figure 2.1 that wires support signal propagation across corners.

Fan-out of signals is also straightforward as evident in Figure 2.2.

· · · · · · · · · · · · · · · · · · · · · · · · · · ·
· · · · · · · · · · · · ↑ →→→→→→→→→→→→→→
→→→→→→→→→→→→→ · · · · · · · · · · · · · ·
· · · · · · · · · · · · ↓ →→→→→→→→→→→→→→
· · · · · · · · · · · · · · · · · · · · · · · · · · ·

two-way fan-out

· · · · · · · · · · · · ↑ →→→→→→→→→→→→→→
· · · · · · · · · · · · ↑ · · · · · · · · · · · · · ·
→→→→→→→→→→→→→→→→→→→→→→→→→→→
· · · · · · · · · · · · ↓ · · · · · · · · · · · · · ·
· · · · · · · · · · · · ↓ →→→→→→→→→→→→→→

three-way fan-out

Figure 2.2. Signal fan-out.

· · ↓ · · · · ↓ · · · · ↑ · · · · ↑ · ·
· · ↓ · · · · ↓ · · · · ↑ · · · · ↑ · ·
→→ • →→ ←← •←← ←← •←← →→ •→→
· · ↓ · · · · ↓ · · · · ↑ · · · · ↑ · ·
· · ↓ · · · · ↓ · · · · ↑ · · · · ↑ · ·

Figure 2.3. Four possible ways in which wires can cross.

The last problem we must address concerning signals is wire crossing (there

are four possible crossings, see Figure 2.3). We first demonstrate that at least

three gates (cells) are required for this operation. To see this note that one gate

is insufficient since there are two bits of information, denoted x and y, whereas

the intersection cell can only contain one bit:

· · y · ·
· · ↓ · ·
x→ ? →→
· · ↓ · ·
· · ↓ · ·
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· · y · · ·
· · ↓ → · ·
x→⊕⊕→ x
· ↓ ⊕ · · ·
· · ↓ · · ·
· · y · · ·

Figure 2.4. Implementation of wire crossing. The implementation is based on
the equivalences: x ≡ (x⊕ y)⊕ y, and y ≡ (x⊕ y)⊕ x. The XOR gates used are
type a (see Table 2.1).

Thus, either x crosses the y (vertical) line, in which case the y signal is lost, or,

conversely, the x signal is lost. In case there are two gates then they must even-

tually contain x and y (otherwise information is lost). The situation is therefore

as follows:

· · y · ·
· · ↓ · ·
x→ x →→
· · ↓ y ·
· · ↓ · ·

The x signal gets transferred, however, there is no way for the y signal to get

to its gate (note that the y gate must be below the x line), since this is exactly

the crossing problem we are trying to solve, and we have already shown that this

cannot be done using one cell (the remaining one). A similar argument holds for

the reverse situation, i.e., the intersection cell contains y. We therefore conclude

that at least three gates are required for the crossing operation.

Toward this end we have selected theXOR cells (Table 2.1) since wire crossing

can be implemented using a minimal number of such gates (three). An imple-

mentation of one of the four possible crossings is given in Figure 2.4 (the other

three are derived analogously).

Note that in uniform cellular automata the implementation of wires and sig-

nals is highly complicated (von Neumann, 1966; Codd, 1968; Banks, 1970). The

wire itself and the operations of propagation, crossing, and fan-out, are attained

using complex structures composed of several cells. The large number of possible

interactions between these structures makes the design task arduous.

It is important to note the direct relationship between path length and time:

if two paths branch out from a common point A to points B and C, and if path

length AB is strictly greater than path length AC, then a signal which fans out

at A will arrive at B strictly later than at C (this issue was emphasized by Codd,

1968).
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· · · · · · y · · · x→ · · y→
x→→ · · x → · · ↓ · · ↓
· ↓ · · · ↓ · · · ↓ · ←← ↓
· · ↓ · · · · ↓ · · · ↓ → · ·
· · ↓ · · · · ↓ · · · · · ↓ · ·

x xy x+ y

NOT AND OR

Figure 2.5. Implementations of logic gates NOT , AND, and OR, using NAND
gates.

2.2.2 Logic gates

Table 2.1 includes a 2-input, 1-output NAND gate (cell), which forms a func-

tionally complete set, thereby providing us with the second component discussed

above. Two neighboring cells act as inputs while the central cell acts as the

gate’s output. As an example, Figure 2.5 shows implementations of the logic

gates NOT , AND, and OR, using only NAND gates.

The XOR gate is not required for completeness purposes, however, we have

included it since wire crossing can be implemented using a minimal number of

gates (Section 2.2.1). Four XOR cell types (rules) are needed to implement the

four possible crossings of Figure 2.3. Once all crossings are possible we only need

one NAND-gate type since the two wire inputs can always be made to arrive at

the two input cells of the gate’s neighborhood.3

2.2.3 Clock

The third component of our system is a clock that generates a stream of pulses at

regular intervals. We implement this using a wire loop, i.e., a loop of propagation

cells. Figure 2.6 presents the implementation. Note that any desired “waveform”

can be produced by adjusting the size and contents of the loop. The implementa-

tion of the clock is facilitated due to the manner in which wires are constructed,

i.e., as cellular arrangements. Thus, it is possible to obtain such a closed loop,

which proves highly useful in our case.

2.2.4 Memory

A useful additional component is internal, finite memory (as opposed to the in-

finite, external memory discussed in Section 2.4). This is not essential to our

demonstration of universal computation since the functionally-complete set of

Section 2.2.2 suffices; a simple 1-bit memory unit (flip-flop) can be constructed

3Note that both signals must arrive synchronously. This is possible since delays can always
be introduced by using, e.g., loops, which are feasible once crossings are implemented.
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· · · · · · · · · ·
· ↑ →→→ · · · · ·
· ↑ · · ↓ · · · · ·
· ↑ · · ↓ · · · · ·
· ←←← ↓ →→→→→
· · · · · · · · · ·
cellular arrangement

· · · · · · · · · · · · · · · · · · · ·
· 0 1 0 1 · · · · · · 0 0 0 1 · · · · ·
· 1 · · 0 · · · · · · 1 · · 0 · · · · ·
· 0 · · 1 · · · · · · 0 · · 0 · · · · ·
· 1 0 1 0 1 0 1 0 1 · 0 0 1 0 1 0 0 0 1
· · · · · · · · · · · · · · · · · · · ·

examples of pulse signals

Figure 2.6. Implementation of a clock, i.e., a component that generates a stream
of pulses at regular intervals. Note that any desired “waveform” can be produced
by adjusting the size and contents of the loop.

from logic gates, which then serves as a basis for the construction of larger memo-

ries (Millman and Grabel, 1987). It is nonetheless interesting to note the following

rule which implements a 1-bit memory unit:

1
x ∗ ∗ 7→ x
∗

0
∗ x ∗ 7→ x
∗

The upper cell acts as a ‘store’ signal when set to 1, causing the bit in the left

cell to be stored (left rule). After the ‘store’ signal is set to 0, the bit is stored

indefinitely (right rule), i.e., until the storage process is repeated.

2.3 Reducing the number of rules

In the previous section we presented the components of a universal machine

employing ten different cell rules (Table 2.1). This number may be reduced to

six, by using a more complex wiring scheme, involving the implementation of the

propagation cells using XOR gates.
Signal propagation is carried out along wires which are two cells wide. Essen-

tially, there are two parallel paths: one of NC cells in state 0, the other consists of
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0 0 0 0 0 0 0 0 0 0 0 0 0 d c 0 0 a b 0
a a a a a a b b b b b b 0 d c 0 0 a b 0

0 d c 0 0 a b 0
d d d d d d c c c c c c 0 d c 0 0 a b 0
0 0 0 0 0 0 0 0 0 0 0 0 0 d c 0 0 a b 0

−→ ←− ↑ ↓

signal propagation (two possible implementations are shown for each direction)

y
↓

· · · 0 0 0 · · 0 a · · · · 0 0 0 · · ·
· 0 d a a a → x · · 0 a 0 · 0 d a a a · · ·
0 0 d 0 · · 0 0 0 a a 0 0 d · · b 0 · ·

x → a a d a 0 0 x → a a a a a a → x 0 d · · b 0 · ·
· 0 0 a a a → x · 0 a a · · · c c c b 0 0 0
· · · · · · · · 0 a · · · 0 0 0 a a a a

↓
y

fan-out wire crossing clock

Figure 2.7. Implementing a universal machine using a reduced number of rules
(6 different rules, instead of the previous 10). a, b, c, d represent XOR gates of
types a, b, c, d, respectively (Table 2.1). 0 denotes an NC cell in state 0.

XOR cells which carry the actual signal. Figure 2.7 shows the implementation of
the necessary operations, signal propagation, fan-out, wire crossing, and a clock,
using only four XOR cell types, the NC cell, and the NAND cell, of Table 2.1.

2.4 Implementing a universal machine using a finite
configuration

The components presented in the previous sections are sufficient in order to build
a universal machine using an infinite initial configuration. Codd (1968) conjec-
tured that an unbounded but boundable propagation is a necessary condition for
computation universality and proved that there does not exist a uniform, 2-state,
5-neighbor universal cellular automaton with a finite initial configuration (see
Section 1.2.2). Following his work, universality was implemented by using more
states or larger neighborhoods (Banks, 1970; Berlekamp et al., 1982; Nourai and
Kashef, 1975).

The problem with finite initial configurations involving the above components
is that a computation may require an arbitrary amount of space and therefore
some method must exist for increasing the information storage (memory) by
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arbitrarily large amounts. In order to prove universality we implement Minsky’s
two-register universal machine, which consists of (Minsky, 1967; Nourai and
Kashef, 1975; Berlekamp et al., 1982):

1. A programming unit (finite control).

2. Two potentially infinite registers.

3. The following set of instructions:

• Increase the contents of a register by one.

• Decrease the contents of a register by one.

• Test whether the contents of a register equal zero.

The finite control unit may be realized using the components described in
Sections 2.2 and 2.3. The major difficulty is the implementation of the registers
and the three operations associated with them. According to Codd’s proof a
single rule in 2-state, 5-neighbor cellular space is insufficient since unbounded
but boundable propagations cannot be attained.

While other researchers have turned to cellular spaces with more states or
larger neighborhoods, our approach is based on non-uniformity. We conclude
from the above that the minimal number of distinct cellular rules needed to
implement a register is two. Indeed, we have uncovered two such rules: one
which we denote the background rule, the other being Banks’ rule (Banks, 1970)
(Figure 2.8). The implementation of a universal computer consists of a finite
control unit, which occupies a finite part of the grid. All other cells contain
the background rule except for two cellular columns, infinite in one direction,
containing Banks’ rule. These register columns originate at the upper part of the
control unit and each one implements one register (Figure 2.9a); the cells in these
columns are denoted register cells.

The above set of three register instructions is implemented as follows: at any
given moment a register column consists of an infinite4 number of cells in state
1, and a finite number in state 0, occupying the bottom part of the column.
The number of 0s represents the register’s value. Initially, both register columns
(i.e., all register cells) are transformed (from state 0) to state 1, thus setting
the register’s value to zero. For each column, this is accomplished by setting
the bottom register cell along with its left and right neighbors to 1. The two
1s on both sides act as signals which travel upward along the column, setting
all its cells to 1. Figure 2.9a demonstrates this process after three time steps
have taken place. Three cells have already been transformed to 1, with the
fourth currently being transformed, after which the (dual) signal will continue
its upward movement. The overall effect of this process is that the value of both
registers is initialized to zero.

Testing whether the contents of a register equal zero is straightforward since
it only involves the bottom register cell: if its state is 1, the register’s value is

4More precisely, the number of cells in state 1 tends to infinity as time progresses, see ahead.
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1
0 1 1 7→ 0

0

1
0 0 1 7→ 1

1

1
1 0 1 7→ 1

1

Banks’ rule (note: there are three further rotations of the two left rule entries)

0
0 0 0 7→ 1

1

0
0 1 0 7→ 0

0

0
1 1 0 7→ 0

0

0
0 1 1 7→ 0

0

0
1 0 1 7→ 1

0

background rule

Figure 2.8. Rules used to implement registers. The figure depicts the rule tables
for Banks’ rule and the background rule. Only rule table entries that change the
state of the central cell are shown. The other entries (not shown) preserve the
state of the central cell.

zero, otherwise it is not. Adding one to a register is achieved by setting to 1 the
cell which is at distance two to the right of the bottom register cell. Figure 2.9b
demonstrates this operation. The left grid depicts the configuration before the
operation, where the register’s value is 3 and the appropriate cell is set to 1 (i.e.,
two cells to the right of the bottom cell). The right grid depicts the effect of the
operation (i.e., the configuration after several time steps): the column’s number
of zeros has increased by one, which means that the register’s value is now 4.
Subtracting one from a register is done by setting to 1 both neighboring cells
of the bottom register cell (Figure 2.9c demonstrates this operation). Thus, the
registers, along with their associated instructions, have been implemented.

The initial configuration of the machine is finite, since only a finite num-
ber of cells are initially non-zero. The total number of distinct rules needed to
implement a universal computer equals the number of rules necessary for imple-
mentation of the finite control unit plus the two additional memory rules (back-
ground and Banks). Thus, we need a total of 12 rules using our implementation
of Section 2.2 and 8 rules using the implementation of Section 2.3.

2.5 A quasi-uniform cellular space

As noted in Section 2.3, by increasing the complexity of the basic components
(in state space), a reduced set of rules (six) may be used to construct the finite
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b b b b b r b b b b r b b b b b
b b b b b r b b b b r b b b b b
b b b b 1 r 1 b b 1 r 1 b b b b
b b b b b 1 b b b b 1 b b b b b
b b b b b 1 b b b b 1 b b b b b
b b b b b 1 b b b b 1 b b b b b

b
bb
bb
bb

bb b

finite control b b
b b
b b

b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b
b b b b b b b b b b b b b b b b

(a) initially setting both registers to zero.

b b b 1 b b b b b b 1 b b b
b b b 1 b b b b b b 1 b b b
b b b 1 b b b b b b r b b b
b b b r b b b b b b r b b b
b b b r b b b b b b r b b b
b b b r b 1 b b b b r b b b

(b) adding one to a register.

b b b 1 b b b b b b 1 b b b
b b b 1 b b b b b b 1 b b b
b b b 1 b b b b b b 1 b b b
b b b r b b b b b b 1 b b b
b b b r b b b b b b r b b b
b b 1 r 1 b b b b b r b b b

(c) subtracting one from a register.

Figure 2.9. Register operation. b denotes a cell in state 0 containing the back-
ground rule, r denotes a cell in state 0 containing Banks’ rule (register). In figures
(b) and (c) the left grid shows the configuration before the operation, the right
grid shows the configuration upon its completion (after several time steps); the
bottom line represents the bottom register cell and its neighbors.
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control. We can go one step further, and construct the control unit with only
one rule, e.g., Banks’ rule.5 As noted in Section 2.4, the complicating issue is not
due to this unit, but rather to the infinite memory, which cannot be implemented
in uniform, 2-state, 5-neighbor cellular space. We conclude that a universal
computer can be implemented in a non-uniform cellular space with a minimal
number of distinct rules (two): background and Banks.

The rules necessary to implement universal computation are distributed un-
evenly. Most of the grid contains the background rule, except for an infinitely
small region which contains the others. By this we mean that each (infinite) row
contains an infinite number of background rules with only a finite number of the
others. In fact, except for a finite region of the grid, each row contains only two
Banks rules and an infinite number of background rules. Hence we say that our
cellular space is quasi-uniform.

Let nu denote the number of rules used by a non-uniform CA, np the number
of possible rules (i.e., the size of the rule space). Quasi-uniformity implies that
nu � np. We define two types of quasi-uniformity. Let Ru = {R1, . . . , Rnu}
denote the set of rules used by the CA, and Rj(N) the number of cells with rule
Rj in a grid of size N , j ∈ {1, . . . , nu}. We say a grid is quasi-uniform, type 1 if
there exists Du ⊂ Ru such that:

lim
N→∞

∑
n∈Ru\Du Rn(N)
∑
n∈Du Rn(N)

= 0;

we say a grid is quasi-uniform, type 2 if there exists m such that:

lim
N→∞

∑
n6=mRn(N)

Rm(N)
= 0.

Essentially, type 1 consists of grids in which a subset, Du ⊂ Ru, of dominant
rules occupies most of the grid, while type 2 consists of grids with one dominant
rule, i.e., the size of set Du is one. The computation-universal systems presented
above are all quasi-uniform, type 2.

2.6 Discussion

We presented quasi-uniform, 2-state, 5-neighbor CAs capable of universal com-
putation. Quasi-uniformity implies that the number of different rules used is
extremely small with respect to rule-space size. Two types of quasi-uniformity
were discussed: type 1 consists of grids in which a subset of dominant rules occu-
pies most of the grid, while type 2 consists of grids with one dominant rule. We
showed three type-2 universal systems using 12 rules, 8 rules, and finally 2 rules
(which is minimal).

The following paragraphs provide a discussion of a speculative nature, linking
our results with those of Langton (1992a) (see also Li et al., 1990). He addressed

5This increases the complexity of the basic operations. As noted above, there is a tradeoff
between state-space complexity and rule-space complexity.
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the following question: under what conditions can we expect a dynamics of infor-
mation to emerge spontaneously and come to dominate the behavior of a physical
system? This was studied in the context of CAs where the question becomes: un-
der what conditions can we expect a complex dynamics of information to emerge
spontaneously and come to dominate the behavior of a CA? (Langton, 1992a).

Langton showed that the rule space of (uniform) CAs consists of two primary
regimes of rules, periodic and chaotic, separated by a transition regime. His main
conclusion was that information processing can emerge spontaneously and come
to dominate the dynamics of a physical system in the vicinity of a critical phase
transition (see also Section 4.2).

According to Codd’s proof a uniform (single rule), 2-state, 5-neighbor cellular
space is insufficient for universal computation since unbounded but boundable
propagations cannot be attained; either every configuration yields an unbound-
able propagation or every configuration yields a bounded propagation (Codd,
1968). In the context of Langton’s work, bounded propagations correspond to
fixed-point rules (class I) and unboundable propagations correspond either to
periodic rules (class II) or chaotic ones (class III). Complex behavior (class IV)
cannot be attained.6

By using a quasi-uniform, two-rule cellular space we have been able to achieve
unbounded but boundable propagations, thus attaining class-IV behavior. Lang-
ton suggested that the information dynamics which gave rise to life came into
existence when global or local conditions brought some medium through a critical
phase transition.

Imagine an information-based world, consisting of a uniform cellular automa-
ton, which is not within the class-IV region. If we wanted to attain class-IV
behavior, the entire space would have to “jump,” i.e., undergo a phase transi-
tion, to a class-IV rule (assuming this is at all possible– e.g., in the case of a
2-state, 5-neighbor space it is not). However, as a conclusion of the work pre-
sented above we offer an alternative: a small perturbation may be enough to
cause some infinitely small part of the world to change. This would be sufficient
to induce a (possible) transition from class-II or class-III behavior to class-IV be-
havior. Furthermore, such a change could be effected upon a very simple world
(in our case, 2-state, 5-neighbor). As noted by Bonabeau and Theraulaz (1994),
“frozen accidents” play an important role in the evolutionary process. These ac-
cidents are mainly caused by external conditions, i.e., external relative to a given
system’s laws of functioning.

A (highly) tentative comparison may be drawn with the famous experiment
performed by Miller (1953) (see also Miller and Urey, 1959), in which methane,
ammonia, water, and hydrogen, representing a possible atmosphere of the prim-
itive Earth, were subjected to an electric spark for a week. After this period
simple amino acids were found in the system. The analogy to our CA world
is as follows: we start with a simple uniform world, consisting of a single rule,

6Class numbers are those defined by Wolfram, see Section 1.2.4.
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which does not support complex (class-IV) behavior.7 At some point, a “spark”
causes a perturbation in which a small number of cells change their rule. Such
an infinitely small change in our world can suffice to generate a phase transi-
tion such that class-IV behavior becomes possible. Note that this can happen
independently in other regions of the world as well.

While the above discussion has been of a tentative, speculative nature, we may
also draw some practical conclusions from this chapter. As noted in Section 1.2.3,
a primary difficulty with the CA approach lies with the extreme low-level repre-
sentation of the interactions; essentially, we construct world models at the level
of “physics.” By slightly changing the rules of the game (no pun intended) we
can increase the “capacity” for complex computation and ALife modeling, while
preserving the main features of CAs, namely, massive parallelism, locality of
cellular interactions, and simplicity of cells. After demonstrating that simple,
non-uniform CAs comprise viable parallel cellular machines, we proceed in the
next chapter to study ALife issues in such a model. In the succeeding chapters we
present the cellular programming approach, by which parallel cellular machines
are evolved to perform computational tasks.

7either due to inability of the cellular space to support such behavior at all or due to the rule
being in the non-class-IV regions of rule space.
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Chapter 3

Studying Artificial Life
Using a Simple, General
Cellular Model

Four things there are which are smallest on earth
yet wise beyond the wisest:
ants, a people with no strength,
yet they prepare their store of food in the summer;
rock-badgers, a feeble folk,
yet they make their home among the rocks;
locusts, which have no king,
yet they all sally forth in detachments;
the lizard, which can be grasped in the hand,
yet is found in the palaces of kings.

Proverbs 30, 24-28

3.1 Introduction

A major theme in the field of artificial life (ALife) is the emergence of complex
behavior from the interactions of simple elements. Natural life emerges out of the
organized interactions of a great number of non-living molecules, with no global
controller responsible for the behavior of every part (Langton, 1989). Closely
related to the concept of emergence is that of evolution, in natural settings, as
well as in artificial ones.

Several major outstanding problems in biology are related to these two themes,
emergence and evolution, among them (Taylor and Jefferson, 1994): (1) How do
populations of organisms traverse their adaptive landscapes- through gradual
fine-tuning by natural selection on large populations, or alternatively in fits and
starts with a good bit of chance to “jump” adaptive valleys in order to find more
favorable epistatic combinations? (2) What is the relation between adaptedness
and fitness, that is, between adaptation and what is selected for? It is now
understood that natural selection does not necessarily maximize adaptedness,
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even in theory (Mueller and Feldman, 1988). Factors such as chance, structural
necessity, pleiotropy, and historical accident, detract from the “optimization in
nature” argument (Gould and Lewontin, 1979; Kauffman, 1993). (3) The forma-
tion of multicellular organisms from basic units or cells. Other problems include
the origin of life, cultural evolution, the origin and maintenance of sex, and the
structure of ecosystems (Taylor and Jefferson, 1994).

This is just a partial list of open problems amenable to study by ALife mod-
eling. ALife research into such issues holds a potential two-fold benefit: (1)
increasing our understanding of biological phenomena, and (2) enhancing our
understanding of artificial models, thereby providing us with the ability to im-
prove their performance (e.g., robotics, evolving software).

Our main interest in this chapter lies in studying evolution, adaptation, and
multicellularity, in a model which is both general and simple. Generality implies
two things: (1) the model supports universal computation, and (2) the basic units
encode a general form of local interaction rather than some specialized action
(e.g., an IPD strategy, see Section 3.4.3). Simplicity implies that the basic units
of interaction are “modest” in comparison to Turing machines. If we imagine a
scale of complexity, with Turing machines occupying the high end, then simple
machines are those that occupy the low end, e.g., finite state automatons. These
two guidelines, generality and simplicity, allow us to evolve complex behavior with
the ability to explore, in-depth, the inner workings of the evolutionary process
(we shall come back to this point in the discussion in Section 3.5).

The CA model is perhaps the simplest, general model available. The basic
units (cells) are simple, local, finite state machines, representing a general form of
local interaction; furthermore, CAs support universal computation (Chapter 2).
As noted in Chapter 1, the main difficulty with the CA approach seems to lie with
the extreme low-level representation of the interactions. CAs are programmed at
the level of the local physics of the system and therefore higher-level cooperative
structures are difficult to evolve (Rasmussen et al., 1992). Our intent is to
increase the “capacity” for ALife modeling, while preserving the essential features
of the CA model, namely, massive parallelism, locality of cellular interactions, and
simplicity of cells.

The ALife model studied in this chapter is detailed in Section 3.2 and the
evolutionary aspect is presented in Section 3.4.1. The three basic features by
which it differs from the original CA model are (Sipper, 1994; Sipper, 1995c):

1. Whereas the CA model consists of uniform cells, each containing the same
rule, we consider the non-uniform case where different cells may contain
different rules.

2. The rules are slightly more complex than CA rules.

3. Evolution takes place not only in state space as in the CA model, but also
in rule space, i.e., rules may change (evolve) over time.

Thus, we obtain a grid of simple, interacting, rule-driven “organisms” that
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evolve over time. The course of evolution is influenced by the nature of these or-
ganisms, as well as by their environment. In nature, the role of the environment
in generating complex behavior is well known, e.g., as noted by Simon (1969) who
described a scene in which the observed complexity of an ant’s path is due to the
complexity of the environment and not necessarily a reflection of the complexity
of the ant. In our model, each rule is considered to have a certain fitness, de-
pending upon the environment under consideration. As opposed to the standard
genetic algorithm (Section 1.3), where each individual in the population is inde-
pendent, interacting only with the fitness function (and not the environment), in
our case fitness depends on interactions of evolving organisms, operating in an
environment (see also Section 3.4.1).

Note that the term ‘environment’ can convey two meanings: in the strict sense
it refers to the surroundings, excluding the organisms themselves (e.g., sun, water,
and the climate, in a natural setting), while the broad sense refers to the total
system, i.e., surroundings + interacting organisms (e.g., ecosystem). In what
follows the term is used in the strict sense, however, we attain an environment in
the broad sense, i.e., a total system of interacting organisms (see also Bonabeau
and Theraulaz, 1994).

We consider various environments, including the basic environment where
rules compete for space on the grid, an IPD (Iterated Prisoner’s Dilemma) en-
vironment, an environment of spatial niches, and an environment of temporal
niches. One of the advantages of ALife models is the opportunities they offer in
performing in-depth studies of the evolutionary process. This is accomplished in
our case by observing not only phenotypic effects (i.e., cellular states as a function
of time) but also such measures as fitness, operability, energy, and the genescape.

Our approach in this chapter is an ALife one where cellular automata provide
us with “logical universes” (Langton, 1986). These are “synthetic universes
defined by simple rules . . . One can actually construct them, and watch them
evolve.” (Toffoli and Margolus, 1987)

In the next section we detail the basic model (without evolution which is
presented in Section 3.4.1). In Section 3.3 we present designed multicellular
organisms which display several behaviors, including reproduction, growth, and
mobility. These are interesting in and of themselves and also serve as motivation
for the following section (Section 3.4) in which we turn our attention from the
human watchmaker to the blind one, focusing on evolution (Dawkins, 1986). A
discussion of our results ensues in Section 3.5.

3.2 The ALife model

The two-dimensional CA model consists of a two-dimensional grid of cells, each
containing the same rule, according to which cell states are updated in a syn-
chronous, local manner (Section 1.2). The model studied in this chapter consists
of a grid of cells which are either vacant, containing no rule, or operational con-
taining a finite state automaton (rule) which can, in one time step:
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1. Access its own state and that of its immediate neighbors (grid is toroidal).

2. Change its state and the states of its immediate neighbors. Contention
occurs when more than one operational neighbor attempts to change the
state of the same cell. Such a situation is resolved randomly, i.e., one of the
contending neighbors “wins” and decides the cell’s state at the next time
step. Note that the cell itself is also a contender, provided it is operational.

3. Copy its rule into a neighoring vacant cell. Contention occurs if more than
one operational neighbor attempts to copy itself into the same cell. Such a
situation is resolved randomly, i.e., one of the contending neighbors “wins”
and copies its rule into the cell. Note that in this case the cell itself is not a
contender since it must be vacant in the first place for contention to occur.

At each time step every operational rule1 simultaneously executes its appro-
priate rule entry, i.e., the entry corresponding to its current neighborhood config-
uration. Thus, state changes and rule copies are effected as explained above. Our
extended rule may be readily encoded in the form of a table as with the original
CA rule. Figure 3.12 depicts such an encoding for a 2-state, 5-neighbor cellular
space. Note that a vacant cell may be in any grid state as it can be changed by
neighboring operational cells.

Whereas a cell in the CA model accesses the states of its neighbors but may
only change its own state, our model allows state changes of neighboring cells
and rule copying into them. Thus, our rules may be regarded as being more
“active” than those of the CA model; furthermore, different cells may contain
different rules (non-uniformity). The third feature of our model, as presented in
Section 3.1, is the evolution that takes place in rule space, i.e., rules evolve as
time progresses; this is detailed in Section 3.4.1.

Our model is essentially non-deterministic since contention is resolved ran-
domly. A deterministic version could be attained by specifying, e.g., that upon
contention no change occurs (i.e., no state change or rule copy is effected). The
issue of determinism versus non-determinism has a long history whose discus-
sion is beyond our scope. The question has been raised specifically in relation
to artificial life, where it has been argued that computer experiments, by their
deterministic nature, can never attain the characteristics of true living systems,
where randomness is of crucial importance. However, in contrast to this objection
we note that random events are indeed incorporated into ALife systems. In fact,
von Neumann himself proposed, although he did not have the chance to design, a
probabilistic version of his self-reproducing CA, which obviated the deterministic
nature of his previous version (Section 1.2.4). For a discussion of the issue of
determinism in artificial life see Levy (1992), pages 337-338.2

1Throughout this chapter we use the terms “operational cell” and “operational rule”
interchangeably.

2Note that our self-reproducing loop, presented in Section 3.3.1, is in fact deterministic since
contention does not arise.
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What can be said about the “power” of our model in relation to the original
CA? This question must be considered with some care. In terms of computational
power, we have seen in Chapter 2 that non-uniformity does indeed engender a
basic difference for very simple cellular spaces (we shall also see this in Chapter 4).
For example, 2-state, 5-neighbor uniform CAs are not computation universal
whereas non-uniform CAs are (Chapter 2). For most uniform cellular spaces
universal computation can, however, be attained, so in this respect we have not
increased the power of our system. In fact, it is easy to see that a uniform CA can
simulate a non-uniform one by encoding all the different rules as one (huge) rule,
employing a large number of states. Another feature of our model, namely, the
“active” nature of our rules, whereby they may effect changes upon neighboring
cells, may also be obviated by using “static” rules with larger neighborhoods,
performing the equivalent operations. While the above arguments hold true in
principle we argue that this is not so in practice.3 The power offered by our model
cannot strictly be reduced to the question of computational power. As noted in
Section 3.1, our intent is to increase the “capacity” for ALife modeling. This
notion cannot be precisely defined at this point and is in fact one of the major
concerns of the field of artificial life. Nonetheless, our investigations reported
in the following sections do indeed show that our model holds potential for the
exploration of ALife phenomena.

3.3 Multicellularity

In this section we present a number of multicellular organisms which are composed
of several cells, consisting of rules as described in Section 3.2. The organisms
discussed below are designed rather than evolved and our intent is to demonstrate
that interesting behaviors can arise using the dynamics described above. In the
next section we shall focus on evolution. At this point the term ‘multicellular’ is
loosely defined so as to refer to any structure composed of several cells, acting in
unison. In Section 3.5, we examine more carefully the meaning of the term ‘cell,’
and expand upon the general issue of multicellular organisms versus unicellular
ones. The cellular space considered throughout this section is 3-state, 9-neighbor,
where states are denoted {0, 1, b}.4

3.3.1 A self-reproducing loop

Our first example involves a simple self-reproducing loop, motivated by Langton’s
work, who described such a structure in uniform cellular automata (Langton,
1984; Langton, 1986). His loop was later simplified by Byl (1989) and by Reggia
et al. (1993). Langton’s loop (motivated by Codd, 1968) makes dual use of the

3In his book on complex systems, Pagels discusses this issue in the context of Kant’s epistemic
dualism, which suggests that there are two different kinds of reason, “theoretical reason” (in
principle) and “practical reason” (in practice) (Pagels, 1989, pages 216-222).

4The third state is denoted b rather than 2 since it is depicted as a blank square in the figures.
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information contained in a description to reproduce itself. The structure consists
of a looped pathway, containing instructions, with a construction arm projecting
out from it. Upon encountering the arm junction, the instruction is replicated,
with one copy propagating back around the loop again and the other copy prop-
agating down the construction arm, where it is translated as an instruction when
it reaches the end of the arm (Figure 3.1).

   . . . . . . . .
 . 1 7 0 1 4 0 1 4 .
 . 0 . . . . . . 0 .
 . 7 .         . 1 .
 . 1 .         . 1 .
 . 0 .         . 1 .
 . 7 .         . 1 .
 . 1 . . . . . . 1 . . . . .
 . 0 7 1 0 7 1 0 7 1 1 1 1 1 .
   . . . . . . . . . . . . .

   . . . . . . . .       . . . . . . . .
 . 7 0 1 7 0 1 7 0 .   . 1 4 0 1 4 0 1 1 .
 . 1 . . . . . . 1 .   . 0 . . . . . . 1 .
 . 1 .         . 7 .   . 7 .         . 1 .
 . 1 .         . 0 .   . 1 .         . 1 .
 . 1 .         . 1 .   . 0 .         . 7 .
 . 1 .         . 7 .   . 7 .         . 0 .
 . 0 . . . . . . 0 . . . 1 . . . . . . 1 .
 . 4 1 0 4 1 0 7 1 0 7 5 0 6 1 0 7 1 0 7 .
   . . . . . . . . . . . . . . . . . . .

time = 0 time = 126

Figure 3.1. Langton’s self-reproducing loop.

The important issue to note is the two different uses of information, inter-
preted and uninterpreted, which also occur in natural self-reproduction, the for-
mer being the process of translation, and the latter transcription. In Langton’s
loop translation is accomplished when the instruction signals are “executed” as
they reach the end of the construction arm, and upon the collision of signals with
other signals. Transcription is accomplished by the duplication of signals at the
arm junctions (Langton, 1984).

The loop considered in this section consists of five cells and reproduces within
six time steps . The initial configuration consists of a grid of vacant cells (i.e.,
with no rule) with a single loop composed of five cells in state 1, each containing
the loop rule (Figure 3.2a). The arm extends itself by copying its rule into an
adjoining cell, coupled with a state change to that cell. The new configuration
then acts as data to the arm, thereby providing the description by which the
loop form is replicated. When a loop finds itself blocked by other loops it “dies”
by retracting the construction arm. Figure 3.2b shows the configuration after
several time steps.

The loop rule is given in Figure 3.3. Note that most entries are identity trans-
formations, i.e., they transform a state to itself, thereby causing no change (only
40 entries of the 39 are non-identity). In his paper, Langton (1984) compares the
self-reproducing loop with the works of von Neumann (1966) and Codd (1968),
drawing the conclusion that although the capacity for universal construction, pre-
sented by both, is a sufficient condition for self-reproduction, it is not a necessary
one. Furthermore, as Langton points out, naturally self-reproducing systems are
not capable of universal construction. His intent was therefore to present a sim-
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11 11 11 11
111 1110 11100 11101

1
time = 0 time = 1 time = 2 time = 3

1
11 11 11
11101 11011 11 11

11 11 11
1 1

0
time = 4 time = 5 time = 6

(a)

time = 12 time = 28 time = 66

(b)

Figure 3.2. Self-reproducing loop. In (b), black squares represent cells in state
1, non-filled squares represent cells in state 0, and white squares represents cells
in state b.
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1 1
1 1 → 1 1 0 1 0 → 1 0 0

0 0 → 0 1
1

0 1 0 1
1 → 1 1

1 0 1 → 1 1 1
1 1 1 1

1 0 1 1 0 1
1 1 → 1 1

1

1 1
1 1 0 → 1 0 0

1 1

1 1
1 0 1 → 1 1

1 1

1 1
1 1 1 → 1 1

1 1

1
1 1 → 1 1
1 1 0 1 1 0

Figure 3.3. Self-reproducing loop: Rule table. In all rule entries a state change
from b to 0/1 also involves a rule copy (note that all cells are initially vacant,
i.e., with no rule, except the ones comprising the initial loop). For example, the
upper left rule entry specifies a state change from b to 0 to the east cell, along
with a rule copy to that cell. Each of the above entries consists of three further
rotations (not shown). All other entries preserve the configuration.
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pler system that exhibits non-trivial self-reproduction. This was accomplished by
constructing a rule in an eight-state cellular space, that exhibits the dual nature
of information, i.e., translation and transcription.

In the loop presented above, simple transcription is accomplished as an inte-
gral part of a cell’s operation, since a rule can be copied, i.e., treated as data.
Once a rule is activated it begins to function by changing states in accordance
with the grid configuration, thereby performing translation on the surrounding
cells (data). Essentially, the loop operates by transcribing itself onto a neighbor-
ing cell while simultaneously writing instructions (in the form of grid states) that
will be carried out at the next time step.

In Langton’s system each grid cell initially contains the rule that supports
replication whereas in our case the grid cells are initially vacant and the loop it-
self contains all the information needed. In both cases reproduction is not coded
entirely into the “transition physics” but rather is “actively directed by the con-
figuration itself” where “the structure may take advantage of certain properties
of the transition function physics of the cellular space” (Langton, 1984). Thus,
interest in such systems arises since they display an interplay of active structures
taking advantage of the characteristics of cellular space.

Before ending this section, we mention the recent work of Perrier et al. (1996)
who observed that self-reproducing, cellular automata-based systems developed
to date broadly fall under two categories, essentially representing two extremes.
The first consists of machines which are capable of performing elaborate tasks,
yet are too complex to simulate (e.g., von Neumann, 1966; Codd, 1968), while the
second consists of simple machines which can be entirely implemented, yet are
only capable of self-reproduction (e.g., Langton, 1984; Byl, 1989; Reggia et al.,
1993, and the system described above). An interesting system situated in the
middle ground was presented by Tempesti (1995). Essentially a self-reproducing
loop, similar to that of Langton’s, it has the added capability of attaching to the
automaton an executable program which is duplicated and executed in each of its
copies. The program is stored within the loop, interlaced with the reproduction
code, and is therefore somewhat limited. Perrier et al. (1996) demonstrated a
self-reproducing loop that is capable of implementing any program, written in a
simple yet universal programming language. The system consists of three parts,
loop, program, and data, all of which are reproduced, followed by the program’s
execution on the given data. This system has been simulated in its entirety,
thus attaining a viable, self-reproducing machine with programmable capabilities
(Figure 3.4).

3.3.2 Reproduction by copier cells

In the previous section we described a self-reproducing loop, which exhibited a
two-fold utilization of information, i.e., translation and transcription. In this sec-
tion we examine a system of reproduction consisting of passive structures copied
by active (mobile) cells. The motivation for our approach lies in the information
flow in protein synthesis, where passive mRNA structures are translated into
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  . . . . . . . .
. 7 0 1 7 0 1 7 0 .
. 1 . . . . . . 1 .
. 1 .         . 7 .
. 1 .         . 0 .
. 1 .         . 1 .
. 1 .         . 7 .
. 0 . . . . . . 0 . . . .
. 4 1 0 4 1 0 7 1 0 7 1 1 .
. A . . . . . . . . . . .
. P .         . D .
. P .         . D .
. P .         . D .
. P .         . D .
. P .           .
. P .
. P .
  .

Figure 3.4. A self-reproducing loop with programmable capabilities. The sys-
tem consists of three parts, loop, program, and data, all of which are reproduced,
followed by the program’s execution on the given data. P denotes a state belong-
ing to the set of program states, D denotes a state belonging to the set of data
states, and A is a state which indicates the position of the program.

amino acids by active tRNA cells. Each tRNA cell matches one specific codon
in the mRNA structure and synthesizes one amino acid. Note that our system
is extremely simple with regards to the workings of the living cell and therefore
the above analogy is (highly) abstracted.

Our system consists of stationary structures, composed of vacant grid cells,
comprising the passive data to be copied. The copy (“synthesis”) process is
effected by three types of copier cells, denoted X, Y , and Z, which are mobile
units, “swimming” on the grid, seeking an appropriate match (remember that
cellular mobility is possible by using rule copying, see Section 3.2). When such a
match occurs the cell proceeds to create the appropriate sub-structure, as in the
case of a tRNA cell synthesizing the appropriate amino acid. The final result is
a copy of the original structure.

The process is demonstrated in Figure 3.5. The initial configuration consists
of a passive structure with X, Y , and Z cells randomly distributed on the grid
(Figure 3.5, time = 0). Each time step the copier cells move to a neighboring
vacant cell (shown as white squares) at random, unless a match is found which
triggers the synthesis process. Figure 3.5 shows the process at an intermediate
stage (time = 435), and at the final stage (time = 813) when the copy has been
produced.

The X-cell rule table is detailed in Figure 3.6 (Y - and Z-cell rules may be
analogously derived). The table entry shown at the top left is the match seeker,
specifying the “codon” of the X cell. Once a match is found, the cell builds a
copy by applying the other two entries. After application of the entry at the
bottom left, the copy has been constructed and the X cell “dies.” Note that
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time = 0 time = 435 time = 813

Figure 3.5. Reproduction by copier cells.

0 0 * 0 0 *
0 X * → 0 *

* X,0 *

0 * 0 *
X,0 * → X,0 0 *

* *

* 0 * 0
* X,0 0 → * 0 0
* * 0

Figure 3.6. Reproduction by copier cells: X-cell rule table. Rather than provide
an exhaustive listing of all table entries, it is given in the form of entry “templates”
(as in Table 2.1), using the symbol ‘*’ to denote the set of states {0, 1, b}. ‘X’
denotes an X rule in a cell in state b, ‘X, 0’ denotes an X rule in a cell in state
0. All other entries specify a move to a random vacant cell in state b.

most entries in the rule table specify a move to a random vacant cell in state b.

The copy created is not an exact duplicate but rather a “complementary”
one. The reason for this is that we wish to avoid endless copying which would
occur had an exact duplicate been created. Since our model is inherently local we
cannot maintain a global variable specifying that the synthesis process has been
completed. The only way to avoid an endless chain of duplicate sub-structures
is by locally specifying that a copy has been completed. This is accomplished by
creating a complementary sub-structure, which does not match any copier cell
and is not further duplicated.

3.3.3 Mobility

In this section we introduce a worm-like structure which has the capacity to
move freely on the grid. The system consists of “worms,” which are active,
mobile structures composed of operational cells in state 1, and barriers, which
are vacant cells in state 0. When a worm encounters a barrier it turns by 90
degrees and continues its movement (if there is a barrier obstructing the turn
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then the worm destroys it).

Figure 3.7 presents a system with a single worm, behaving as described above.
When several worms are placed on the grid, interactions among them yield inter-
esting phenomena (Figure 3.8). The following behavioral patterns are observed
when two worms meet: one of them splits into two, both worms merge into one, a
worm loses part of its body, or both emerge unscathed. In all cases the resulting
worms behave in the same manner as their “ancestors.”

time = 0 time = 5 time = 33

Figure 3.7. A system consisting of a single worm. Black squares represent cells
in state 1 (worms), non-filled squares represent cells in state 0 (barriers), and
white squares represent cells in state b.

The rule is detailed in Figure 3.9. Its simplicity is possible due to the power
offered by our model (see discussion in Section 3.5). The emergent behavior
is complex and exhibits different forms of interaction between the organisms
inhabiting the grid. A worm acts as a single, high-order structure and upon
encountering other worms it may split, merge, shrink, or emerge unscathed.

It is interesting to observe the formation of such a high-order structure which
operates by applying local rules. The worm rule essentially specifies how the head
and tail sections operate independently, the overall effect being that of a single

(a) (b) (c)

Figure 3.8. A system consisting of several worms. (a) an initial configuration of
the system. (b), (c) system configurations after several time steps.
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* * * * * *
1 1 → 1 1 1
* * * * * *

* * * 1 *
* 1 * → * 1 *
* 1 * * 1 *

* * * * 1 *
1 1 0 → 1 1 0
* * * * * *

* 0 * * 0 *
* 1 * → * 1 1
* 1 * * 1 *

* * * * * *
+ 1 1 → + 1
* * * * * *

* 1 * * 1 *
* 1 * → * *
* + * * + *

Figure 3.9. Worm rule. ‘*’ denotes the set of states: {0, 1, b}. ‘+’ denotes the
set of states: {0, b}. All other entries preserve the configuration.

organism whose parts operate in unison. Living creatures may also be viewed
in this manner, i.e., as a collection of independent cells operating in unison,
thereby achieving the effect of a single “purposeful” organism (see discussion in
Section 3.5).

3.3.4 Growth and replication

In this section we examine an enhancement of our model, in which the following
feature is added to the three presented in Section 3.2:

4. A cell may contain a small number of different rules. At a given moment
only one rule is active and determines the cell’s function. An inactive rule
may be activated or copied into a neighoring cell.

This feature could serve as a possible future enhancement in the evolutionary
studies as well (Section 3.4). At this point we present a system involving the
growth and replication of complex structures which are created from grid cells
and behave as multicellular organisms once formed. The system consists initially
of two cell types, builders (A cells) and replicators (B cells), floating around on
the grid.

Figure 3.10 demonstrates the operation of the system. At time 0, A and B
cells are distributed randomly on the grid and there are two vacant cells in state
1, acting as the core of the building process. The A cells act as builders by
attaching ones at both ends of the growing structure. Once a B cell arrives at
an end, growth stops there by attaching a zero (time=111).

When a B cell arrives at the upper end of a structure already possessing one
zero, a C cell is spawned, which travels down the length of the structure to the
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other end. If that end is as yet uncompleted, the C cell simply waits for its
completion (time=172). The C cell then moves up the structure, duplicating
its right half which is also moved one cell to the right (time=179). Once the C
cell reaches the upper end it travels down the structure, spawns a D cell at the
bottom and begins traveling upward, while duplicating and moving the right half
(time=187). Meanwhile, the D cell travels upward between two halves of the
structure and joins them together (time=190).

This process is then repeated. The C cell travels up and down the right side
of the structure, creating a duplicate half on its way up. As it reaches the bottom
end, a D cell is spawned, which travels upward between two disjoint halves and
joins them together. Since joining two halves only occurs every second pass, the
D cell immediately dies every other pass (e.g., time=195).

There are interesting features to be noted in the process presented. Repli-
cation should begin only after the organism is completely formed, i.e., there are
two distinct phases of development; however, there can be no global indicator
that such a situation has occurred (as noted in Section 3.3.2). Our solution is
therefore local: a B cell, upon encountering an upper end which already has one
zero, completes the formation of that end and releases a C cell, which travels
down the length of the structure. This cell will seek the bottom end or wait for
its completion. Only at such time when the structure is complete will the C cell
begin the replication process.

Replication involves two cells operating in unison, where the C cell duplicates
half of the structure, while the D cell “glues” two halves together. Again, it is
crucial that the whole process be local in nature since no global indicators can
be used.

The rules involved in the system are given in Appendix A. The spawning of
C and D cells are provided for by the added feature above, which specifies that
a cell may contain a small number of different rules, where only one is active at a
given moment. Therefore, the initial B cells can contain all three rules: B,C,D.

The design of our system is even more efficient than that, however, requiring
only two rule tables, one for A cells and one for B/C/D cells. Each entry of
the B/C/D rule table is only used by one of the cell types (i.e., the entries are
mutually exclusive). At a given moment, the cell has one active rule (which
determines its type). If the table entry to be accessed belongs to the active rule-
it is used, otherwise, a default state change occurs; this default transformation is
a move to a random vacant cell for B cells and no change for C and D cells.

3.4 Evolution

3.4.1 Evolution in rule space

The previous section presented a number of designed, multicellular organisms,
using the model delineated in Section 3.2. These organisms demonstrate the ca-
pability of our model in creating systems of interest, which results from increasing
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time = 0 time = 111 time = 190

time = 195 time = 323 time = 342

(a)

time = 0 time = 111 time = 172

time = 179 time = 187 time = 190

(b)

Figure 3.10. Growth and replication. Four cell types, denoted A, B, C, and
D, interact to “grow” a structure, starting from a core of two vacant cells in
state 1. Upon termination of the growth process, the complete structure is then
replicated. (a) Overview of the entire process. (b) Zoom of intermediate stages
(with C cells represented by @, and D cells by ∗).
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the level of operation with respect to the “physics” level of CAs (Section 3.1). In
this section we study evolution as it occurs in our model. Though at this point
we have not yet evolved organisms as complex as those of the previous section,
we have, nonetheless, encountered several interesting phenomena. We shall also
present various tools with which the evolutionary process can be investigated.

C
N

W E
S

Figure 3.11. The 5-cell neighborhood.

The cellular space considered in this section is 2 state, 5-neighbor (Fig-
ure 3.11), where states are denoted {0, 1}. We chose this space due to practical
considerations, as well as the desire to study the simplest possible two-dimensional
space. Evolution in rule space is achieved by constructing the genome of each
cell, specifying its rule table, as depicted in Figure 3.12. There are 32 genes cor-
responding to all possible neighborhood configurations. Each gene consists of 10
bits, encoding the state change to be effected on neighboring cells (including it-
self), and whether the rule should be copied to neighboring cells or not (including
itself). When discussing specific genes we will use the following notation:

CNESW ⇒ ZCZNZEZSZW ,

where CNESW represents a neighborhood configuration, and ZCZNZEZSZW
represents the respective Sx and Cx bits, using the following notation for Zx:

Cx = 0 Cx = 1

Sx = 0 Zx =‘0’ Zx =‘−’

Sx = 1 Zx =‘1’ Zx =‘+’

For example, 00101 ⇒ 01 + +−, means that the gene (entry) 00101 specifies
the following transformations: SC = 0, CC = 0, SN = 1, CN = 0, SE = 1, CE =
1, SS = 1, CS = 1, SW = 0, CW = 1.

At each time step, every operational rule simultaneously executes its appropri-
ate rule entry by referring to the gene corresponding to its current neighborhood
states, i.e., state changes and rule copies are effected as delineated in Section 3.2.
This is followed by application of the “genetic” operators of crossover and muta-
tion, as used in the standard genetic algorithm (Section 1.3).

Crossover is performed in the following manner: at each time step, every
operational cell selects an operational neighbor at random. Let (i, j) denote the
grid position of an operational cell and (in, jn) the grid position of the randomly
selected operational neighbor. Crossover is performed between the genomes of the
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SN CN SE CE SS CS SW CW
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:
CC CS

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 

gi - gene i corresponds to neighborhood configuration i, where i
equals the binary representation of the neighboring cell states
in the order CNESW .

Sx - state-change bit, where x ∈ {C,N,E, S,W} denotes one of the
five neighbors. This bit specifies the state change to be effected
upon the appropriate neighboring cell. For example, SE = 0
means “change the east cell’s state to 0.”

Cx - copy-rule bit, where x ∈ {C,N,E, S,W} denotes one of the five
neighbors. This bit specifies whether to copy the rule to the cell
in direction x or not (0 - don’t copy, 1 - copy).

Figure 3.12. Rule genome.

rules in cell (i, j) and cell (in, jn), with probability pcross. The (single) crossover
site is selected with uniform probability over the entire string and the resulting
genome is placed in cell (i, j). If the cell has no operational neighbors then no
crossover is effected. Note that the crossover operator is somewhat different than
the one used in genetic algorithms, due to its “asymmetry:” cell (i, j) selects
cell (in, jn), while cell (in, jn) may select a different cell, i.e., cell (i′, j′) such that
(i′, j′) 6= (i, j). It is argued that this slightly decreases the coupling between cells,
thus enhancing locality and generality.

Mutation is applied to the genome of each operational rule, after the crossover
stage, by inverting each bit with probability pmut. Note that both operations are
insensitive to gene boundaries, which is also the case in biological settings. In
summary, at each time step every operational rule performs its appropriate action,
after which crossover and mutation are applied.

It is important to note the difference between our approach and genetic al-
gorithms. Though we apply genetic operators in a similar fashion, there is no
selection mechanism operating on a global level, using the total fitness of the en-
tire population. As we shall see (Section 3.4.3) fitness will be introduced, albeit
in a local manner consistent with our model (see also Collins and Jefferson, 1992).
Note also that in the standard genetic algorithm each entity is an independent
coding of a problem solution, interacting only with the fitness function, “seeing”
neither the other entities in the population nor the general environment that ex-
ists (see also Ray, 1994a). In contrast, in our case fitness depends on interactions
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General parameters time steps 3000− 30000
grid size 40x50
pcross 0.9
pmut 0.001

Initialization parameters poperational 0.5
p(Sx = 1) 0.5
p(Cx = 1) 0.5

Table 3.1. Simulation parameters. pcross is the crossover probability, pmut is the
mutation probability, poperational is the probability of a cell being operational in
the initial grid, p(Sx = 1) is the probability of the Sx bits of the genome equaling
1 (state-change bits, see Figure 3.12), and p(Cx = 1) is the probability of the Cx
bits of the genome equaling 1 (copy-rule bits, see Figure 3.12).

of evolving organisms, operating in an environment, thus engendering a coevo-
lutionary scenario. This characteristic also holds for the cellular programming
algorithm, as we shall see in Chapter 4.

We note in passing that the hardware resources required by our model only
slightly exceed those of CAs. Since both models are local in nature, each cell must
retain a copy of the rule in its own memory, regardless of their being identical
or not. Moreover, the size of our genome is 320 bits as compared to the CA rule
which requires 32 bits. Note that in this context rule copying is straightforward,
requiring only a simple memory transfer. We maintain that on the scale of
complexity (Section 3.1) our enhanced rule is very close to the low end, alongside
the CA rule.

3.4.2 Initial results

Our first experiments were performed by running the model described above
using an initial random population of rules. The parameters used are detailed in
Table 3.1.

In this setup the only limitation imposed by the environment is due to the
finite size of the grid, i.e., there is competition between rules for occupation of
cells. The final grid obtained is one in which most cells are operational (approx-
imately 96%). The rule population consists of different rules with some notable
commonalities among them. The average value of the number of CC = 1 bits in
the rule genomes is approximately 31. This bit indicates whether the rule should
be copied to the cell it occupies in the next time step (CC = 1) or not (CC = 0),
and it is observed that almost all such bits in the genomes equal 1. Thus, a
simple strategy has emerged which specifies that a rule, upon occupation of a
certain cell, remains there, thereby preventing occupation by another rule (which
can only enter a vacant cell).

Another commonality observed, among runs, was the average distribution of
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Cx bits in the genomes of the rules present on the final grid. The percent of Cx
bits equaling 1 is 63% and those equaling 0 is 37%. These ratios are approximately
1−1/e and 1/e, respectively, and appeared regularly in all simulations. Since the
Cx bits in the genome indicate how “active” a rule is, it is evident that activity is
essential for survival, in the context of the simple scenario described. The average
percentage of Sx bits equaling 1 was approximately 50%, indicating no preference
for a specific state.

The results described were essentially the same for different values of the pa-
rameters in Table 3.1. One case did, however, prove slightly different, namely,
pmut = 0, i.e., using crossover alone. Here all cells in the final grid were opera-
tional with the CC bits of all genomes equaling 1 (i.e., 32 CC = 1 bits). Thus, it is
evident that the initial population consists of sufficient genetic material such that
perfect survivors can emerge. Mutation in this case hinders survival, however,
we must bear in mind that the environment is simple and thus there appear to
be no local minima which can only be avoided by using mutation. As we shall
see ahead, this is not the case for more complex environments.

Another interesting phenomena was observed by looking at the Sx = 1 and
Cx = 1 grids. The Sx = 1 grid is constructed by computing for each cell the total
number of Sx bits which equal 1 for the rule genome in that cell. The Cx = 1 grid
is constructed analogously for Cx bits. A typical run is presented in Figure 3.13,
with different Sx = 1 and Cx = 1 values represented by different gray levels. It is
evident that clusters are formed, according to state preference (Sx = 1 grid) and
according to activity (Cx = 1 grid).

A final experiment performed in the context of the scenario described so far
was the removal of the constraint that a rule may only copy itself into a vacant
cell. When run with pmut = 0, i.e., no mutations, one rule remained on the
grid, occupying all cells (i.e., all cells were operational). This rule is the perfect
survivor with all Cx bits in its genome set to 1.

3.4.3 Fitness in an IPD environment

In this section we enhance our model by adding a measure of a rule’s fitness, spec-
ifying how well it performs in a certain environment. The environment explored
is defined by the Iterated Prisoner’s Dilemma (IPD), a simple game which has
been investigated extensively as a model of the evolution of cooperation. IPD
provides a useful framework for studying how cooperation can become estab-
lished in a situation where short-range maximization of individual utility leads to
a collective utility minimum. The game was first explored by Flood (1952) (see
also Poundstone, 1992) and became ubiquitous due to Axelrod’s work (Axelrod
and Hamilton, 1981; Axelrod, 1984; Axelrod, 1987; Axelrod and Dion, 1988).
These studies involve competition between several strategies, which are either
fixed at the outset or evolve over time. An evolutionary approach was also taken
by Lindgren (1992) and Lindgren and Nordahl (1994a), where genomes repre-
sent finite-memory game strategies, with an initial population containing only
memory-1 strategies. The memory length is allowed to change through neutral
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Sx = 1, time = 0 Cx = 1, time = 0

Sx = 1, time = 30000 Cx = 1, time = 30000

Figure 3.13. The Sx = 1 and Cx = 1 grids. The Sx = 1 grid is constructed by
computing for each cell the total number of Sx bits which equal 1 for the rule
genome in that cell. The Cx = 1 grid is constructed analogously for Cx bits. The
computed values are represented by distinct gray-level values. Note that at each
time step every operational cell performs its appropriate action (in accordance
with its genome), after which rule evolution takes place, through application of
the crossover and mutation operators.
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gene duplications and split mutations, after which point mutations are applied,
which can then give rise to new strategies. Simulations of this model revealed
interesting phenomena of evolving strategies in a punctuated-equilibria manner
(Eldredge and Gould, 1972).

The fact that the physical world has spatial dimensions has also come into
play in the investigation of IPD models. A CA approach was applied by Axelrod
(1984), in which each cell contains a single strategy and simultaneously plays IPD
against its neighbors. The cell’s score is then compared to its neighbors and the
highest-scoring strategy is adopted by the cell at the next time step. In this case
evolution was carried out with a fixed set of strategies, i.e., without application of
genetic operators. Nowak and May (1992) considered the dynamics of two inter-
acting memoryless strategies: cooperators and defectors (also known in the IPD
literature as AllC and AllD). Spatiotemporal chaos was observed when interac-
tions occurred on a two-dimensional grid. A spatial evolutionary model was also
considered by Lindgren and Nordahl (1994b), where the representation of strate-
gies and adaptive moves were identical to those of Lindgren (1992), described
above.

It is important to note the difference of the above approaches from ours.
The models discussed above were explicitly intended to study various aspects
of the evolution of cooperation using the IPD game. Thus, strategies are the
basic units of interaction, whether fixed or evolving over time (e.g., by coding
them as genomes and performing genetic operators). In contrast, we use IPD
to model an environment and our basic unit of interaction is the rule discussed
in Section 3.4.1. Our genome does not represent an IPD strategy, but rather
a general form of local interaction, pertinent to our model. Our intention is to
study such interacting cells in various environments, one of which is defined in
this section by IPD. Thus, rather than use IPD explicitly in the form of strategies,
it is applied implicitly through the environment.

At each time step, every operational cell plays IPD with its neighbors, where
a value of 1 represents cooperation and a value of 0 represents defection. The
payoff matrix is as follows (presented for row player):

Cooperation (1) Defection (0)

Cooperation (1) 3 0

Defection (0) 5 1

The cell’s fitness is computed as the sum of the (four) payoffs, after which the
following takes place: each (operational) cell which has an operational neighbor
with a higher fitness than its own “dies,” i.e., becomes vacant. Crossover and
mutation are then carried out as described above with one minor difference: the
crossover probability pcross is not fixed, but is equal to (f(i, j) + f(in, jn))/40,
where f(i, j) is the fitness of the cell at position (i, j), f(in, jn) is the fitness of
the selected operational neighbor for crossover (see Section 3.4.1). In summary,
the (augmented) computational process is as follows: at each time step the grid
is updated by rule application, then fitness is evaluated according to IPD, after
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which operational cells with fitter operational neighbors become vacant. Finally,
crossover and mutation are applied as explained above.

Our simulations revealed the evolutionary phenomenon depicted in Figure 3.14
(parameters used are those of Table 3.1, except for pcross, computed as discussed
above). The figure presents a typical run, starting from a random grid (time = 0).
At time = 1050, we observe that approximately half the cells are operational ones
in state 0, surrounded by vacant cells in state 1. This configuration, which we
term alternate defection, is one in which the operational cells attain the maximal
fitness (payoff) of 20. However, this is not a stable configuration. At some point
in time a small cluster of cooperating operational cells emerges (time = 1500),
spreading rapidly throughout the grid (time = 1650). The final configuration
is one in which most cells are cooperating operational ones with a fitness of 12
(time = 2400).

The notion of a cluster of cooperation in a spatial IPD model was discussed
by Axelrod (1984) (albeit without rule evolution, see above). He used the term
“invasion by a cluster,” emphasizing that a single cooperating cell does not stand
a chance against a world of defectors. As noted above, our model is more com-
plex, involving evolutionary mechanisms and a general genome, which does not
specifically code for IPD strategies. Nonetheless, we see that the IPD environ-
ment induces cooperation, with a noteworthy transition phenomenon in which
widespread defection prevails.

Cooperation is achieved by a multitude of different rules, i.e., with different
genotypic makeup. Upon inspection of these rules, we detected a significant
commonality among them, found in gene g31, which is usually:

11111⇒ + + + + +

or, in some cases, a Cx bit may be 0, where x 6= c (i.e., not the central copy-rule
bit), for example:

11111⇒ + + +1+

Thus, we see how cooperation is maintained, by having this gene activated
once stability is attained, essentially assuring that the cell remains operational
and in state 1 (cooperate) with operational cooperating neighbors. Occasional
“cheaters” have been observed, i.e., rules with gene g31 such as:

11111⇒ −+ + + +

These are rules which remain operational at the next time step but in a state of
defection. However, they are unsuccessful in invading the grid, and we have not
observed a return to widespread defection after cooperation has been attained.

It is noteworthy that the final grid consists of rules which essentially em-
ploy only one gene of the 32 present in the genome. This may be compared
to biological settings, where only part of the genome is expressed, while other
parts are of no use. Thus, one of the aforementioned features of our model is
demonstrated, namely, the general encoding of cellular rules, as opposed, e.g., to
explicit encoding of IPD strategies. Evolution takes its course, converging to a
stable “strategy,” consisting of a multitude of different rules (genomes), whose
commonality lies in a specific part of the genome, the part which is expressed, i.e.,
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time = 0 time = 1050

time = 1500 time = 1650

time = 1800 time = 2400

Operational cell in state 1.

Vacant cell in state 1.

Vacant cell in state 0.

Operational cell in state 0.

Figure 3.14. Evolution in an environment defined by the Iterated Prisoner’s
Dilemma.
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time = 10000

Figure 3.15. Evolution in the IPD environment with probability of mutation,
pmut = 0, may result in absolute alternate defection. Gray-level representation is
identical to Figure 3.14.

responsible for the phenotype. Our rules can be viewed as simple “organisms,”
specified by the genome of Figure 3.12, where evolution determines which genes
are expressed, along with their exact allelic form. We can view this setup as the
formation of a sub-species of cooperating organisms, where members are defined
by their phenotypic effects, rather than their exact genetic makeup. Whereas the
genomes differ greatly (in terms of the precise alleles present), their phenotypes
are similar (cooperation), due to a critical gene, g31, which is the one expressed.

When pmut is set to 0, two patterns have been observed to emerge: coopera-
tion or absolute alternate defection (Figure 3.15). While cooperation is as before,
among different rules, absolute alternate defection is achieved with only one sur-
viving rule. Each such run produced a different survivor, with an important
commonality found in gene g15, which is one of the following:

01111⇒ +−−−−
or

01111⇒ 1−−−−
Thus, when the grid configuration is such that all operational rules are in state 0,
surrounded by vacant cells in state 1, g15 is activated, causing the current cell’s
state to become 1, and the rule to be copied into all neighboring cells, with their
state changed to 0.5 This is an interesting strategy in that an operational cell
ensures cooperation of the cell it occupies and then defects to a neighboring cell.

5Note that though every vacant cell is contended by four operational neighbors they are all
identical and so there is no importance as to who wins. Also note that when the center cell
remains operational (as in the first g15 gene) it immediately dies since its fitness is 0.
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pcoop = 0.9, time = 150 pcoop = 0.5, time = 150

Figure 3.16. Evolution in the IPD environment. The initial rule population
comprises only two types of rules: cooperators and defectors. The Sx bits of
cooperators are set to 1, while those of defectors are set to 0. The Cx bits are
initialized randomly and all cells are operational at time = 0. pcoop denotes
the probability of a cell being a cooperator in the initial grid. Shown above are
intermediate evolutionary phases; eventually, the grid shifts to alternate defection
and then to cooperation (as in Figure 3.14).

The case of pmut = 0 demonstrates the importance of mutation, which causes
small perturbations that are necessary to invoke cooperation, as opposed to less
complex environments, where mutation did not prove essential (Section 3.4.2).

We next explore the following modification: fitness is allowed to accumulate
over a small period of time (3−5 steps). The death of operational cells still occurs
at each time step as before (i.e., when a fitter operational neighbor exists), how-
ever, they stand a better chance of survival since their recent fitness histories are
taken into account. It was observed that cooperation did not emerge, rather the
state attained was that of alternate defection. Thus, in a “harsher” environment,
inflicting immediate penalty on unfit cells, cooperation emerges, while in a more
forgiving environment defection wins.

Cooperation also emerges when the grid is run with a different initial rule
population, involving only two types of rules: cooperators and defectors. The Sx
bits of cooperators are set to 1, while those of defectors are set to 0. The Cx bits
are initialized randomly and all cells are operational at time = 0 (crossover and
mutation are effected as above, pmut > 0).

Let pcoop denote the probability of a cell being a cooperator in the initial
grid. When pcoop = 0.9, we observe that at first there is a “battle” raging on
between cooperators and defectors (Figure 3.16). However, the grid then shifts
to alternate defection and finally to cooperation as in Figure 3.14. When pcoop
is set to 0.5, i.e., an equal proportion (on average) of cooperators and defectors
in the initial population, there is at first an outbreak of defection (Figure 3.16).
Again, however, the grid shifts to alternate defection and then to cooperation.
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This evolutionary pattern is also observed for pcoop = 0.1. Thus, even when there
is a majority of defectors at time = 0, cooperation prevails.

3.4.4 Energy in an environment of niches

In this section we introduce the concept of energy, which serves as a measure
of an organism’s activity, with the intent of enhancing our understanding of
phenomena occurring in our model. Each cell is considered to have a finite value
of energy units. At each time step, energy units are transferred between cells
in the following manner: when an operational cell attempts to copy its rule into
an adjoining vacant cell an energy unit is transferred to that cell. Thus, an
operational cell loses a energy units, where a equals the number of Cx = 1 bits,
and x represents a vacant neighbor, i.e., a equals the number of copies the cell
attempts to perform (not necessarily successfully since contention may occur,
see Section 3.2). Note that the total amount of energy is conserved since an
operational cell’s loss is a vacant cell’s gain. All cells hold the same amount
of energy at the outset and no bounds are set on the possible energy values
throughout the run.

To study the idea of energy we explore an environment consisting of spatial
niches, where each cell (i, j) possesses a niche id equal to:

nd(i, j) = bi/10 + j/10c mod 5

The nd value indicates the desired number of neighbors in state 1. A cell’s fitness,
at time t, is defined as:

f t(i, j) = 4− | nd(i, j)− nto(i, j) |

where nto(i, j) is the number of adjoining cells in state 1, at time t. As in Sec-
tion 3.4.3, pcross is not fixed, but is equal to (f(i, j)+f(in, jn))/8, where f(in, jn)
is the fitness of the selected operational neighbor. Also, an operational cell with
a fitter operational neighbor “dies,” i.e., becomes vacant (Section 3.4.3).

Figure 3.17 shows the grid at various times and Figure 3.18 shows the energy
map, with a darker shade corresponding to lower energy. Observing the grid,
it is difficult to discern the precise patterns that emerge, however, the energy
map provides a clear picture of what transpires. At time = 1000, we note that
boundaries begin to form, evident by the higher-energy borders (lighter shades).
These correspond to cells positioned between niches, which remain vacant, thus
becoming highly energetic. At time = 5000 and time = 10000 we see that
the borders have become more pronounced. Furthermore, regions of low (dark)
energy appear, corresponding to niches with nd = 0, 4; this indicates that there is
a lower degree of activity in these areas, presumably since these niches represent
an “easier” environment. At time = 200000, the energy map is very smooth,
indicating uniform activity, with clear borders between niches.

A different environment considered is one of temporal niches, where nd is a
function of time rather than space, with nd(t) = bt/1000c mod 5. We generated
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time = 1000 time = 5000

time = 10000 time = 200000

Figure 3.17. An environment defined by spatial niches: Evolution of the grid
(gray-level representation is identical to Figure 3.14).

energy maps at points in time where niche shifts occur, i.e., bt/1000c − 1, and
observed an interesting phenomenon. After a few thousand steps the energy
pattern stabilizes and the correlation between successive intervals is close to unity.
Figure 3.19 depicts a typical case (for clarity we show a map of deviations from
average, though the correlation was computed for the original maps). Thus, there
are regions of extensive activity and regions of low activity, which persist through
time.

A different aspect of the evolutionary process is considered in Figure 3.20,
which shows the number of operational cells and their average fitness as a function
of time. Highest fitness is obtained at temporal niches corresponding to nd = 4
(time = 5000, 10000, 15000, 20000). At these points in time there is a drastic
change in the environment (nd shifts from 4 to 0) and we observe that fitness
does not usually climb to its maximal value (which is possible for nd = 0). A
further observation is the correlation between fitness and operability. We see
that fitness rises in exact correlation with the number of operational cells. Thus,
the environment is such that more cells can become active (operational) while
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time = 1000 time = 5000

time = 10000 time = 200000

Figure 3.18. An environment defined by spatial niches: The energy map pro-
vides a clear picture of the evolutionary process, involving the formation of niches
and boundaries. A darker shade corresponds to lower energy.

time = 16000 time = 17000 time = 18000

Figure 3.19. Energy evolution in an environment defined by temporal niches.
Gray squares represent energy values within 2 standard deviations of the average,
white squares represent extreme high values (outside the range), black squares
represent extreme low values.
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Figure 3.20. The temporal niches environment (nd = 0 → 1 → 2 → 3 → 4 →
0 . . .): Fitness and operability. The number of operational cells and their average
fitness (shown as percentage of maximal value), both as a function of time.

maintaining high fitness.

Such a situation is not always the case. Consider, for example, the IPD
environment of Section 3.4.3, whose fitness and operability graphs are presented
in Figure 3.21. Here we see that at a certain point in time fitness begins to
decline, however, the number of operational cells starts rising. This is the shift
from alternate defection to cooperation, discussed in Section 3.4.3. We note that
in the IPD environment cells cannot all be active, while at the same time maintain
the highest possible fitness. In this case lower fitness is opted for, resulting in a
higher number of operational cells.

A different version of temporal niches was also studied in which nd shifts
between the values 0 and 4 every 1000 time steps. In some cases we obtained
results as depicted in Figure 3.22, noting that after several thousand time steps
adaptation to environmental changes becomes “easier.” This could be evidence
of preadaptation, a concept which is used to describe the process by which an
organ, behavior, neural structure, etc., which evolved to solve one set of tasks, is
later utilized to solve a different set of tasks. Though the concept is rooted in the
work of Darwin (1866), it has more recently been elaborated by Gould (1982),
Gould and Vrba (1982), and Mayr (1976).

An artificial-life approach to preadaptation was taken by Stork et al. (1992)
who investigated an apparent “useless” synapse in the current tailflip circuit of the
crayfish, which can be understood as being a vestige from a previous evolutionary
epoch in which the circuit was used for swimming instead of flipping (as it is
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Figure 3.21. The IPD environment: Fitness and operability. The number of
operational cells and their average fitness (shown as percentage of maximal value),
both as a function of time.
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Figure 3.22. The temporal niches environment (nd = 0 → 4 → 0 . . .): Average
fitness as a function of time.
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used today). They performed simulations in which the task of the simulated
organism is switched from swimming to flipping, and then back to swimming
again, observing that adaptation is much more rapid the second time swimming
is selected for. This was explained in terms of evolutionary memory in which
“junk” genetic information is used (Stork et al., 1992). Here “junk,” stored
for possible future use, is contrasted with “trash,” which is discarded. Thus,
apparent useless information can induce rapid fitness recovery at some future
time when environmental changes occur. In the next section we examine the
genescape, which allows us to directly observe the interplay of genes. One of our
conclusions is that evolutionary memory can be of use since different genes are
responsible for the two niches discussed above (nd = 0, 4).

3.4.5 The genescape

In their paper, Bedau and Packard (1992) discuss how to discern whether or not
evolution is taking place in an observed system, defining evolutionary activity as
the rate at which useful genetic innovations are absorbed into the population.
They point out that the rate at which new genes are introduced does not reflect
genuine evolutionary activity, for the new genes may be useless. Rather, per-
sistent usage of new genes is the defining characteristic of genuine evolutionary
activity.

The model studied by Bedau and Packard (1992) is that of strategic bugs in
which a bug’s genome consists of a look-up table, with an entry for every possible
combination of states. They attach to each gene (i.e., each table entry) a “us-
age counter,” which is initialized to zero. Every time a particular table entry is
used, the corresponding usage counter is incremented. Mutation sets the counter
to zero, while during crossover genes are exchanged along with their counters.
By keeping track of how many times each gene is invoked, waves of evolution-
ary activity are observed through a global histogram of gene usage plotted as a
function of time. As long as activity waves continue to occur, the population is
continually incorporating new genetic material, i.e., evolution is occurring (Be-
dau and Packard, 1992). While this measure is extremely difficult to obtain in
biological settings, it is easy to do so in artificial ones, providing insight into the
evolutionary process.

We have applied the idea of usage counters to our model. Each gene in our
genome corresponds to a certain neighborhood configuration (input), specifying
the appropriate actions to be performed (output). In this respect it is similar to
the strategic bugs model of Bedau and Packard (1992) and usage counters are
attached to each gene and updated as described above.6 Bedau and Packard
(1992) defined the usage distribution function, which is then used to derive the
A(t) measure of evolutionary activity. Since our genome is small (32 genes), we

6There is one minor difference: in the model of Bedau and Packard (1992) crossover does not
occur across gene boundaries and therefore does not set the respective counter to zero, whereas
in our model crossover can occur anywhere along the genome. Thus, a counter is reset whenever
crossover occurs within its gene (as well as when the gene mutates).
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have opted for a more direct approach in which we study the total usage of each
gene throughout the grid as a function of time. For a given gene, this measure is
computed by summing the usage counters of all operational cells at a given time.
Our measurements can then be presented as a three-dimensional plot, denoted
the genescape, meaning the evolutionary genetic landscape.
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Figure 3.23. The genescape is a three-dimensional plot of the evolutionary ge-
netic landscape. Essentially, it depicts the total usage throughout the entire grid
of each of the 32 genes as a function of time. Shown above is the genescape
for the environment of Section 3.4.2, where no explicit environmental constraints
were applied.

The genescape of the environment studied in Section 3.4.2 is shown in Fig-
ure 3.23. Recall that in this case no explicit environmental constraints are placed
and the only (implicit) one is therefore due to the finite size of the grid, i.e.,
there is competition between rules for occupation of cells. The genescape shows
that usage is approximately constant (after an initial rise due to an increase in
the number of operational cells) and uniform. No gene is preferred since the
environment is such that all contribute equally to fitness. The constant usage
value is consistent with our parameters (pcross and pmut). This situation may be
considered as a “flat” genescape, serving as a baseline for comparison with other
environments.7

Figure 3.24 shows the genescape of the IPD environment (Section 3.4.3). We
observe that gene g15 initially comes to dominate, later to be overtaken by g31,
representing the shift from alternate defection to cooperation. Smaller peaks

7Note that other parameters did reveal interesting phenomena even for this simple environ-
ment, as noted in Section 3.4.2.
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Figure 3.24. Genescape of the IPD environment of Section 3.4.3.

are also apparent, coexisting alongside g15. These occur for genes gi, such that
i < 15, i.e., those genes representing a central cell state of defection (0). Thus,
the dominance of g15 is not totalistic as is later the case with g31. This gene,
g31, shows a small usage peak from the start, essentially biding its time until the
“right” moment comes, when cooperation breaks through. This is reminiscent of
punctuated-equilibria results, where phenotypic effects are not observed for long
periods of time, while evolution runs its course in the (unobserved) genotype.

The genescapes of the temporal niches environments of Section 3.4.4 are pre-
sented in Figures 3.25 and 3.26. Observing Figure 3.25a, we note how usage
peaks shift from g0 (for niche id nd = 0) to g31 (for nd = 4) as time progresses.
Closer inspection provides us with more insight into the evolutionary process
(Figure 3.25b). It is noted that gene g16 competes with g0 when nd = 0 and
g15 competes with g31 when nd = 4, with g0 and g31 predominating eventually.
This competition is explained by the fact that nd specifies the desired number
of neighbors in state 1, without placing any restriction on the central cell, thus
promoting competition between two genes, where one eventually emerges as the
“winner.”

When intermediate nd values are in effect (nd = 1, 2, 3), we observe multiple
peaks corresponding to those genes representing the appropriate number of neigh-
bors (Figure 3.25b). As the environment changes (through nd), different epistatic
effects are introduced. The lowest degree of epistasis occurs when nd = 0, 4 and
the highest when nd = 2. It is interesting to compare these results with those
obtained by Kauffman and Weinberger (1989) and Kauffman and Johnsen (1992)
who employed the NK model. This model describes genotype fitness landscapes
engendered by arbitrarily complex epistatic couplings. An organism’s genotype
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Figure 3.25. Genescape of the temporal niches environment of Section 3.4.4
(nd = 0→ 1→ 2→ 3→ 4→ 0 . . .). (a) Time steps 0− 20000. (b) Zoom of time
steps 10000− 15000.
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Figure 3.26. Genescape of the temporal niches environment of Section 3.4.4
(nd = 0→ 4→ 0 . . .).

consists of N genes, each with A alleles. The fitness contribution of each gene
depends upon itself and epistatically on K other genes. The central idea of the
NK model is that the epistatic effects of the AK different combinations of A
alternative states of the other K genes on the functional contribution of the Ath
state of each gene are so complex that their statistical features can be captured
by assigning fitness contributions at random from a specified distribution. Tun-
ing K from low to high increases the epistatic linkages, thus providing a tunable
rugged family of model fitness landscapes.

The main conclusions offered by Kauffman and Weinberger (1989) and Kauff-
man and Johnsen (1992) are that as K increases relative to N (i.e., as epistatic
linkages increase) the ruggedness of the fitness landscape increases by a rise in
the number of fitness peaks, while the typical heights of these peaks decrease.
The decrease reflects the conflicting constraints which arise when epistatic link-
ages increase. In the NK model epistatic linkages are made explicit via the
K parameter, with fitness contributions assigned randomly. We have presented
an environment in which the nd (niche) value changes, thereby causing implicit
changes in the degree of epistasis. Essentially, K = 1 for nd = 0, 4, K = 7 for
nd = 1, 3, and K = 11 for nd = 2. Our usage results of Figure 3.25 correspond
to the conclusions offered by Kauffman and Weinberger (1989) and Kauffman
and Johnsen (1992). As K increases, the number of usage peaks increase while
their heights decrease. Note that we do not measure fitness as in the NK model,
but rather usage, which can be regarded as a more “raw” measure. Also, fitness
contributions are not made explicit but are rather implicitly induced by the envi-
ronment. Although our viewpoint is different, the results obtained are analogous,
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enhancing our understanding of epistatic environmental effects.

3.4.6 Synchrony versus asynchrony

One of the prominent features of the CA model is its synchronous mode of oper-
ation, meaning that all cells are updated simultaneously at each time step. It has
been observed that when asynchronous updating is used (i.e., one cell is updated
at each time step), results may be different. For example, Huberman and Glance
(1993) showed that when asynchrony is introduced in the model of Nowak and
May (1992) (see Section 3.4.3) a fixed point is arrived at rather than the chaotic
spatiotemporal behavior induced by the synchronous model. Asynchrony has also
been shown to “freeze” the game of life, i.e., convergence to a fixed point occurs,
rather than complex, class-IV phenomena of the synchronous model (Bersini and
Detour, 1994) .

The issue raised by these investigations (see also Lumer and Nicolis, 1994)
is the relevance of results obtained by CA models to biological phenomena. In-
deed, Huberman and Glance (1993) have argued that patterns and regularities
observed in nature require asynchronous updating since natural systems posses
no global clock. It may be argued that from a physical point of view synchrony
is justified: since we model a continuous spatial and temporal world, we must
examine each spatial location at every time step, no matter how small we choose
these (discrete) steps to be. However, as we move up the scale of complexity of
the basic units, synchrony seems to be less justified. For example, IPD is usually
aimed at investigating social cooperation where the basic units of interaction are
complex organisms (e.g., humans, societies).

The simulations described in the previous sections were conducted using syn-
chronous updating. Due to the arguments raised above we were motivated to
investigate the issue of asynchrony by repeating some of our simulations using
asynchronous updating. Results obtained were different than for synchronous
updating, e.g., the asynchronous runs of the IPD environment (Section 3.4.3)
produced no “interesting” configurations as for the synchronous case.

We then experimented with two forms of partial asynchrony: (1) sparse updat-
ing: at each time step a cell is updated with probability psparse, and (2) regional
updating: at each time step a fixed-size, square region of the grid is updated.
Sparse updating produced “uninteresting” results, i.e., as in the asynchronous
case. However, with regional updating we observed that the synchronous up-
dating results were repeated, provided the region size exceeded a certain value,
empirically found to be approximately 100 cells (i.e., a 10x10 square).

It is noteworthy that sparse updating did not “work” even for high values
of psparse (e.g., 0.2) while regional updating produced results identical to the
synchronous case.8 We also experimented with larger grids and obtained the
same results without increasing the region size (10x10). While it cannot be

8Note that a region size of 10x10 is equivalent (on average) in terms of the number of cells
updated per time step to psparse = 0.05 for a 40x50 grid.
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ascertained that this size is constant, it seems safe to conjecture that it grows
sub-linearly with grid size.

The regional-updating method, though not completely asynchronous, is inter-
esting nonetheless, especially since the region size seems to grow sub-linearly with
grid size. From a hardware point of view this is encouraging since implementa-
tions can maintain local (regional) synchronization, thereby facilitating scaling.
We note that a minimal amount of activity must simultaneously take place in
order for “interesting” patterns to emerge, i.e., there is a certain threshold of
interaction. The crucial factor pertains not to the total number of cells updated
per time step, but rather to the simultaneous activity of a (small) area. This
is evident by the failure of the sparse-updating method as compared with the
success of regional updating. The importance of “regions” of evolution has also
been noted in biological settings (Mayr, 1976; Eldredge and Gould, 1972).

The issue of synchrony versus asynchrony in spatially-distributed systems is
still an open question. For example, in the work of Lindgren and Nordahl (1994b),
asynchronous simulations were carried out, revealing chaotic spatial organization,
results which were contrasted with those of Huberman and Glance (1993). Fur-
thermore, the work of Nowak and May (1992) was later extended by Nowak et al.
(1994), showing that Huberman and Glance (1993) had only considered a specific
set of parameters, and that in fact asynchronous updating does not in general
induce a fixed state. Our model may yet reveal interesting phenomena for the
case of complete asynchrony when other types of environments are employed.
At present, we have a strong case for partial asynchrony in the form of regional
updating, which, due to the small region size, is close to complete asynchrony.

3.5 Discussion

In this chapter we presented a system of simple “organisms,” interacting in a
two-dimensional environment, which have the capacity to evolve. We first turned
our attention to designed multicellular organisms, displaying several interesting
behaviors, including a self-reproducing loop, replication of passive structures by
copier cells, mobile organisms, and two-phased growth and replication. These
organisms offered motivation as to the power of our model in creating systems of
interest. This comes about by increasing the level of operation with respect to
the “physics” level of CAs.

A related work is that of embryonics, standing for embryonic electronics
(Mange et al., 1996; Mange et al., 1998; Mange and Stauffer, 1994; Marchal
et al., 1994; Durand et al., 1994). This is a CA-based approach in which three
principles of natural organization are employed: multicellular organization, cellu-
lar differentiation, and cellular division. They designed an architecture which is
complex enough for (quasi) universal computation, yet simple enough for physical
implementation. Their approach represents another attempt at confronting the
aforementioned problem of CAs, namely, the low level of operation.

An important distinction made by the embryonics group is the difference be-
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tween unicellular and multicellular organisms. One of the defining characteristics
of a biological cell concerns its role as the smallest part of a living being which
carries the complete plan of the being, that is its genome (Mange and Stauffer,
1994). In this respect, the self-reproducing automata of von Neumann (1966)
and Langton (1984) are unicellular organisms: the genome is contained within
the entire configuration. An important common point between both the embry-
onics approach and ours is that true multicellular organisms are formed. Our
cell is analogous to a biological cell in the sense that it contains the complete
genome (rule table). A creature in our model consists of several cells operating
in unison, thereby achieving the effect of a single “purposeful” organism. It is
interesting to compare Langton’s unicellular self-reproducing loop with our mul-
ticellular one (Section 3.3.1), thus illustrating our concept of raising the level of
operation. Langton’s loop demonstrates how unicellular replication can be at-
tained, whereas our loop starts from there and goes on to achieve multicellular
replication. In this strict sense our model may be viewed as a kind of “macro”
CA, consisting of higher-level basic operations. We also observe in our model
that each cell acts according to a specific gene (entry), which is a simple form
of locally-based cellular differentiation. Such approaches offer new paths in the
development of complex machines as collections of simpler cells. Such machines
can be made to display an array of biological phenomena, including self-repair,
self-reproduction, growth, and evolution (Mange and Stauffer, 1994).

After our initial investigation of multicellularity we turned our attention to
evolution in rule space, which occurs through changes in the genotypes, repre-
senting the rules by which the organisms operate. At first we placed no explicit
environmental constraints, thereby retaining only the implicit constraint due to
the finite size of the grid. We observed that a simple strategy emerged, in which
an organism (as defined by its rule) “sits tight” upon occupation of a certain
cell. We can view this as the formation of simple replicators, which replicate
within their own cell (at each time step), as well as into (possibly) vacant cells.
It was also noted that rules tend to spatially self organize in accordance with
their levels of activity (Cx bits) and state preferences (Sx bits). These results
are interesting, demonstrating that even a simple environment, with but a sole
constraining factor, is sufficient in order to lead the evolutionary process through
regular spatiotemporal patterns.

The IPD environment revealed several interesting phenomena. The evolu-
tionary path taken passes through a state of alternate defection, in which ap-
proximately half the cells are operational, attaining a maximal fitness. However,
this is not a stable configuration, since a small cluster of cooperation eventually
emerges, taking over most of the grid.

One of our observations concerns the importance of mutation in complex en-
vironments. In the simple environment of Section 3.4.2, mutation proved to be
a hindrance, preventing the evolution of perfect survivors. However, as environ-
ments grew more complex, mutation became a crucial factor. For example, in
the IPD environment, defection can prevail when the mutation rate is set to zero,
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however, cooperation always emerges when this rate is small, yet non-zero. It
seems that mutation is necessary to help the evolutionary process from getting
“stuck” in local minima (see also Goldberg, 1989).

The emergence of cooperation depends not only on the mutation operator
but also on the “harshness” of the environment. When the environment is more
forgiving, cooperation does not necessarily emerge and defection may prevail,
whereas in a harsher environment defection always “steps down” in favor of co-
operation. This can be compared to real-life situations, in which survival in a
harsher environment may be enhanced through cooperation.

As discussed in Section 3.4.3, our IPD environment is different than other
IPD models in that our genome is general and does not code for specific actions,
e.g., strategies. Cooperation emerges between a multitude of different organisms,
whose commonality lies in the expression of a specific gene, a situation which
may be regarded as the formation of a sub-species.

One of the advantages of ALife models is the opportunities they offer in
performing in-depth studies of the evolutionary process. This was accomplished,
in our case, by observing not only phenotypic effects (i.e., cellular states as a
function of time), but also by employing such measures as fitness, operability,
energy, and the genescape. The energy concept was introduced as a measure
of an organism’s activity, where each rule copy costs one unit of energy. We
applied this measure to environments consisting of spatial and temporal niches.
For the case of spatial niches we observed the difficulty in discerning phenotypic
effects (the grid), whereas the energy map provided us with a clear picture of
the evolutionary process- regions of higher and lower activity, with high-energy
boundaries between them. The environment of temporal niches presented us
with an interesting phenomenon in which adaptation takes place (as evident by
taking note of the fitness graph), with small clusters of extreme energetic activity
forming regularly.

An additional measure introduced is the genescape, which depicts the incor-
poration of new genetic material into the population. The epistatic interplay of
genes is highlighted by studying such plots. In the IPD case we noted that the
transition from alternate defection to cooperation occurs through a shift from one
gene (g15) to another (g31). It was observed that while the phenotypic effect of g31

occurs only after several hundred time steps, it is constantly evolving, albeit at a
low (dormant) rate of activity. This may provide insight on punctuated-equilibria
phenomena, which could be partly explained by the difference between observed
effects (phenotypes, e.g., the fossil record), and unobserved effects (genotypes).

As the environment changes through time (temporal niches), organisms adapt
by traversing their adaptive landscapes. By studying the genescape we were able
to observe the subtle interplay of epistatic couplings, noting shifts from single-
peaked to multi-peaked, rugged terrains. Thus, we gain a deeper understanding
than is possible by observing only the grid, i.e., phenotypic effects.

A tentative analogy may be put forward, between our organism and the hy-
pothetical, now extinct, RNA organism (Joyce, 1989). These were presumably
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simple RNA molecules capable of catalyzing their own replication. What both
types of organisms have in common is that a single molecule constitutes the body
plus the genetic information, and effects the replication. The inherent locality
and parallelism of our model add credence to such an analogy, by offering closer
adherence to nature. However, we must bear in mind that only a superficial
comparison may be drawn at this stage since our model is highly abstracted in
relation to nature and has been implemented only for an extremely small number
of “molecules.” Further investigations along this line, using artificial-life models,
may enhance our understanding of the RNA-world theory. The analogy between
RNA organisms and other types of digital organisms has been noted by Ray
(1994a).

In Section 3.1, we delineated two basic guidelines, generality and simplic-
ity, which served us in the definition of our model. In their paper, Jeffer-
son et al. (1992) presented a number of important properties a programming
paradigm must have to be suitable as a representation for organisms in biologically-
motivated studies. We discuss these below in light of our model:

1. Computational completeness., i.e., Turing-machine equivalence. Since our
model is an enhancement of the CA model this property holds true. We
also noted that from a hardware point of view the resources required by
our model only slightly exceed those of CAs (Section 3.4.1).

2. A simple, uniform model of computation. This is essentially what we re-
ferred to as simplicity (of basic units) and generality (the second meaning,
i.e., general encoding, see Section 3.1). This property is intended to prevent
the system from being biased toward a particular environment.

3. Syntactic closure of genetic operators. In our case all genomes represent
a legal rule-table encoding. This property also enables us to start with a
random population, thereby avoiding bias.

4. The paradigm should be well conditioned under genetic operators. This
requirement is less formal, meaning that evolution between successive time
steps is usually “well behaved,” i.e., discontinuities occur only occasionally.
This property can be assessed using the genescape.

5. One time unit of an organism’s life must be specified. In our case time
is discrete, with an organism accepting input (neighborhood states) and
taking action (output) in a single time step.

6. Scalability. This property must be examined with some care. If we wish
to add sensory apparatus (in our case, increase the neighborhood and/or
the number of cellular states), then the genome grows exponentially since it
encodes a finite state automaton table. However, complexity can increase
through the interactions of several organisms. Indeed, a central goal of
ALife research is the evolution of multicellular creatures. As noted above,
such organisms are parallel devices, composed of simple basic units and
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may therefore scale very well. At this point we have demonstrated that
multicellularity can be attained, albeit by design (Section 3.3). Scalability
is also related to the issue of asynchrony, discussed in Section 3.4.6. We
shall return to this point in Section 4.7, where we describe how CAs evolved
via cellular programming can be scaled.

The model presented in this chapter provides insight into issues involving
adaptation and evolution. There are still, however, many limitations that should
be addressed. We have modeled an environment in the strict sense (through
explicit fitness definition), i.e., excluding the organisms themselves (Section 3.1).
Although we achieved an environment in the broad sense, i.e., a total system of
interacting organisms, the dichotomy between organisms and their environment
is still a major obstacle to overcome (Jefferson et al., 1992; see also Bonabeau
and Theraulaz, 1994). Another central issue discussed above is the formation
(evolution) of multicellular organisms- it is clear that more research is needed in
this direction.

The evolutionary studies we performed were carried out using rather small
grids. It seems reasonable to assume that in order to evolve “interesting” crea-
tures a larger number of units is required. Models such as ours, which consist of
simple, locally-connected units, lend themselves to scaling through the use of par-
allel or distributed implementations. For example, Ray (1994b) has implemented
a network-wide reserve for the digital Tierra creatures.9 He hopes that by in-
creasing the scale of the system by several orders of magnitude, new phenomena
may arise that have not been observed in the smaller-scale systems.

It is hoped that the development of such ALife models will serve the two-
fold goal of: (1) increasing our understanding of biological phenomena, and (2)
enhancing our understanding of artificial models, thereby providing us with the
ability to improve their performance. ALife research opens new doors, providing
novel opportunities to explore issues such as adaptation, evolution, and emer-
gence, which are central both in natural environments as well as man-made ones.

In the next chapter we follow a different path, posing the question of whether
parallel cellular machines can evolve to solve computational tasks. Presenting the
cellular programming approach, we provide a positive answer to this question.

9Tierra is a virtual world, consisting of computer programs that can undergo evolution. In
contrast to evolutionary algorithms, where fitness is defined by the user, the Tierra “creatures”
(programs) receive no such direction. Rather, they compete for the “natural” resources of their
computerized environment, namely, CPU time and memory. Since only a finite amount of
these are available, the virtual world’s natural resources are limited, as in nature, giving rise
to competition between creatures. Ray observed the formation of an “ecosystem” within the
Tierra world, including organisms of various sizes, parasites, and hyper-parasites (Ray, 1992).
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Chapter 4

Cellular Programming:
Coevolving
Cellular Computation

The real voyage of discovery consists not in seeking new landscapes but in
having new eyes.

Marcel Proust

Hard problems usually have immediate, brilliant, incorrect solutions.

Anonymous

4.1 Introduction

The idea of applying the biological principle of natural evolution to artificial sys-

tems, introduced more than three decades ago, has seen impressive growth in

the past decade. Usually grouped under the term evolutionary algorithms or

evolutionary computation, we find the domains of genetic algorithms, evolution

strategies, evolutionary programming, and genetic programming (see Chapter 1).

Research in these areas has traditionally centered on proving theoretical aspects,

such as convergence properties, effects of different algorithmic parameters, and

so on, or on making headway in new application domains, such as constraint op-

timization problems, image processing, neural network evolution, and more. The

implementation of an evolutionary algorithm, an issue which usually remains in

the background, is quite costly in many cases, since populations of candidate so-

lutions are involved, coupled with computation-intensive fitness evaluations. One

possible solution is to parallelize the process, an idea which has been explored to

some extent in recent years (see reviews by Tomassini, 1996; Cantú-Paz, 1995).

While posing no major problems in principle, this may require judicious modifi-

cations of existing algorithms, or the introduction of new ones, in order to meet

the constraints of a given parallel machine.

In the remainder of this volume we take a different approach. Rather than



74 Cellular Programming: Coevolving Cellular Computation

ask ourselves how to better implement a specific algorithm on a given hardware

platform, we pose the more general question of whether machines can be made

to evolve. While this idea finds its origins in the cybernetics movement of the

1940s and the 1950s, it has recently resurged in the form of the nascent field of

bio-inspired systems and evolvable hardware (Sanchez and Tomassini, 1996). The

field draws on ideas from evolutionary computation as well as on recent hardware

developments. The cellular machines studied are based on the simple non-uniform

CA model (see Section 1.2.3 and Chapter 2), rather than the enhanced model

of the previous chapter; thus, the only difference from the original CA is the

non-uniformity of rules.

In this chapter we introduce the basic approach for evolving cellular ma-

chines, denoted cellular programming, demonstrating its viability by conducting

an in-depth study of two non-trivial computational problems, density and syn-

chronization (Sipper, 1996; Sipper, 1997c). In the next chapter we shall describe

a number of additional computational tasks, which suggest possible applications

of our approach (Sipper, 1997b; Sipper, 1997a). Though most of our investiga-

tions were carried out through software simulation, one of the major goals is the

attainment of “evolving ware,” evolware, with current implementations center-

ing on hardware, while raising the possibility of using other forms in the future,

such as bioware. In Chapter 6, we present the “firefly” machine, an evolving, on-

line, autonomous hardware system, based on the cellular programming approach

(Goeke et al., 1997). The issue of robustness, namely, how resistant are our

evolved systems in the face of errors is addressed in Chapter 7 (Sipper et al.,

1996; Sipper et al., 1997b). This can also be considered as another generalization

of the original CA model (the first being non-uniformity of rules) that addresses

non-deterministic CAs. Finally, in Chapter 8 we generalize on yet another aspect

of CAs, namely, their standard, homogeneous connectivity, demonstrating that

cellular rules can coevolve concomitantly with the cellular connections, to pro-

duce high-performance systems (Sipper and Ruppin, 1997; Sipper and Ruppin,

1996).

The next section presents the density and synchronization computational

tasks and discusses previous work on the evolution of uniform CAs to solve them.

Section 4.3 delineates the cellular programming algorithm used to evolve non-

uniform CAs. As opposed to the standard genetic algorithm, where a population

of independent problem solutions globally evolves (Section 1.3), our approach

involves a grid of rules that coevolves locally. We next apply our algorithm

to evolve non-uniform CAs to perform the density and synchronization tasks.

Results using one-dimensional, radius r = 3 CAs are presented in Section 4.4,

one-dimensional, minimal radius r = 1 CAs are analyzed in Section 4.5, and two-

dimensional grids are employed in Section 4.6. The scalability issue is discussed

in Section 4.7, where we present an algorithm for scaling evolved CAs. We end

this chapter with a discussion in Section 4.8, our main conclusions being:

1. Non-uniform CAs can attain high performance on non-trivial computational
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tasks.

2. Such CAs can be coevolved to perform computations, with evolved, high-

performance systems exhibiting quasi-uniformity.

3. Non-uniformity may reduce connectivity requirements, i.e., the use of smaller

neighborhoods is made possible.

4.2 Previous work

A major impediment preventing ubiquitous computing with CAs stems from the

difficulty of utilizing their complex behavior to perform useful computations. As

noted by Mitchell et al. (1994b), the difficulty of designing CAs to exhibit a spe-

cific behavior or perform a particular task has severely limited their applications;

automating the design (programming) process would greatly enhance the viability

of CAs.

In what follows, we consider CAs that perform computations, meaning that

the input to the computation is encoded as an initial configuration, the output

is the configuration after a certain number of time steps, and the intermediate

steps that transform the input to the output are considered to be the steps in

the computation (Mitchell, 1996). The “program” emerges through “execution”

of the CA rule in each cell. Note that this use of CAs as computers differs from

the method of constructing a universal Turing machine in a CA, as presented in

Chapter 2 (for a comparison of these two approaches see Mitchell et al., 1994a;

see also Perrier et al., 1996).

The application of genetic algorithms to the evolution of uniform cellular

automata was initially studied by Packard (1988) and recently undertaken by the

EVCA (evolving CA) group (Mitchell et al., 1993; Mitchell et al., 1994a; Mitchell

et al., 1994b; Das et al., 1994; Das et al., 1995; Crutchfield and Mitchell, 1995;

see also review by Sipper, 1997c). They carried out experiments involving one-

dimensional CAs with k = 2 and r = 3, where k denotes the number of possible

states per cell and r denotes the radius of a cell, i.e., the number of neighbors

on either side (thus, each cell has 2r + 1 neighbors, including itself). Spatially

periodic boundary conditions are used, resulting in a circular grid.1 As noted

in Section 1.2, a common method of examining the behavior of one-dimensional

CAs is to display a two-dimensional space-time diagram, where the horizontal

axis depicts the configuration at a certain time t, and the vertical axis depicts

successive time steps (e.g., Figure 4.1). The term ‘configuration,’ formally defined

in Section 1.2, refers to an assignment of 1 states to several cells, and 0s otherwise.

The EVCA group employed a standard genetic algorithm to evolve uniform

CAs to perform two computational tasks, namely, density and synchronization.

We first describe results pertaining to the former. The density task is to decide

1For example, for an r = 1 CA this means that the leftmost and rightmost cells are connected.
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whether or not the initial configuration contains more than 50% 1s. Following

Mitchell et al. (1993), let ρ denote the density of 1s in a grid configuration, ρ(t)

the density at time t, and ρc the threshold density for classification (in our case

0.5). The desired behavior (i.e., the result of the computation) is for the CA to

relax to a fixed-point pattern of all 1s if ρ(0) > ρc, and all 0s if ρ(0) < ρc. If

ρ(0) = ρc, the desired behavior is undefined (this situation shall be avoided by

using odd grid sizes).

As noted by Mitchell et al. (1994b), the density task comprises a non-trivial

computation for a small-radius CA (r � N , where N is the grid size). Density is a

global property of a configuration, whereas a small-radius CA relies solely on local

interactions. Since the 1s can be distributed throughout the grid, propagation of

information must occur over large distances (i.e., O(N)). The minimum amount

of memory required for the task is O(logN) using a serial-scan algorithm, thus

the computation involved corresponds to recognition of a non-regular language.

It has been proven that the density task cannot be perfectly solved by a uniform,

two-state CA (Land and Belew, 1995a), however, no upper bound is currently

available on the best possible imperfect performance. Note that this proof applies

to the above statement of the problem, where the CA’s final pattern (i.e., output)

is specified as a fixed-point configuration. Interestingly, it has recently been

proven that by changing the output specification, a two-state, r = 1 uniform

CA exists, that can perfectly solve the density problem (Capcarrère et al., 1996;

this result is summarized in Appendix B). Below, we shall consider the original

density problem, i.e., where convergence to a fixed point is required, as it is a

veritable difficult task within the CA framework, thereby posing a worthwhile

“challenge” for an evolutionary algorithm.2

A k = 2, r = 3 rule which successfully performs this task was discussed

by Packard (1988). This is the Gacs-Kurdyumov-Levin (GKL) rule, defined as

follows (Gacs et al., 1978; Gonzaga de Sá and Maes, 1992):

si(t+ 1) =

{
majority[si(t), si−1(t), si−3(t)] if si(t) = 0
majority[si(t), si+1(t), si+3(t)] if si(t) = 1

where si(t) is the state of cell i at time t.

Figure 4.1 depicts the behavior of the GKL rule on two initial configurations,

ρ(0) < ρc and ρ(0) > ρc. We observe that a transfer of information about local

neighborhoods takes place to produce the final fixed-point configuration. Essen-

tially, the rule’s strategy is to successively classify local densities with the local-

ity range increasing over time. In regions of ambiguity, a “signal” is propagated,

seen either as a checkerboard pattern in space-time or as a vertical white-to-black

boundary (Mitchell et al., 1993).

The standard genetic algorithm (see Section 1.3) employed by Mitchell et al.

(1993) uses a randomly generated initial population of CAs, with k = 2, r = 3,
2Henceforth, unless explicitly stated, “density task” refers to the original statement of the

problem, specifying a fixed-point output.
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Figure 4.1. The density task: Operation of the GKL rule. CA is one-
dimensional, uniform, 2-state, with connectivity radius r = 3. Grid size is
N = 149. White squares represent cells in state 0, black squares represent cells
in state 1. The pattern of configurations is shown through time (which increases
down the page). (a) Initial density of 1s is ρ(0) ≈ 0.47 and final density at time
t = 150 is ρ(150) = 0. (b) Initial density of 1s is ρ(0) ≈ 0.53 and final density at
time t = 150 is ρ(150) = 1. The CA relaxes in both cases to a fixed pattern of
all 0s or all 1s, correctly classifying the initial configuration.

and a grid size of N = 149. Each uniform CA is represented by a bit string,

delineating its rule table, containing the next-state (output) bits for all possible

neighborhood configurations, listed in lexicographic order (i.e., the bit at position

0 is the state to which neighborhood configuration 0000000 is mapped to, and so

on until bit 127 corresponding to neighborhood configuration 1111111). The bit

string, known as the “genome,” is of size 22r+1 = 128, resulting in a huge search

space of size 2128.

Each uniform CA (rule) in the population was run for a maximum number

of M time steps, where M is selected anew for each rule from a Poisson distri-

bution with mean 320. A rule’s fitness is defined as the fraction of cell states

correct at the last time step, averaged over 100 − 300 initial configurations. At

each generation a new set of configurations is generated at random, uniformly

distributed over densities, i.e., ρ(0) ∈ [0.0, 1.0]. All rules are tested on this set

and the population of the next generation is created by copying the top half of the

current population (ranked according to fitness) unmodified; the remaining half

of the next-generation population is created by applying the genetic operators of

crossover and mutation to selected rules from the current population.

Using the genetic algorithm highly successful rules were found, with the best

fitness values being in the range 0.93 − 0.95. Under the above fitness function,



78 Cellular Programming: Coevolving Cellular Computation

the GKL rule has fitness ≈ 0.98. The genetic algorithm never found a rule with

fitness above 0.95 (Mitchell et al., 1993; Mitchell et al., 1994b).

Another result of Mitchell et al. (1993) concerns the λ parameter, introduced

by Langton(1990; 1992a) in order to study the structure of the space of CA rules.

The λ of a given CA rule is the fraction of non-quiescent output states in the

rule table, where the quiescent state is arbitrarily chosen as one of the possible

k states. For binary-state CAs, the quiescent state is usually 0 and therefore λ

equals the fraction of output-1 bits in the rule table.

In recent years it has been speculated that computational capability can be

associated with phase transitions in CA rule space (Langton, 1990; Li et al.,

1990; Langton, 1992a; see also Section 2.6). This phenomenon, generally referred

to as the “edge of chaos,” asserts that dynamical systems are partitioned into

ordered regimes of operation and chaotic ones, with complex regimes arising on

the edge between them. These complex regimes are hypothesized to give rise to

computational capabilities. For CAs this means that there exist critical λ values

at which phase transitions occur. It has been suggested that this phenomenon

exists in other dynamical systems as well (Kauffman, 1993).

One of the main results of Mitchell et al. (1993) regarding the density task

is that most of the rules evolved to perform it are clustered around λ ≈ 0.43 or

λ ≈ 0.57. This is in contrast to Packard (1988), where most rules are clustered

around λ ≈ 0.24 or λ ≈ 0.83, which correspond to λc values, i.e., critical values

near the transition to chaos.

The results obtained by Mitchell et al. (1993) concerning the density task,

coupled with a theoretical argument given in their paper, lead to the conclusion

that the λ value of successful rules performing the density task is more likely

to be close to 0.5, i.e., depends upon the ρc value. They argued that for this

class of computational tasks, the λc values associated with an edge of chaos

are not correlated with the ability of rules to perform the task. More recently,

Gutowitz and Langton (1995) have reexamined this issue, suggesting that in order

to find out whether there is an edge of chaos and if so, whether evolution can

take us to it, one must define a good measure of complexity. They suggested

that convergence time is such a measure, and demonstrated that critical rules

converge on average more slowly than non-critical rules; furthermore, genetic

evolution driven by convergence time produces a wide variety of complex rules.

However, other results suggest that this may not always be a correct measure for

a transition (Stauffer and de Arcangelis, 1996).

A study of non-uniform CA rule space has not been carried out to our knowl-

edge. Moreover, a new parameter must be defined since a non-uniform CA con-

tains cells with different λ values. Nonetheless, we have obtained results which

lend support to the conclusions of Mitchell et al. (1993) (see Section 4.4).

The second task investigated by Das et al. (1995) is the synchronization task:

given any initial configuration, the CA must reach a final configuration, within

M time steps, that oscillates between all 0s and all 1s on successive time steps.
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As noted by Das et al. (1995), this is perhaps the simplest, non-trivial synchro-

nization task.

The task is non-trivial since synchronous oscillation is a global property of a

configuration, whereas a small-radius CA employs only local interactions. Thus,

while local regions of synchrony can be directly attained, it is more difficult to

design CAs in which spatially-distant regions are in phase. Since out-of-phase

regions can be distributed throughout the lattice, transfer of information must

occur over large distances (i.e., O(N)) to remove these phase defects and produce

a globally synchronous configuration. Das et al. (1995) reported that in 20% of

the runs the genetic algorithm discovered successful CAs with a maximal fitness

value of 1.

The phenomenon of synchronous oscillations occurs in nature, a striking ex-

ample of which is exhibited by fireflies. Thousands such creatures may flash on

and off in unison, having started from totally uncoordinated flickerings (Buck,

1988). Each insect has its own rhythm, which changes only through local inter-

actions with its neighbors’ lights. Another interesting case involves pendulum

clocks: when several of these are placed near each other, they soon become syn-

chronized by tiny coupling forces transmitted through the air or by vibrations in

the wall to which they are attached (for a review on other phenomena in nature

involving synchronous oscillation see Strogatz and Stewart, 1993).

In the next section we present the cellular programming algorithm, and apply

it in the remainder of this chapter to the evolution of non-uniform CAs to perform

the aforementioned tasks.

4.3 The cellular programming algorithm

We study 2-state, non-uniform CAs, in which each cell may contain a different

rule. A cell’s rule table is encoded as a bit string (the “genome”), containing the

next-state (output) bits for all possible neighborhood configurations (as explained

in Section 4.2). Rather than employ a population of evolving, uniform CAs, as

with the standard genetic algorithm, our algorithm involves a single, non-uniform

CA of size N , with cell rules initialized at random.3 Initial configurations are

then generated at random, in accordance with the task at hand, and for each

one the CA is run for M time steps (in our simulations we used M ≈ N so that

computation time is linear with grid size). Each cell’s fitness is accumulated over

C = 300 initial configurations, where a single run’s score is 1 if the cell is in the

correct state after M time steps, and 0 otherwise. After every C configurations

evolution of rules occurs by applying crossover and mutation. This evolutionary

process is performed in a completely local manner, where genetic operators are

3To increase rule diversity in the initial grid, the rule tables were randomly selected so as to
be uniformly distributed among different λ values. Note that our algorithm is not necessarily re-
stricted to a single, non-uniform CA since an ensemble of distinct grids can evolve independently
in parallel.
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applied only between directly connected cells. It is driven by nfi(c), the number

of fitter neighbors of cell i after c configurations. The pseudo-code of our algo-

rithm is delineated in Figure 4.2. In our simulations, the total number of initial

configurations per evolutionary run was in the range [105, 106].4

Crossover between two rules is performed by selecting at random (with uni-

form probability) a single crossover point, and creating a new rule by combining

the first rule’s bit string before the crossover point with the second rule’s bit

string from this point onward. Mutation is applied to the bit string of a rule with

probability 0.001 per bit.

There are two main differences between our algorithm and the standard ge-

netic algorithm (Section 1.3): (1) The latter involves a population of evolving,

uniform CAs, with all individuals ranked according to fitness, and crossover oc-

curring between any two individuals in the population. Thus, while the CA runs

in accordance with a local rule, evolution proceeds in a global manner. In con-

trast, our algorithm proceeds locally in the sense that each cell has access only

to its locale, not only during the run but also during the evolutionary phase,

and no global fitness ranking is performed. As we shall see in Chapter 6, this

characteristic is of prime import where hardware implementation is concerned.

(2) The standard genetic algorithm involves a population of independent prob-

lem solutions, meaning that the CAs in the population are assigned fitness values

independent of one another, and interact only through the genetic operators in

order to produce the next generation. In contrast, our CA coevolves since each

cell’s fitness depends upon its evolving neighbors (the coevolutionary aspect was

also noted for our ALife model in Section 3.4.1).5

This latter point comprises a prime difference between our algorithm and

parallel genetic algorithms, which have attracted attention over the past few

years. These aim to exploit the inherent parallelism of evolutionary algorithms,

thereby decreasing computation time and enhancing performance (Tomassini,

1996; Cantú-Paz, 1995; Tomassini, 1995). A number of models have been sug-

gested, among them coarse-grained, island models (Starkweather et al., 1991;

Cohoon et al., 1987; Tanese, 1987), and fine-grained, grid models (Tomassini,

1993; Manderick and Spiessens, 1989). The latter resemble our system in that

they are massively parallel and local, however, the coevolutionary aspect is miss-

ing. As we wish to attain a system displaying global computation, the individual

cells do not evolve independently, as with genetic algorithms (be they parallel or

serial), i.e., in a “loosely-coupled” manner, but rather coevolve, thereby compris-

ing a “tightly-coupled” system.

Note that in the case of uniform CAs a single rule is sought, which must be

universally applied to all cells in the grid, a task which may be arduous even for

4By comparison, Mitchell et al. (1993; 1994b) employed a genetic algorithm with a population
size of 100, which was run for 100 generations. Every generation, each CA was run on 100−300
initial configurations, resulting in a total of [106, 3 · 106] configurations per evolutionary run.

5This may also be considered a form of symbiotic cooperation, which falls, as does coevolu-
tion, under the general heading of “ecological” interactions (see Mitchell, 1996, pages 182-183).
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for each cell i in CA do in parallel
initialize rule table of cell i
fi = 0 { fitness value }

end parallel for
c = 0 { initial configurations counter }
while not done do

generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel

if cell i is in the correct final state then
fi = fi + 1

end if
end parallel for
c = c+ 1
if c mod C = 0 then { evolve every C configurations}

for each cell i do in parallel
compute nfi(c) { number of fitter neighbors }
if nfi(c) = 0 then rule i is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,

followed by mutation
else if nfi(c) = 2 then replace rule i with the crossover of the two fitter

neighboring rules, followed by mutation
else if nfi(c) > 2 then replace rule i with the crossover of two randomly

chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular neighborhood includes
more than two cells)

end if
fi = 0

end parallel for
end if

end while

Figure 4.2. Pseudo-code of the cellular programming algorithm.
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an evolutionary algorithm. For non-uniform CAs, search-space sizes are vastly

larger than for uniform ones, a fact which initially seems as an impediment.

Nonetheless, as we shall see below, good results are obtained, i.e., successful

systems can be coevolved.

4.4 Results using one-dimensional, r = 3 grids

In this section we apply the cellular programming algorithm to evolve non-

uniform, radius r = 3 CAs to perform the density task;6 this cellular neigh-

borhood is identical to that studied by Packard (1988) and Mitchell et al. (1993).

For our algorithm we used randomly generated initial configurations, uniformly

distributed over densities in the range [0.0, 1.0], with the size N = 149 CA being

run for M = 150 time steps (as noted above, computation time is thus linear

with grid size). Fitness scores are assigned to each cell, ensuing the presentation

of each initial configuration, according to whether it is in the correct state after

M time steps or not (as described in the previous section).

One of the measures we shall report upon below is that of performance, defined

as the average fitness of all grid cells over the last C configurations, normalized to

the range [0.0, 1.0]. Before proceeding, we point out that this is somewhat differ-

ent than the work of Mitchell et al. (1993; 1994b) on the density task, where three

measures were defined: (1) performance- the number of correct classifications on

a sample of initial configurations, randomly chosen from a binomial distribution

over initial densities, (2) performance fitness- the number of correct classifications

on a sample of C initial configurations, chosen from a uniform distribution over

densities in the range [0.0, 1.0] (no partial credit is given for partially-correct final

configurations), and (3) proportional fitness- the fraction of cell states correct at

the last time step, averaged over C initial configurations, uniformly distributed

over densities in the range [0.0, 1.0] (partial credit is given). Our performance

measure is analogous to the latter measure, however, there is an important differ-

ence: as our evolutionary algorithm is local, fitness values are computed for each

individual cell; global fitness of the CA can then be observed by averaging these

values over the entire grid. As for the choice of initial configurations, Mitchell et

al. (1993; 1994b) remarked that the binomial distribution is more difficult than

the uniform-over-densities one since the former results in configurations with a

density in the proximity of 0.5, thereby entailing harder correct classification.

This distinction did not prove significant in our studies since it essentially con-

cerns only the density task, and does not pertain to the other tasks studied in

this volume. We therefore selected the uniform-over-densities distribution as a

benchmark measure by which to evolve CAs and compare their performance.

We shall, nonetheless, demonstrate in Chapter 8 coevolved CAs that attain high

6For the synchronization task, perfect results were obtained, both for r = 3 CAs, as well as
for minimal radius, r = 1 ones, discussed in the next section. We therefore concentrate on such
minimal grids for this task.
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performance on the density task, even when applying the binomial distribution.

Figure 4.3 displays the results of two typical runs. Each graph depicts the

average fitness of all grid cells after C configurations (i.e., performance), and

the best cell’s fitness, both as a function of the number of configurations run

so far. Figure 4.3a displays a successful run in which the performance reaches

a peak value of 0.92. Some runs were unsuccessful, i.e., performance did not

rise above 0.5, the expected random value (Figure 4.3b). Observing Figure 4.3a,

we note how a successful run comes about: at an early stage of evolution, a

high-fitness cell rule is “discovered,” as evident by the top curve depicting best

fitness. Such a rule is sufficient in order to “drive” evolution in a direction of

improved performance. The threshold fitness that must be attained by this rule

is approximately 0.65; a lower value is insufficient to drive evolution “upwards.”

We next performed an experiment in which the CA with the highest per-

formance in the run is saved7 and then tested on 10, 000 initial configurations,

generated as detailed above. A slight drop in fitness was observed, though the

value is still high at approximately 0.91.

The success of our cellular programming algorithm in finding good solutions,

i.e., high-performance, non-uniform CAs, is notable if one considers the search

space involved. Since each cell contains one of 2128 possible rules and there are

N = 149 such cells, our space is of size (2128)149 = 219072. This is vastly larger

than uniform CA search-space sizes, nonetheless, using a local, coevolutionary

algorithm, non-uniform CAs are discovered, which exhibit high performance.

A histogram of the total number of evolved rules as a function of λ is presented

in Figure 4.4. It is clear that rules are clustered in the vicinity of λ = 0.5, mostly

in the region 0.45 − 0.55. As noted in Section 4.2, a study of non-uniform CA

rule space has not been carried out to our knowledge. Nonetheless, we believe

that this result lends support to the conclusion of Mitchell et al. (1993), stating

that λ values for the density task are likely to be close to 0.5.

4.5 Results using one-dimensional, r = 1 grids

The work of Packard (1988), Mitchell et al. (1993; 1994b), and Das et al. (1995),

concentrated solely on uniform CAs with r = 3, i.e., seven neighbors per cell.

In this section we examine minimal radius, r = 1, non-uniform CAs, asking if

they can attain high performance on the density and synchronization tasks, and

whether such CAs can be coevolved using cellular programming. With r = 1,

each cell has access only to its own state and that of its two adjoining neighbors.

Note that uniform, one-dimensional, 2-state, r = 1 CAs are not computation

universal (Lindgren and Nordahl, 1990) and do not exhibit class-IV behavior

(Wolfram, 1983; Wolfram, 1984b).

7This entails saving the ensemble of rules, discovered during the evolutionary run, comprising
the non-uniform CA with the highest performance (as in Appendix C).
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Figure 4.3. The density task (r = 3): Results of two typical evolutionary runs.
(a) A successful run. (b) An unsuccessful run. In both graphs, the bottom curve
depicts performance, i.e., the average fitness of all grid cells (rules), and the top
curve depicts the fitness of the best cell (rule) in the grid, both as a function of
the number of configurations presented so far.
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Figure 4.4. The density task (r = 3): Histogram depicting the total number of
evolved rules (summed over several runs) as a function of λ.

4.5.1 The density task

We first describe results pertaining to the density task. The search space for non-

uniform, r = 1 CAs is extremely large: since each cell contains one of 28 possible

rules, and there are N = 149 such cells, our space is of size (28)149 = 21192. In

contrast, the size of uniform, r = 1 CA rule space is small, consisting of only

28 = 256 rules. This enables us to test each and every one of these rules on the

density task, a feat not possible for larger values of r. We performed several runs

in which each uniform rule was tested on 1000 random initial configurations.

Results are depicted in Figure 4.5 as fitness versus rule number.8 The fitness

(performance) measure is identical to that used above for non-uniform CAs, i.e.,

the number of cells in the correct state after M time steps, averaged over the

presented configurations (as before, fitness is normalized to the range [0.0, 1.0]).

Rule numbers are given in accordance with Wolfram’s convention (Wolfram,

1983), representing the decimal equivalent of the binary number encoding the

rule table (Figure 4.6).

Having “charted” the performance of all uniform, r = 1 CAs, we observe that

the highest value is 0.83. This is attained by rule 232 which performs a major-

ity vote among the three neighborhood states. Thus, the maximal performance

8Results of one run are displayed- no significant differences were detected among runs.
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Figure 4.5. The density task: Fitness results of all possible uniform, r = 1 CA
rules.

Rule 224 Rule 226

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

neighborhood 111 110 101 100 011 010 001 000 111 110 101 100 011 010 001 000

output bit 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 0

Rule 232 Rule 234

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

neighborhood 111 110 101 100 011 010 001 000 111 110 101 100 011 010 001 000

output bit 1 1 1 0 1 0 0 0 1 1 1 0 1 0 1 0

Figure 4.6. Rules involved in the density task (r = 1).
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Figure 4.7. The density task: result of a typical run with r = 1. The graph
depicts performance, i.e., the average fitness of all grid cells, as a function of the
number of configurations presented so far.

of uniform, r = 1 CAs on the density task is known, and we now ask whether

non-uniform CAs can be coevolved to attain higher performance. Observing Fig-

ure 4.7, depicting the progression of a typical run, we note that peak performance

reaches a value of 0.93. Thus, we find that indeed high-performance, non-uniform

CAs can coevolve, surpassing all uniform, r = 1 ones.

How do our evolved, non-uniform CAs manage to outperform the best uni-

form CA? Figure 4.8 demonstrates the operation of two uniform CAs, rule 232

(majority), which is the best uniform CA rule with fitness 0.83, and rule 226,

which has fitness 0.75 (rules are delineated in Figure 4.6). We note that rule 232

exhibits a small amount of information transfer during the first few time steps,

however, it quickly settles into an (incorrect) fixed point. Rule 226 shows patterns

of information transfer similar to those observed with the GKL rule (Figure 4.1),

however, no “decision” is reached.

The evolved, non-uniform CAs consist of a grid in which one rule dominates,

i.e., occupies most grid cells; these are quasi-uniform, type-2 grids, as defined in

Section 2.5.9 In the lower-performance CAs the dominant rule is 232 (majority),

whereas in the high-performance CAs rule 226 has gained dominance. We noted

9The definitions in Section 2.5 involve the limit of the given ratios, as grid size tends to
infinity. For finite grids, quasi-uniformity simply implies that these ratios are small.
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(a) (b)

(c) (d)

Figure 4.8. The density task: Operation of uniform, r = 1 rules. Grid size is
N = 149. (a) Rule 232 (majority). ρ(0) ≈ 0.40, ρ(150) ≈ 0.32. (b) Rule 232.
ρ(0) ≈ 0.60, ρ(150) ≈ 0.66. (c) Rule 226. ρ(0) ≈ 0.40, ρ(150) ≈ 0.40. (d) Rule
226. ρ(0) ≈ 0.60, ρ(150) ≈ 0.60.
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above that rule 226 attains a fitness of only 0.75 on its own, though it is better

than rule 232 at information transfer. Evolution led our non-uniform CAs toward

a grid in which most but not all of the cells contain rule 226. Thus, instead of

a low-performance uniform CA, evolution has found a high-performance quasi-

uniform CA, with one dominant rule occupying most grid cells, while the other

cells contain other rules.

The operation of one such typical CA is demonstrated in Figure 4.9, along

with a rules map, depicting the distribution of rules by assigning a unique gray

level to each distinct rule. The grid consists of 146 cells containing rule 226, 2

cells containing rule 224, and 1 cell containing rule 234.10 Rules 224 and 234

differ by one bit from rule 226 (Figure 4.6). In Figure 4.9a, ρ(0) ≈ 0.40, and we

note that behavior is different at the two cells located about one third from the

right, which contain rule 224. This rule maps neighborhood 001 to state 0 instead

of state 1, as does rule 226, thus enhancing a neighborhood with a majority of

0s. The cells act as “buffers,” which prevent erroneous information from flowing

across them. In Figure 4.9b, ρ(0) ≈ 0.60, and the cell located near the right side

of the grid, containing rule 234, acts as a buffer. This rule maps neighborhood

011 to 1 instead of 0, as does rule 226, thus enhancing a neighborhood with a

majority of 1s.

The uniform, rule-226 CA is capable of global information transfer, however,

erroneous decisions are reached. The non-uniform CA uses the capability of rule

226, by inserting buffers in order to prevent information from flowing too freely.

The buffers make local corrections to the signals, which are then enhanced in

time, ultimately resulting in a correct output. Thus, an evolved, quasi-uniform

CA outperforms a uniform one.

Further insight may be gained by studying the genescape of our problem, i.e.,

the three-dimensional plot depicting the evolutionary genetic landscape (Sec-

tion 3.4.5). The cellular genome for r = 1 CAs is small, consisting of only 8

“genes,” i.e., rule table entries.

The genescape of the non-uniform CA of Figure 4.9 is presented in Figure 4.10.

We observe that genes 0 and 7 are the ones used most extensively. These cor-

respond to neighborhoods 000 (which is mapped to 0 by all grid rules) and 111

(which is mapped to 1). This demonstrates the preservation of correct local infor-

mation. Genes 4 (neighborhood 100) and 6 (neighborhood 110), of intermediate

usage, also act to preserve the current state.

Observing Figure 4.10, we note that after several thousand configurations

in which the landscape between genes 0 and 7 is mostly flat, a growing ridge

appears, reflecting the increasing use of genes 2 and 5. These correspond to

neighborhoods 010 (which is mapped to 0) and 101 (which is mapped to 1). The

use of these genes changes the state of the central cell, reflecting an incorrect

10In Chapter 7 we shall take a closer look at the effects of rules distribution within the grid.
Appendix C completely specifies a number of non-uniform CAs, coevolved to solve the density
and synchronization tasks. The one dubbed ‘Density 2’ is the CA discussed in this paragraph.
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(a) (b)

Figure 4.9. The density task: Operation of a coevolved, non-uniform, r = 1 CA.
Grid size is N = 149. Top figures depict space-time diagrams, bottom figures
depict rule maps. (a) ρ(0) ≈ 0.40, ρ(150) = 0. (b) ρ(0) ≈ 0.60, ρ(150) = 1.
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state with respect to the local neighborhood. Essentially, these two genes are

related to information transfer, which increases as evolution proceeds. The least

used genes are 1 and 3, which are exactly those genes by which the dominant

rule (226) differs from the other two (224, 234). Though used sparingly, they are

crucial to the success of the system, as noted above.

Returning to Figure 4.7, we observe that the evolutionary pattern consists

of a period of relative stability followed by a period of instability, with the

high-performance CA found during the unstable period. This pattern resem-

bles the punctuated-equilibria phenomenon observed in nature (Eldredge and

Gould, 1972) and also in artificial-life experiments (Lindgren, 1992; Lindgren

and Nordahl, 1994a; Sipper, 1995c; see also Chapter 3). It is noted that for r = 1

the rule table contains only 8 bits and therefore 1-bit changes may have drastic

effects. However, this does not account for the initial period of stability. More-

over, note that the graph depicts average fitness and therefore instability is due

to a system-wide phenomenon taking place. Fitness variations of a small number

of cells would not be sufficient to create the observed evolutionary pattern.

The configuration at which the usage ridge begins its ascent (Figure 4.10) co-

incides with the beginning of the unstable period (Figure 4.7). As argued above,

the ridge represents the growing use of information transfer. Thus, the shift from

stability to instability may represent a phase transition for our evolving CAs.

As with the edge of chaos, such a shift may be associated with computational

capability, evident in our case by increased computational performance. While a

full explanation of the punctuated-equilibria phenomenon does not yet exist, evi-

dence has been mounting as to its ubiquity among various evolutionary systems.

Our above results suggest a possible connection between this phenomenon and

the edge of chaos (see also Kauffman, 1993, page 269, on the relation between

coevolution and punctuated equilibria).

4.5.2 The synchronization task

In this section we apply the cellular programming algorithm to the evolution

of non-uniform, r = 1 CAs to perform the synchronization task. As noted in

Section 4.5.1, the size of uniform, r = 1 CA rule space is small, consisting of

only 28 = 256 rules. This enables us to test each and every one of these rules

on the synchronization task, results of which are depicted in Figure 4.11. The

fitness (performance) value is computed as follows: if the density of 1s after M

time steps is greater than 0.5 (respectively, less than 0.5) then over the next four

time steps (i.e., [M + 1..M + 4]) each cell should exhibit the sequence of states

0 → 1 → 0 → 1 (respectively, 1 → 0 → 1 → 0). This measure builds upon

the configuration attained by the CA at the last time step (as with the density

task, fitness is averaged over several initial configurations and the final value

is normalized to the range [0.0, 1.0]). Note that this fitness value is somewhat

different than that used in Section 6.3 for the firefly machine.
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Figure 4.11. The synchronization task: Fitness results of all possible uniform,
r = 1 CA rules.

The highest uniform performance value is 0.84, and is attained by a number

of rules. These map neighborhood 111 to 0 and neighborhood 000 to 1; they also

map either 110 to 0 or 001 to 1 (or both). Figure 4.12 depicts the operation of

two such uniform rules. Thus, the maximal performance of uniform, r = 1 CAs

on the synchronization task is known, and we now ask whether non-uniform CAs

can attain higher performance, and whether such CAs can be found using the

cellular programming algorithm.

Our algorithm yielded (on most runs) non-uniform CAs with a fitness value of

1, i.e., perfect performance is attained.11 Again, we note that non-uniform CAs

can indeed be coevolved to attain high performance, surpassing that of uniform,

r = 1 CAs. Figure 4.13 depicts the operation of two such coevolved CAs.

The coevolved, non-uniform CAs are quasi-uniform, type-1 (Section 2.5). The

number of rules in the final grids is small, ranging (among different evolution-

ary runs) between 3–9, with 2–3 dominant rules. Each run produced a different

ensemble of rules (comprising the non-uniform CA), all of which are higher per-

formance ones in the uniform case (Figure 4.11).12

11The term ‘perfect’ is used here in a stochastic sense since we can neither exhaustively test
all 2149 possible configurations, nor are we in possession to date of a formal proof. Nonethe-
less, we have tested our best-performance CAs on numerous configurations, for all of which
synchronization was attained.

12For example, the non-uniform CA whose operation is depicted in Figure 4.13a consists of
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(a) (b)

Figure 4.12. The synchronization task: Operation of uniform, r = 1 rules. Grid
size is N = 149. Initial configurations were generated at random. (a) Rule 21.
(b) Rule 31.

(a) (b)

Figure 4.13. The synchronization task: Operation of two coevolved, non-
uniform, r = 1 CAs. Grid size is N = 149. Top figures depict space-time
diagrams, bottom figures depict rule maps.
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As opposed to the uniform CAs of Figure 4.12, where no useful information

transfer is evident, we note in Figure 4.13 that signals appear, as in the GKL rule

(Figure 4.1). The organization of rules in the coevolved CAs is not random, but

rather consists of consecutive blocks of cells containing the same rule. This can be

noted by observing the rule maps depicted in Figure 4.13. Comparing these maps

with the corresponding space-time diagrams, we note that signals interact at the

boundaries between rule blocks, thereby ultimately achieving synchronization.

This resembles the particle-based computation, discussed by Das et al. (1994;

1995) and by Crutchfield and Mitchell (1995). They analyzed CA computation

in terms of “particles,” which are a primary mechanism for carrying information

(“signals”) over long space-time distances. This information might indicate, for

example, the result of some local processing that has occurred at an earlier time.

The uniform CAs investigated by the EVCA group have radius r = 3. We

have found that non-uniform, r = 1 CAs can attain high performance, surpassing

uniform CAs of the same radius. Uniform, two-dimensional, 2-state, 5-neighbor

CAs cannot attain universal computation (Chapter 2), as also uniform, one-

dimensional, 2-state, r = 1 CAs (Lindgren and Nordahl, 1990). Quasi-uniform

CAs are capable of universal computation (Chapter 2; see also Sipper, 1995b), and

we have demonstrated above that evolution on non-trivial tasks has found quasi-

uniform CAs. These results suggest that non-uniformity reduces connectivity

requirements, i.e., the use of smaller radiuses is made possible. More generally,

we maintain that non-uniform CAs offer new paths toward complex computation.

4.6 Results using two-dimensional, 5-neighbor grids

Both the density and synchronization tasks can be extended in a straightforward

manner to two-dimensional grids.13 Applying our algorithm to the evolution of

such CAs to perform the density task yielded notably higher performance than

the one-dimensional case, with peak values of 0.99. Moreover, computation time,

i.e., the number of time steps taken by the CA until convergence to the correct

final pattern, is shorter (we shall elaborate upon these issues in Chapter 8).

Figure 4.14 demonstrates the operation of one such coevolved CA. Qualitatively,

we observe the CA’s “strategy” of successively classifying local densities, with

the locality range increasing over time. “Competing” regions of density 0 and

density 1 are manifest, ultimately relaxing to the correct fixed point. For the

synchronization task, perfect performance was evolved for two-dimensional CAs

(as for the one-dimensional case). One such CA is depicted in Figure 4.15.

the following rules (Appendix C): rule 21 (appears 74 times in the grid), rule 31 (59 times),
rule 63 (13 times), rule 53 (2 times), and rule 85 (1 time). All these rules have uniform fitness
values above 0.7 (Figure 4.11).

13Spatially periodic boundary conditions are applied, resulting in a toroidal grid.



4.6 Results using two-dimensional, 5-neighbor grids 95

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

(a)

0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

(b)

Figure 4.14. Two-dimensional density task: Operation of a coevolved, non-
uniform, 2-state, 5-neighbor CA. Grid size is N = 225 (15 × 15). Numbers at
bottom of images denote time steps. (a) Initial density of 1s is 0.49, final density
is 0. (b) Initial density of 1s is 0.51, final density is 1.
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0 1 2 3 4 5 6

7 8 9 10 11 12 13

14 15 16 17 18 19 20

21 22 23 24 25 26 27

28 29 30 31 32 33 34

35 36 37 38 39 40 41

Figure 4.15. Two-dimensional synchronization task: Operation of a coevolved,
non-uniform, 2-state, 5-neighbor CA. Grid size is N = 225 (15 × 15). Numbers
at bottom of images denote time steps.

4.7 Scaling evolved CAs

In this section we consider one aspect of the scalability issue, which essentially

involves two separate matters: the evolutionary algorithm and the evolved solu-

tions. As to the former, we note that as our cellular programming algorithm is

local, it scales better in terms of hardware resources than the standard (global)

genetic algorithm. Adding grid cells requires only local connections in our case,

whereas the standard genetic algorithm includes global operators such as fitness

ranking and crossover (this point shall prove to be of prime import for the hard-

ware implementation discussed in Chapter 6). In this section we concentrate on

the second issue, namely, how can the grid size be modified given an evolved

grid of a particular length, i.e., how can evolved solutions be scaled? This has

been purported as an advantage of uniform CAs, since one can directly use the
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evolved rule in a grid of any desired size. However, this form of simple scal-

ing does not bring about task scaling; as demonstrated, e.g., by Crutchfield and

Mitchell (1995) for the density task, performance decreases as grid size increases.

We shall see in Section 5.5 that successful systems can be obtained using a simple

scaling scheme, involving the duplication of the rules grid (Sipper and Tomassini,

1996b). Below we report on a more sophisticated, empirically-obtained scheme,

that has proven successful (Sipper et al., 1997c).

Given an evolved non-uniform CA of size N , our goal is to obtain a grid

of size N ′, where N ′ is given but arbitrary (N ′ may be > N or < N), such

that the original performance level is maintained. This requires an algorithm for

determining which rule should be placed in each cell of the size N ’ grid, so as to

preserve the original grid’s “essence,” i.e., its emergent global behavior. Thus,

we must determine what characterizes this latter behavior. We first note that

there are two basic rule structures of importance in the original grid (shown for

r = 1):

• The local structure with respect to cell i, i ∈ {0, . . . , N − 1}, is the set of

three rules in cells i−1, i, and i+1 (indices are computed modulus N since

the grid is circular).

• The global structure is derived by observing the blocks of identical rules

present in the grid. For example, for the following evolved N = 15 grid:

R1R1R1R1 R2R2 R3 R4R4R4R4 R1 R5R5R5

where Rj , j ∈ {1, . . . , 5}, denotes a distinct rule, the number of blocks is 6,

and the global structure is given by the list {R1, R2, R3, R4, R1, R5}.

We have found that if these structures are preserved, the scaled CA’s behav-

ior is identical to that of the original one. A heuristic principle is to expand (or

reduce) a block of identical rules which spans at least four cells, while keeping in-

tact blocks of length three or less. It is straightforward to observe that a block of

length one or two should be left untouched, so as to maintain the local structure.

As for a block of length three, there is no a-priori reason why it should be left

unperturbed, rather, this has been found to hold empirically. A possible expla-

nation may be that in such a three-cell block the local structure RjRjRj appears

only once, thereby comprising a “primitive” unit that must be maintained. As

an example of this procedure, consider the above N = 15 CA. Scaling this grid

to size N ′ = 25 results in:

R1R1R1R1R1R1R1R1 R2R2 R3 R4R4R4R4R4R4R4R4R4R4 R1 R5R5R5

Note that both the local and global structures are preserved. We tested our
scaling procedure on several CAs that were evolved to solve the synchronization
task. The original grid sizes were N = 100, 150, which were then scaled to grids
of sizes N ′ = 200, 300, 350, 450, 500, 750. In all cases the scaled grids exhibited
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the same (perfect) performance level as that of the original ones. An example of
a scaled system is given in Figure 4.16.

Figure 4.16. Example of a scaled CA: The size N = 149 CA of Figure 4.13b,
evolved to solve the synchronization task, is scaled to N ′ = 350.

4.8 Discussion

In this chapter we described the cellular programming approach, used to evolve
non-uniform CAs, and studied two non-trivial computational tasks, density and
synchronization. The algorithm presented involves local coevolution, in contrast
to the standard genetic algorithm in which independent problem solutions glob-
ally evolve. Our results demonstrate that: (1) non-uniform CAs can attain high
computational performance on non-trivial problems, and (2) such systems can be
evolved rather than designed. This is notable when one considers the huge search
spaces involved, much larger than for uniform CAs.

Evolved, non-uniform CAs, with radius r = 3, attained high performance on
the density task. We noted that rules are clustered in the vicinity of λ = 0.5,
mostly in the region 0.45 − 0.55. It is argued that these results lend support to
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the conclusion of Mitchell et al. (1993), stating that λ values for the density task
are likely to be close to 0.5, rather than to critical λc values, as put forward by
Packard (1988).

The small size of uniform, r = 1 CA rule space enabled us to test all possible
rules on both tasks, finding for each one the uniform rule of maximal performance.
We then demonstrated that non-uniform, r = 1 CAs can be evolved to perform
these tasks with high performance, similar to uniform r = 3 CAs, and notably
higher than uniform, r = 1 CAs. This suggests that non-uniformity reduces
connectivity requirements, i.e., the use of smaller radiuses is made possible.

For r = 1, we observed that evolution tends to progress toward quasi-uniform
grids. For the density task, type 2 quasi-uniformity was evolved, i.e., with one
dominant rule. The crucial factor pertains to the fact that dominance is not
total (in which case a uniform CA would result), rather a small number of other
rules exists. The non-dominant rules act as buffers, preventing information from
flowing too freely, while making local corrections to passing signals. A study of the
genescape provided us with further insight into the evolutionary process, and a
possible connection between the punctuated-equilibria phenomenon and the edge
of chaos. For the synchronization task, type 1 quasi-uniformity was observed,
with 2 − 3 dominant rules. We noted that signals interact at the boundaries
between rule blocks, thereby ultimately achieving synchronization. We showed
that two-dimensional systems can be successfully evolved for both tasks, and
presented a scheme for scaling evolved CAs.

Some qualitative differences have been detected between different values of r.
The r = 3 case did not exhibit punctuated equilibria as with r = 1. For r = 1,
all runs were successful, i.e., average fitness increased, as opposed to r = 3,
where some runs were unsuccessful (e.g., Figure 4.3b). Quasi-uniform grids were
not evolved for r = 3 as with r = 1. It cannot be ascertained at this point
whether these are genuine differences or simply a result of our use of insufficient
computational resources (grid size, number of configurations), however, there is
some evidence pointing to the latter. For example, though quasi-uniformity was
not observed for r = 3, we did note that the average Hamming distance between
rules decreases as performance increases.14

A major impediment preventing ubiquitous computing with CAs stems from
the difficulty of utilizing their complex behavior to perform useful computations.
We noted in Section 4.2 that the GKL rule attains high performance on the den-
sity task. However, this is a serendipitous effect since the GKL rule was not in-
vented for the purpose of performing any particular computational task (Mitchell
et al., 1993). The difficulty of designing CAs to exhibit a specific behavior or
perform a particular task has severely limited their applications; automating the
design (programming) process would greatly enhance their viability. Our results
offer encouraging prospects in this respect for non-uniform CAs. In the next chap-
ter we study a number of novel computational tasks, for which cellular machines

14The Hamming distance between two rules is the number of bits by which their bit strings
differ.



100 Cellular Programming: Coevolving Cellular Computation

were evolved via cellular programming, suggesting possible application domains
for our systems.



Chapter 5

Toward Applications of
Cellular Programming

“Can you do Addition?” the White Queen asked. “What’s one and one and
one and one and one and one and one and one and one and one?”
“I don’t know,” said Alice. “I lost count.”
“She can’t do Addition,” the Red Queen interrupted.

Lewis Carroll, Through the Looking-Glass

In the previous chapter we presented the cellular programming approach by
which parallel cellular machines, namely, non-uniform cellular automata, are coe-
volved to perform computational tasks. In particular, we studied two non-trivial
problems, density and synchronization, demonstrating that high-performance sys-
tems can be evolved to solve both. In this chapter we “revisit” the synchroniza-
tion task, as well as study four novel ones, which are motivated by real-world
applications. The complete list of tasks is given in Table 5.1.

Task Description Grid
Density Decide whether the initial configuration 1D, r=1

contains a majority of 0s or of 1s 2D, n=5
Synchronization Given any initial configuration, relax to an 1D, r=1

oscillation between all 0s and all 1s 2D, n=5
Ordering Order initial configuration so that 0s are placed 1D, r=1

on the left and 1s are placed on the right
Rectangle- Find the boundaries of a randomly-placed, 2D, n=5
Boundary random-sized, non-filled rectangle
Thinning Find thin representations of rectangular 2D, n=5

patterns
Random Number Generate “good” sequences of pseudo-random 1D, r=1
Generation numbers

Table 5.1. List of computational tasks for which parallel cellular machines were
evolved via cellular programming. Right column delineates the grids used (one-
dimensional, r = 1 and/or two-dimensional, with a 5-cell neighborhood).
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5.1 The synchronization task revisited: Constructing
counters

In the one-dimensional synchronization task, discussed in Section 4.5.2, the final
pattern consists of an oscillation between all 0s and all 1s. From an engineering
point of view, this period-2 cycle may be considered a 1-bit counter. Building
upon such an evolved CA, using a small number of different cellular clock rates,
2- and 3-bit counters can be constructed (Marchal et al., 1997).

Constructing a 2-bit counter from a non-uniform, r = 1 CA, evolved to solve
the synchronization task, is carried out by “interlacing” two r = 1 CAs, in the
following manner: each cell in the evolved r = 1 CA is transformed into an
r = 2 cell, two duplicates of which are juxtaposed (the resulting grid’s size is
thus doubled). This transformation is carried out by “blowing up” the r = 1 rule
table into an r = 2 one, creating from each of the (eight) r = 1 table entries four
r = 2 table entries, resulting in the 32-bit r = 2 rule table. For example, entry
110→ 1 specifies a next-state bit of 1 for an r = 1 neighborhood of 110 (left cell
is in state 1, central cell is in state 1, right cell is in state 0). Transforming it into
an r = 2 table entry is carried out by “moving” the adjacent, distance-1 cells to a
distance of 2, i.e., 110→ 1 becomes 1X1Y 0→ 1; filling in the four permutations
of (X,Y ), namely, (0, 0), (0, 1), (1, 0), and (1, 1), results in the four r = 2 table
entries. The clocks of the odd-numbered cells function twice as fast as those of
the even-numbered cells, meaning that the latter update their states every second
time step with respect to the former. The resulting CA converges to a period-4
cycle upon presentation of a random initial configuration, a behavior that may
be considered a 2-bit counter. The operation of such a CA is demonstrated in
Figure 5.1.

Constructing a 3-bit counter from a non-uniform, r = 1 CA is carried out
in a similar manner, by “interlacing” three r = 1 CAs (the resulting grid’s size
is thus tripled). The clocks of cells 0, 3, 6, . . . function normally, those of cells
1, 4, 7, . . . are divided by two (i.e., these cells change state every second time step
with respect to the “fast” cells), and the clocks of cells 2, 5, 8, . . . are divided by
four (i.e., these cells change state every fourth time step with respect to the fast
cells). The resulting CA converges to a period-8 cycle upon presentation of a
random initial configuration, a behavior that may be considered a 3-bit counter.
The operation of such a CA is shown in Figure 5.2. We have thus demonstrated
how one can build upon an evolved behavior in order to construct devices of
interest.

5.2 The ordering task

In this task, the non-uniform, one-dimensional, r = 1 CA, given any initial con-
figuration, must reach a final configuration in which all 0s are placed on the left
side of the grid and all 1s on the right side. This means that there are N(1−ρ(0))
0s on the left and Nρ(0) 1s on the right, where ρ(0) is the density of 1s at time 0,
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Figure 5.1. The one-dimensional synchronization task: A 2-bit counter. Oper-
ation of a non-uniform, 2-state CA, with connectivity radius r = 2, derived from
the coevolved, r = 1 CA of Figure 4.13b. Grid size is N = 298 (twice that of the
original r = 1 CA). The CA converges to a period-4 cycle upon presentation of a
random initial configuration, a behavior that may be considered a 2-bit counter.

as defined in Section 4.2 (thus, the final density equals the initial one, however,
the configuration consists of a block of 0s on the left, followed by a block of 1s
on the right). The ordering task may be considered a variant of the density task
and is clearly non-trivial following our reasoning of the previous chapter. It is
interesting in that the output is not a uniform configuration of all 0s or all 1s, as
with the density and synchronization tasks.

As with the previous studies of one-dimensional, r = 1 CAs, we tested all
uniform, r = 1 CA rules on the ordering task. Results are depicted in Figure 5.3
(as explained in Section 4.5.1, rules are numbered in accordance with Wolfram’s
convention, Wolfram, 1983). We note that the highest fitness (performance) value
is 0.71 attained by rule 232 (majority).

The cellular programming algorithm yielded non-uniform CAs with perfor-
mance values similar to the density task, i.e., as high as 0.93. We also observed
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Figure 5.2. The one-dimensional synchronization task: A 3-bit counter. Oper-
ation of a non-uniform, 2-state CA, with connectivity radius r = 3, derived from
the coevolved, r = 1 CA of Figure 4.13b. Grid size is N = 447 (three times that
of the original r = 1 CA). The CA converges to a period-8 cycle upon presenta-
tion of a random initial configuration, a behavior that may be considered a 3-bit
counter.
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Figure 5.3. The ordering task: Fitness results of all possible uniform, r = 1 CA
rules.

that evolved CAs are quasi-uniform, type-1, i.e., with a small number of domi-
nant rules (Section 2.5). As with the density and synchronization tasks, we find
that non-uniform CAs can be coevolved to attain high performance. While not
perfect, it is notable that our coevolved, non-uniform, r = 1 CAs outperform all
uniform, r = 1 ones. Figure 5.4 depicts the operation of a typical, coevolved CA.

The genescape of the non-uniform CA of Figure 5.4 is presented in Figure 5.5.
We observe that genes 0 (000) and 7 (111) are the ones used most extensively,
acting to preserve correct local information. We note that two genes have gained
dominance, namely, genes 4 (100) and 6 (110). These genes are used when the
local neighborhood ordering is incorrect, consisting of a 1 on the left and a 0 on
the right. In such a situation signals are propagated, as evident in Figure 5.4,
which explains the high usage of these genes.

5.3 The rectangle-boundary task

The possibility of applying CAs to perform image processing tasks arises as a
natural consequence of their architecture. In a two-dimensional CA, a cell (or
a group of cells) can correspond to an image pixel, with the CA’s dynamics
designed so as to perform a desired image processing task. Earlier work in this
area, carried out mostly in the 1960s and the 1970s, was treated by Preston, Jr.
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(a) (b)

Figure 5.4. The ordering task: Operation of a coevolved, non-uniform, r = 1
CA. Grid size is N = 149. Top figures depict space-time diagrams, bottom figures
depict rule maps. (a) Initial density of 1s is 0.315, final density is 0.328. (b) Initial
density of 1s is 0.60, final density is 0.59.
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Figure 5.5. The ordering task: Genescape of a coevolved, non-uniform, r = 1
CA.
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and Duff (1984), with more recent applications presented by Broggi et al. (1993)
and Hernandez and Herrmann (1996).

The next two tasks involve image processing operations. In this section we
discuss a two-dimensional boundary computation: given an initial configuration
consisting of a non-filled rectangle, the CA must reach a final configuration in
which the rectangular region is filled, i.e., all cells within the confines of the rect-
angle are in state 1, and all other cells are in state 0. Initial configurations consist
of random-sized rectangles placed randomly on the grid (in our simulations, cells
within the rectangle in the initial configuration were set to state 1 with probabil-
ity 0.3; cells outside the rectangle were set to 0). Note that boundary cells can
also be absent in the initial configuration. This operation can be considered a
form of image enhancement, used, e.g., for treating corrupted images.

Using cellular programming, non-uniform CAs were evolved with performance
values of 0.99, one of which is depicted in Figure 5.6. Figure 5.7 shows the
two-dimensional rules map of the coevolved, non-uniform CA, demonstrating its
quasi-uniformity, with one dominant rule occupying most of the grid. This rule
maps the cell’s state to zero if the number of neighboring cells in state 1 (including
the cell itself) is less than two, otherwise mapping the cell’s state to one.1 Thus,
growing regions of 1s are more likely to occur within the rectangle confines than
without.

A one-dimensional version of the above problem is the line-boundary task,
where the boundary consists of a (one-dimensional) line. Applying cellular pro-
gramming yielded non-uniform, r = 1 CAs with peak performance of 0.94, one of
which is depicted in Figure 5.8. We observed that a simple strategy had emerged,
consisting of a quasi-uniform grid with two dominant rules, 252 and 238, whose
tables are delineated in Figure 5.9. The rules differ in two positions, namely, the
output bits of neighborhoods 100 and 001. Rule 252 maps neighborhood 100 to
1 and neighborhood 001 to 0, thus effecting a right-moving signal, while rule 238
analogously effects a left-moving signal. The line computation results from the
interaction of these two rules (along with a small number of others).

5.4 The thinning task

Thinning (also known as skeletonization) is a fundamental preprocessing step
in many image processing and pattern recognition algorithms. When the image
consists of strokes or curves of varying thickness, it is usually desirable to reduce
them to thin representations, located along the approximate middle of the original
figure. Such “thinned” representations are typically easier to process in later
stages, entailing savings in both time and storage space (Guo and Hall, 1989).

While the first thinning algorithms were designed for serial implementation,
current interest lies in parallel systems, early examples of which were presented

1This is referred to as a totalistic rule, in which the state of a cell depends only on the sum of
the states of its neighbors at the previous time step, and not on their individual states (Wolfram,
1983).
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Figure 5.6. Two-dimensional rectangle-boundary task: Operation of a coe-
volved, non-uniform, 2-state, 5-neighbor CA. Grid size is N = 225 (15 × 15).
Numbers at bottom of images denote time steps. (a), (b) Computation is shown
for two different initial configurations.
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Figure 5.7. Two-dimensional rectangle-boundary task: Rules map of a coe-
volved, non-uniform, 2-state, 5-neighbor CA.

(a) (b)

Figure 5.8. One-dimensional line-boundary task: Operation of a coevolved, non-
uniform, r = 1 CA. Top figures depict space-time diagrams, bottom figures depict
rule maps. (a), (b) Computation is shown for two different initial configurations.

Rule 252 Rule 238

7 6 5 4 3 2 1 0 7 6 5 4 3 2 1 0

neighborhood 111 110 101 100 011 010 001 000 111 110 101 100 011 010 001 000

output bit 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 0

Figure 5.9. Rules involved in the line-boundary task.



110 Toward Applications of Cellular Programming

by Preston, Jr. and Duff (1984). The difficulty of designing a good thinning
algorithm using a small, local cellular neighborhood, coupled with the task’s
importance, has motivated us to explore the possibility of applying cellular pro-
gramming.

Guo and Hall (1989) considered four sets of binary images, two of which con-
sist of rectangular patterns oriented at different angles. The algorithms presented
therein employ a two-dimensional grid with a 9-cell neighborhood; each parallel
step consists of two sub-iterations in which distinct operations take place. The set
of images considered by us consists of rectangular patterns oriented either hori-
zontally or vertically. While more restrictive than that of Guo and Hall (1989),
it is noted that we employ a smaller neighborhood (5-cell) and do not apply any
sub-iterations.

Figure 5.10 demonstrates the operation of a coevolved CA performing the
thinning task. Although the evolved grid does not compute perfect solutions,
we observe, nonetheless, good thinning “behavior” upon presentation of rectan-
gular patterns as defined above (Figure 5.10a). Furthermore, partial success is
demonstrated when presented with more difficult images, involving intersecting
lines (Figure 5.10b).

0 1 2 3

(a)

0 1 2 3

(b)

Figure 5.10. Two-dimensional thinning task: Operation of a coevolved, non-
uniform, 2-state, 5-neighbor CA. Grid size is N = 1600 (40 × 40). Numbers at
bottom of images denote time steps. (a) Two separate lines. (b) Two intersecting
lines.
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5.5 Random number generation

Random numbers are needed in a variety of applications, yet finding good random
number generators, or randomizers, is a difficult task (Park and Miller, 1988). To
generate a random sequence on a digital computer, one starts with a fixed-length
seed, then iteratively applies some transformation to it, progressively extracting
as long as possible a random sequence. Such numbers are usually referred to
as pseudo-random, as distinguished from true random numbers, resulting from
some natural physical process. In order to demonstrate the efficacy of a proposed
generator, it is usually subject to a battery of empirical and theoretical tests,
among which the most well known are those described by Knuth (1981).

In the last decade cellular automata have been used to generate “good” ran-
dom numbers. The first work examining the application of CAs to random num-
ber generation is that of Wolfram (1986), in which the uniform, 2-state, r = 1
rule-30 CA was extensively studied, demonstrating its ability to produce highly
random, temporal bit sequences. Such sequences are obtained by sampling the
values that a particular cell (usually the central one) attains as a function of time.

In Wolfram’s work, the uniform rule-30 CA is initialized with a configuration
consisting of a single cell in state 1, with all other cells being in state 0 (Wol-
fram, 1986). The initially non-zero cell is the site at which the random temporal
sequence is generated. Wolfram studied this particular rule extensively, demon-
strating its suitability as a high-performance randomizer, which can be efficiently
implemented in parallel; indeed, this CA is one of the standard generators of the
massively parallel Connection Machine CM2 (Connection, 1991). A non-uniform
CA randomizer was presented by Hortensius et al. (1989a; 1989b) (based on the
work of Pries et al., 1986), consisting of two rules, 90 and 150, arranged in a spe-
cific order in the grid. The performance of this CA in terms of random number
generation was found to be at least as good as that of rule 30, with the added
benefit of less costly hardware implementation. It is interesting in that it com-
bines two rules, both of which are simple linear rules, that do not comprise good
randomizers, to form an efficient, high-performance generator. An example ap-
plication of such CA randomizers was demonstrated by Chowdhury et al. (1995)
who presented the design of a low-cost, high-capacity associative memory.

An evolutionary approach for obtaining random number generators was taken
by Koza (1992), who applied genetic programming to the evolution of a symbolic
LISP expression that acts as a rule for a uniform CA (i.e., the expression is
inserted into each CA cell, thereby comprising the function according to which
the cell’s next state is computed). He demonstrated evolved expressions that are
equivalent to Wolfram’s rule 30. The fitness measure used by Koza is the entropy
Eh: let k be the number of possible values per sequence position (in our case
CA states) and h a subsequence length. Eh (measured in bits) for the set of kh

probabilities of the kh possible subsequences of length h is given by:

Eh = −
kh∑

j=1

phj log2 phj
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where h1, h2, . . . , hkh are all the possible subsequences of length h (by convention,
log2 0 = 0 when computing entropy). The entropy attains its maximal value when
the probabilities of all kh possible subsequences of length h are equal to 1/kh;
in our case k = 2 and the maximal entropy is Eh = h. Koza evolved LISP
expressions which act as rules for uniform, one-dimensional CAs. The CAs were
run for 4096 time steps and the entropy of the resulting temporal sequence of a
designated cell (usually the central one) was taken as the fitness of the particular
rule (i.e., LISP expression). In his experiments, Koza used a subsequence length
of h = 4, obtaining rules with an entropy of 3.996. The best rule of each run was
re-tested over 65536 time steps, some of which exhibited the maximal entropy
value of 4.0.

The above account leads us to ask whether good CA randomizers can be
coevolved using cellular programming; the results reported below suggest that
indeed this is the case (Sipper and Tomassini, 1996a; Sipper and Tomassini,
1996b). The algorithm presented in Section 4.3 is slightly modified, such that
the cell’s fitness score for a single configuration is defined as the entropy Eh of the
temporal sequence, after the CA has been run for M time steps. Cell i’s fitness
value, fi, is then updated as follows (refer to Figure 4.2):

for each cell i do in parallel
fi = fi+ entropy Eh of the temporal sequence of cell i

end parallel for
Initial configurations are randomly generated and for each one the CA is run for
M = 4096 time steps.2 Note that we do not restrict ourselves to one designated
cell, but consider all grid cells, thus obtaining N random sequences in parallel,
rather than a single one.

In our simulations (using grids of sizes N = 50 and N = 150), we observed
that the average cellular entropy taken over all grid cells is initially low (usually
in the range [0.2, 0.5]), ultimately evolving to a maximum of 3.997, when using
a subsequence size of h = 4 (i.e., entropy is computed by considering the oc-
currence probabilities of 16 possible subsequences, using a “sliding window” of
length 4). The progression of a typical evolutionary run is depicted in Figure 5.11.
We performed several such experiments using h = 4 and h = 7. The evolved,
non-uniform CAs attained average fitness values (entropy) of 3.997 and 6.978,
respectively. We then re-tested our best CAs over M = 65536 times steps (as in
Koza, 1992), obtaining entropy values of 3.9998 and 6.999, respectively. Interest-
ingly, when we performed this test with h = 7 for CAs which were evolved using
h = 4, high entropy was displayed, as for CAs which were originally evolved with
h = 7. These results are comparable to the entropy values obtained by Koza
(1992), as well as to those of the rule-30 CA of Wolfram (1986) and the non-
uniform, rules {90, 150} CA of Hortensius et al. (1989a; 1989b). Note that while
our fitness measure is local, the evolved entropy results reported above represent
the average of all grid cells. Thus, we obtain N random sequences in parallel

2A standard, 48-bit, linear congruential algorithm proved sufficient for the generation of
random initial configurations.
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rather than a single one. Figure 5.12 demonstrates the operation of three CAs
discussed above: rule 30, rules {90, 150}, and a coevolved CA. Note that the
latter is quasi-uniform, type 1, as evident by observing the rules map.
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Figure 5.11. One-dimensional random number generator (r = 1): Progression
of a typical evolutionary run. Graph depicts the average fitness of all grid cells,
as a function of the number of configurations presented so far. Cellular fitness fi
equals entropy Eh (shown for h = 4).

We next subjected our evolved CAs to a number of additional tests, including
chi-square (χ2), serial correlation coefficient, and a Monte Carlo simulation for
calculating the value of π; these are well-known tests described in detail by Knuth
(1981). In order to apply the tests we generated sequences of 100, 000 random
bytes using two different procedures: (a) The CA of size N = 50 is run for
500 time steps, thus generating 50 random temporal bit sequences of length 500.
These are concatenated to form one long sequence of length 25, 000 bits. This
process is then repeated 32 times, thus obtaining a sequence of 800, 000 bits,
which are grouped into 100, 000 bytes. (b) The CA of size N = 50 is run for 400
time steps. Every 8 time steps, 50 8-bit sequences (bytes) are produced, which
are concatenated, resulting in 2500 bytes after 400 time steps. This process is
then repeated 40 times, thus obtaining the 100, 000 byte sequence.

Table 5.2 shows the test results of four random number generators:3 two

3The tests were conducted using a public-domain software written by J. Walker, available at
http://www.fourmilab.ch/random/.
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(a) (b) (c)

Figure 5.12. One-dimensional random number generators: Operation of three
CAs. Grid size is N = 50, radius is r = 1. Initial configurations were generated by
randomly setting the state of each grid cell to 0 or 1 with uniform probability. Top
figures depict space-time diagrams, bottom figures depict rule maps. (a) Rule-
30 CA. (b) Rules {90, 150} CA. (c) A coevolved, non-uniform CA, consisting of
three rules: rule 165 (22 cells), rule 90 (22 cells), and rule 150 (6 cells).
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coevolved coevolved rule 30 rules {90,150}
CA (1) CA (2) CA CA

Test (a) (b) (a) (b) (a) (b) (a) (b)
50.00% 75.00% 50.00% 50.00% 90.00% 90.00% 50.00% 25.00%
50.00% 50.00% 75.00% 50.00% 10.00% 50.00% 5.00% 50.00%
90.00% 50.00% 95.00% 5.00% 97.50% 0.50% 10.00% 50.00%
25.00% 75.00% 50.00% 50.00% 0.01% 50.00% 75.00% 25.00%

i 50.00% 25.00% 75.00% 50.00% 95.00% 75.00% 97.50% 25.00%
25.00% 10.00% 75.00% 25.00% 97.50% 50.00% 25.00% 50.00%
75.00% 50.00% 75.00% 75.00% 50.00% 50.00% 25.00% 50.00%
10.00% 50.00% 25.00% 50.00% 5.00% 50.00% 25.00% 50.00%
50.00% 25.00% 50.00% 75.00% 25.00% 50.00% 95.00% 75.00%
90.00% 75.00% 90.00% 10.00% 25.00% 50.00% 75.00% 75.00%

100% 100% 90% 90% 50% 90% 70% 100%
0.00185 -0.00085 -0.00390 0.01952 0.00052 -0.24685 0.00646 0.00036
-0.00386 -0.00228 0.00228 0.02144 -0.00175 -0.24838 -0.00071 -0.00194

ii 0.00192 -0.00297 0.00048 0.01970 0.00156 -0.24291 0.00205 -0.00322
-0.00011 -0.00248 -0.00237 0.02192 0.00478 -0.23735 0.00177 0.00094
-0.00060 -0.00762 0.00194 0.01937 0.00214 -0.24149 -0.00075 0.00378
7.99819 7.99828 7.99807 7.99827 7.99841 7.99842 7.99821 7.99797
7.99821 7.99817 7.99835 7.99810 7.99789 7.99820 7.99788 7.99807

iii 7.99838 7.99810 7.99845 7.99786 7.99849 7.99770 7.99793 7.99809
7.99800 7.99831 7.99806 7.99808 7.99733 7.99807 7.99832 7.99804
7.99808 7.99801 7.99829 7.99808 7.99844 7.99835 7.99851 7.99800
0.54% 0.19% 0.42% 0.16% 0.21% 0.90% 0.52% 0.20%

iv 0.03% 0.12% 0.33% 0.35% 0.21% 0.13% 0.05% 0.07%
0.18% 0.68% 0.62% 0.65% 0.32% 0.13% 0.27% 0.07%
0.45% 0.73% 0.48% 0.33% 0.37% 0.38% 0.07% 0.17%
0.16% 0.09% 0.12% 0.13% 0.40% 0.08% 0.78% 0.01%

Table 5.2. Results of tests. Each entry represents the test result for a sequence
of 100, 000 bytes, generated by the corresponding randomizer. 20 sequences were
generated by each randomizer, 10 by procedure (a) and 10 by procedure (b) (see
text). The table lists the chi-square test results for all 10 sequences and the
first 5 results for the other tests. CA Grid size is N = 50. Coevolved CA (1)
consists of three rules: rule 165 (22 cells), rule 90 (22 cells), and rule 150 (6
cells). Coevolved CA (2) consists of two rules: rule 165 (45 cells) and rule 225 (5
cells). Interpretation of the listed values is as follows (for a full explanation see
Knuth, 1981): (i) Chi-square test: “good” results are between 10%− 90%, with
extremities on both sides (i.e., < 10% and > 90%) representing non-satisfactory
random sequences. The total percentage of sequences passing the chi-square test
is listed below the 10 individual test results. Knuth suggests that at least three
sequences from a generator be subject to the chi-square test and if a majority
pass then the generator is considered to have passed (with respect to chi-square).
(ii) Serial correlation coefficient: this value should be close to zero. (iii) Entropy
test: this value should be close to 8. (iv) Monte Carlo π: the random number
sequence is used in a Monte Carlo computation of the value of π, and the error
percentage from the actual value is shown.
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CA % success Chi-square test results
(1) 100% (a) 75% 50% 25% 25% 25% 75% 50% 50% 90% 50%

90% (b) 75% 50% 50% 97.5% 50% 75% 50% 50% 75% 50%
(2) 80% (a) 50% 50% 25% 50% 2.5% 50% 95% 50% 50% 50%

90% (b) 50% 50% 50% 75% 25% 50% 50% 25% 5% 10%

Table 5.3. Chi-square test results of two scaled, N = 500 CAs. These were
created from the corresponding coevolved, N = 50 CAs (CAs (1) and (2)), by
duplicating the evolved grid ten times. 20 random sequences were generated by
each CA, 10 by procedure (a) and 10 by procedure (b). Chi-square test results
are shown, along with the percentage of sequences passing the test. The other
tests were also conducted, obtaining similar results to the original, non-scaled
CAs.

coevolved CAs, rule-30 CA, and the rules {90, 150} CA. We note that the two
coevolved CAs attain good results on all tests, most notably chi-square which is
one of the most significant ones (Knuth, 1981). Our results are somewhat better
than the rules {90, 150} CA, and markedly improved in comparison to the rule-30
CA, which attains lower scores on the chi-square test (procedure (a)), and on the
serial correlation test (procedure (b)). It is noteworthy that our CAs attain good
results on a number of tests, while the fitness measure used during evolution is
entropy alone. The relatively low results obtained by the rule-30 CA may be due
to the fact that we considered N random sequences generated in parallel, rather
than the single one considered by Wolfram. We note in passing that the rules
{90,150} CA results may probably be somewhat improved (as perhaps our own
results) by using “site spacing” and “time spacing” (Hortensius et al., 1989a;
Hortensius et al., 1989b). Our final experiment involves the implementation of
a simple scaling scheme, in which a N = 500 CA is created from the evolved
N = 50 one. This is done in a straightforward manner by duplicating the evolved
CA 10 times, i.e., concatenating 10 identical copies of the 50-cell rules grid. While
simpler than the scaling procedure described in Section 4.7, Table 5.3 shows that
good randomizers can thus be obtained.

We have shown that the cellular programming algorithm can be applied to
the difficult problem of generating random number generators. While a more
extensive suite of tests is in order, it seems safe to say at this point that our
coevolved generators are at least as good as the best available CA randomiz-
ers. Furthermore, there is a notable advantage arising from the existence of a
“tunable” algorithm for the generation of randomizers.

We observed that our evolved CAs are quasi-uniform, involving a small num-
ber of distinct rules. As some rules lend themselves more easily to hardware
implementation, our algorithm may be used to find good randomizers which can
also be efficiently implemented. A possible extension is the addition of restric-
tions to the evolutionary process, e.g., by prespecifying rules for some cells, in
order to accommodate hardware constraints. Another possible modification of
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the evolutionary process is the incorporation of statistical measures of random-
ness into the fitness function (and not just as an aftermath benchmark). These
possible extensions could lead to the automatic generation of high-performance,
random number generators, meeting specific user demands.

5.6 Concluding remarks

In this chapter we studied a number of computational tasks, motivated by real-
world applications. We demonstrated that non-uniform CAs can evolve to per-
form these tasks with high performance. In the next chapter we present the
“firefly” machine, an evolving, online, autonomous hardware system that imple-
ments the cellular programming algorithm, thus demonstrating that evolware can
be attained.
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Chapter 6

Online Autonomous Evolware:
The Firefly Machine

Glories, like glow-worms, afar off shine bright,

But look’d too near have neither heat nor light.

John Webster, The White Devil, Act iv, Scene 4

6.1 Introduction

In this chapter we describe a hardware implementation of the cellular program-
ming algorithm, thus demonstrating that “evolving ware,” evolware, can be at-
tained (Goeke et al., 1997; Sipper, 1997a; Sipper, 1997b). The underlying mo-
tivation for constructing the machine described herein was to demonstrate that
online evolution can be attained, which operates without any reference to an
external computer (see below). Toward this end we concentrated on a specific,
well-defined problem, for which high performance can be attained, our choice
being the one-dimensional synchronization task (Section 4.5.2). As a reminder,
in this task the r = 1 CA, given any initial configuration, must reach a final
configuration, within a prespecified number of time steps, that oscillates between
all 0s and all 1s on successive time steps. Appropriately, the machine has been
dubbed “firefly.”1

The firefly project is part of an ongoing effort within the burgeoning field
of bio-inspired systems and evolvable hardware (Sanchez and Tomassini, 1996).
Most work carried out to date under this heading involves the application of evo-
lutionary algorithms to the synthesis of digital systems (recently, analog systems
have been studied as well, see Koza et al., 1996). From this perspective, evolvable
hardware is simply a sub-domain of artificial evolution, where the final goal is
the synthesis of an electronic circuit (Sanchez et al., 1997). However, several
researchers have set more far-reaching goals for the field as a whole.

1See Section 4.2 for the relationship between the synchronization problem and fireflies in
nature.
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Current and (possible) future evolving hardware systems can be classified
according to two distinguishing characteristics. The first involves the distinc-
tion between offline genetic operations, carried out in software, and online ones,
which take place on an actual circuit. The second characteristic concerns open-
endedness. When the fitness criterion is imposed by the user in accordance with
the task to be solved (currently the rule with artificial-evolution techniques), one
attains a form of guided evolution. This is to be contrasted with open-ended evo-
lution occurring in nature, which admits no externally-imposed fitness criterion,
but rather an implicit, emergent, dynamical one (that could arguably be summed
up as “survivability”). In view of these two characteristics, one can define the
following four categories of evolvable hardware (Sanchez et al., 1997):

• The first category can be described as evolutionary circuit design, where the
entire evolutionary process takes place in software, with the resulting solu-
tion possibly loaded onto a real circuit. Though a potentially useful design
methodology, this falls completely within the realm of traditional evolu-
tionary techniques, as noted above. As examples one can cite the works of
Koza et al. (1996), Hemmi et al. (1996), Kitano (1996), and Higuchi et al.
(1996).

• The second category involves systems in which a real circuit is used during
the evolutionary process, though most operations are still carried out of-
fline, in software. As examples one can cite Murakawa et al. (1996), Iwata
et al. (1996), Thompson et al. (1996), and Thompson (1997), where fitness
calculation is carried out on a real circuit.

• In the third category one finds systems in which all genetic operations (se-
lection, crossover, mutation, and fitness evaluation) are carried out online,
in hardware. The major aspect missing concerns the fact that evolution
is not open ended, i.e., there is a predefined goal and no dynamic envi-
ronment to speak of. An example is the firefly machine described herein
(Goeke et al., 1997).

• The last category involves a population of hardware entities evolving in an
open-ended environment.

It has been argued that only systems within the last category can be truly
considered evolvable hardware,2 a goal which still eludes us at present (Sanchez
et al., 1997). A natural application area for such systems is within the field of
autonomous robots, which involves machines capable of operating in unknown
environments without human intervention (Brooks, 1991). A related application
domain is that of controllers for noisy, changing environments. Another inter-
esting example would be what has been dubbed by Sanchez et al. (1997) “Hard-
Tierra.” This involves the hardware implementation of the Tierra “world,” which
consists of an open-ended environment of evolving computer programs (Ray, 1992;

2A more correct term would probably be evolving hardware.
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see also Section 3.5). A small-scale experiment along this line was undertaken
by Galley and Sanchez (1996). The idea of Hard-Tierra is interesting since it
leads us to the observation that ‘open-endedness’ does not necessarily imply a
real, biological environment. The firefly machine, belonging to the third cate-
gory, demonstrates that complete online evolution can be attained, though not
in an open-ended environment. This latter goal remains a prime target for future
research.

In Section 6.2 we briefly present large-scale programmable circuits, specifically
concentrating on Field-Programmable Gate Arrays (FPGA). An FPGA can be
programmed “on the fly,” thus offering an attractive technological platform for
realizing, among others, evolware. In Section 6.3 we describe the FPGA-based
firefly machine. Evolution takes place on-board, with no reference to or aid from
any external device (such as a computer that carries out genetic operators), thus
attaining online autonomous evolware. Finally, some concluding remarks are
presented in Section 6.4.

6.2 Large-scale programmable circuits

An integrated circuit is called programmable when the user can configure its func-
tion by programming. The circuit is delivered after manufacturing in a generic
state and the user can adapt it by programming a particular function. The pro-
grammed function is coded as a string of bits, representing the configuration of
the circuit. In this chapter we consider solely programmable logic circuits, where
the programmable function is a logic one, ranging from simple boolean functions
to complex state machines.

The first programmable circuits allowed the implementation of logic circuits
that were expressed as a logic sum of products. These are the PLDs (Pro-
grammable Logic Devices), whose most popular version is the PAL (Programmable
Array Logic). More recently, a novel technology has emerged, affording higher
flexibility and more complex functionality: the Field-Programmable Gate Array,
or FPGA (Sanchez, 1996). An FPGA is an array of logic cells placed in an
infrastructure of interconnections, which can be programmed at three distinct
levels (Figure 6.1): (1) the function of the logic cells, (2) the interconnections
between cells, and (3) the inputs and outputs. All three levels are programmed
via a string of bits that is loaded from an external source, either once or several
times. In the latter case the FPGA is considered reconfigurable.

FPGAs are highly versatile devices that offer the designer a wide range of
design choices. However, this potential power necessitates a plethora of tools in
order to design a system. Essentially, these generate the configuration bit string
upon given such inputs as a logic diagram or a high-level functional description.
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Figure 6.1. A schematic diagram of a Field-Programmable Gate Array (FPGA).
An FPGA is an array of logic cells placed in an infrastructure of interconnections,
which can be programmed at three distinct levels: (1) the function of the logic
cells, (2) the interconnections between cells, and (3) the inputs and outputs. All
three levels are programmed via a configuration bit string that is loaded from an
external source, either once or several times.

6.3 Implementing evolware

In this section we describe the firefly evolware machine, an online implementation
of the cellular programming algorithm (Section 4.3). To facilitate implementa-
tion, the algorithm is slightly modified (with no loss in performance): the two
genetic operators, one-point crossover and mutation, are replaced by a single op-
erator, uniform crossover. Under this operation, a new rule, i.e., an “offspring”
genome, is created from two “parent” genomes (bit strings) by choosing each
offspring bit from one or the other parent, with a 50% probability for each parent
(Mitchell, 1996; Tomassini, 1996). The changes to the algorithm are therefore as
follows (refer to Figure 4.2):

else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,
without mutation

else if nfi(c) = 2 then replace rule i with the uniform crossover of the
two fitter neighboring rules, without mutation

The evolutionary process ends following an arbitrary decision by an outside ob-
server (the ‘while not done’ loop of Figure 4.2).

The cellular programming evolware is implemented on a physical board whose
only link to the “external world” is the power-supply cable. The features dis-
tinguishing this implementation from previous ones (described in Sanchez and
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Tomassini, 1996) are: (1) an ensemble of individuals (cells) is at work rather
than a single one, (2) genetic operators are all carried out on-board, rather than
on a remote, offline computer, and (3) the evolutionary phase does not necessitate
halting the machine’s operation, but is rather intertwined with normal execution
mode. These features entail an online autonomous evolutionary process.

The active components of the evolware board comprise exclusively FPGA cir-
cuits, with no other commercial processor whatsoever. An LCD screen enables
the display of information pertaining to the evolutionary process, including the
current rule and fitness value of each cell. The parameters M (number of time
steps a configuration is run) and C (number of configurations between evolu-
tionary phases, see Section 4.3) are tunable through on-board knob selectors; in
addition, their current values are displayed. The implemented grid size is N = 56
cells, each of which includes, apart from the logic component, a LED indicating
its current state (on=1, off=0), and a switch by which its state can be manually
set.3 We have also implemented an on-board global synchronization detector cir-
cuit, for the sole purpose of facilitating the external observer’s task; this circuit
is not used by the CA in any of its operational phases. The machine is depicted
in Figure 6.2.

The architecture of a single cell is shown in Figure 6.3. The binary state
is stored in a D-type flip-flop whose next state is determined either randomly,
enabling the presentation of random initial configurations, or by the cell’s rule
table, in accordance with the current neighborhood of states. Each bit of the
rule’s bit string is stored in a D-type flip-flop whose inputs are channeled through
a set of multiplexors, according to the current operational phase of the system:

1. During the initialization phase of the evolutionary algorithm, the (eight)
rule bits are loaded with random values. This is carried out once per evo-
lutionary run.

2. During the execution phase of the CA, the rule bits remain unchanged.
This phase lasts a total of C ∗M time steps (C configurations, each one
run for M time steps).

3. During the evolutionary phase, and depending on the number of fitter neigh-
bors, nfi(c) (Section 4.3), the rule is either left unchanged (nfi(c) = 0),
replaced by the fitter left or right neighboring rule (nfi(c) = 1), or replaced
by the uniform crossover of the two fitter rules (nfi(c) = 2).

The (local) fitness score for the synchronization task is assigned to each cell
by considering the last four time steps (i.e., [M + 1..M + 4]). If the sequence of
states over these steps is precisely 0→ 1→ 0→ 1 (i.e., an alternation of 0s and
1s, starting from 0), the cell’s fitness score is 1, otherwise this score is 0.

To determine the cell’s fitness score for a single initial configuration, i.e.,
after the CA has been run for M + 4 time steps, a four-bit shift register is used

3This is used to test the evolved system after termination of the evolutionary process, by
manually loading initial configurations.
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Figure 6.2. The firefly evolware machine. The system is a one-dimensional,
non-uniform, r = 1 cellular automaton that evolves via execution of the cellular
programming algorithm. Each of the 56 cells contains the genome representing
its rule table; these genomes are randomly initialized, after which evolution takes
place. The board contains the following components: (1) LED indicators of cell
states (top), (2) switches for manually setting the initial states of cells (top,
below LEDs), (3) Xilinx FPGA chips (below switches), (4) display and knobs
for controlling two parameters (‘time steps’ and ‘configurations’) of the cellular
programming algorithm (bottom left), (5) a synchronization indicator (middle
left), (6) a clock pulse generator with a manually-adjustable frequency from 0.1
Hz to 1 MHz (bottom middle), (7) an LCD display of evolved rule tables and
fitness values obtained during evolution (bottom right), and (8) a power-supply
cable (extreme left). (Note that this is the system’s sole external connection.)
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Figure 6.3. Circuit design of a cell. The binary state is stored in a D-type flip-
flop whose next state is determined either randomly, enabling the presentation
of random initial configurations, or by the cell’s rule table, in accordance with
the current neighborhood of states. Each bit of the rule’s bit string is stored
in a D-type flip-flop whose inputs are channeled through a set of multiplexors,
according to the current operational phase of the system (initialization, execution,
or evolution).
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Figure 6.4. Circuit used (in each cell) after execution of an initial configuration
to detect whether a cell receives a fitness score of 1 (HIT) or 0 (no HIT).
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(Figure 6.4). This register continuously stores the states of the cell over the last
four time steps ([t+1..t+4]). An AND gate tests for occurrence of the “good” final
sequence (i.e., 0 → 1 → 0 → 1), producing the HIT signal, signifying whether
the fitness score is 1 (HIT) or 0 (no HIT).

Each cell includes a fitness counter and two comparators for comparing the
cell’s fitness value with those of its two neighbors. Note that the cellular con-
nections are entirely local, a characteristic enabled by the local operation of the
cellular programming algorithm. In the interest of cost reduction, a number of
resources have been implemented within a central control unit, including the
random number generator and the M and C counters. These are implemented
on-board and do not comprise a breach in the machine’s autonomous mode of
operation.

The random number generator is implemented with a linear feedback shift reg-
ister (LFSR), producing a random bit stream that cycles through 232−1 different
values (the value 0 is excluded since it comprises an undesirable attractor). As a
cell uses at most eight different random values at any given moment, it includes
an 8-bit shift register through which the random bit stream propagates. The shift
registers of all grid cells are concatenated to form one large stream of random
bit values, propagating through the entire CA. Cyclic behavior is eschewed due
to the odd number of possible values produced by the random number generator
(232 − 1) and to the even number of random bits per cell.

6.4 Concluding remarks

We described an FPGA-based implementation of the cellular programming al-
gorithm, the firefly machine, that exhibits complete online evolution, all genetic
operators carried out in hardware, with no reference to an external computer.
Firefly thus belongs to the third category of evolving hardware, described in Sec-
tion 6.1. The major aspect missing concerns the fact that evolution is not open
ended, i.e., there is a predefined goal and no dynamic environment to speak of.
Open-endedness remains a prime target for future research in the field. We note
that the machine’s construction was facilitated by the cellular programming algo-
rithm’s local dynamics, highlighting a major advantage of such local evolutionary
processes.

Evolware systems such as firefly enable enormous gains in execution speed.
The cellular programming algorithm, when run on a high-performance worksta-
tion, executes 60 initial configurations per second.4 In comparison, the firefly
machine executes 13, 000 initial configurations per second.5

The evolware machine was implemented using FPGA circuits, configured such
that each cell within the system behaves in a certain general manner, after which

4This was measured using a grid of size N = 56, each initial configuration being run for
M = 75 time steps, with the number of configurations between evolutionary phases C = 300.

5This is achieved when the machine operates at the current maximal frequency of 1 MHz. In
fact, this can easily be increased to 6 MHz, thereby attaining 78, 000 configurations per second.
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evolution is used to “find” the cell’s specific behavior, i.e., its rule table. Thus, the
system consists of a fixed part and an evolving part, both specified via FPGA
configuration strings (Figure 6.5). An interesting outlook on this setup is to
consider the evolutionary process as one where an organism evolves within a given
species, the former specified by the FPGA’s evolving part, the latter specified by
the fixed part. This raises the interesting issue of evolving the species itself.
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Figure 6.5. The firefly cell is hierarchically organized, consisting of two parts:
(1) the “organismic” level, comprising an evolving configuration string that spec-
ifies the cell’s rule table, and (2) the “species” level, a fixed (non-evolved) con-
figuration string that defines the underlying FPGA’s behavior.
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Chapter 7

Studying Fault Tolerance in
Evolved Cellular Machines

Further investigation quickly established what it was that had happened. A
meteorite had knocked a large hole in the ship. The ship had not previously
detected this because the meteorite had neatly knocked out that part of the
ship’s processing equipment which was supposed to detect if the ship had
been hit by a meteorite.

Douglas Adams, Mostly Harmless

7.1 Introduction

Most classical software and hardware systems, especially parallel ones, exhibit a
very low level of fault tolerance, i.e., they are not resilient in the face of errors;
indeed, where software is concerned, even a single error can often bring an entire
program to a grinding halt. Future computing systems may contain thousands or
even millions of computing elements (e.g., Drexler, 1992). For such large numbers
of components, the issue of resilience can no longer be ignored, since faults will
be likely to occur with high probability.

Networks of automata exhibit a certain degree of fault tolerance. As an
example, one can cite artificial neural networks, many of which show graceful
degradation in performance when presented with noisy input. Moreover, the
malfunction of a neuron or damage to a synaptic weight causes but a small change
in the system’s overall behavior, rather than bringing it to a complete standstill.
Cellular computing systems, such as CAs, may be regarded as a simple and
convenient framework within which to study the effects of such errors. Another
motivation for studying this issue derives directly from the work presented in the
previous chapter concerning the firefly machine. We wish to learn how robust
such a machine is when operating under faulty conditions (Sipper et al., 1996;
Sipper et al., 1997b).

In this chapter we study the effects of random faults on the behavior of one-
dimensional CAs obtained via cellular programming. In particular, we are inter-
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ested in the systems’ behavior as a function of the error level. We wish to learn
whether there exist error-rate regions in which the automata can be considered
to perform their task in an “acceptable” manner. Moreover, the amount and
speed of recovery after the appearance of a fault is quantified and measured. We
also observe how disturbances spread throughout the system to learn under what
conditions the perturbation remains limited and does not propagate to the entire
system.

In the next section related fault studies in cellular systems are briefly reviewed,
followed by Section 7.3, describing probabilistic faults in CAs, as well as the
“system replicas” framework within which to study them. Section 7.4 presents
our results, ending with concluding remarks in Section 7.5.

7.2 Faults and damage in lattice models

The question of how errors spread and propagate in cooperative systems has been
studied in a variety of fields. Given the difficulty of creating analytical models for
but the simplest systems, most investigations have been conducted by computer
simulation, especially in the area of statistical physics of many-body systems. One
system that has received much attention is Kauffman’s model, which consists of a
non-uniform CA with irregular connectivity, in which each cell follows a transition
rule that is a random boolean function of the states of its neighbors. The rules,
as well as the connections between cells, are randomly selected at the outset,
and then remain fixed throughout the system’s run (Kauffman, 1993; see also
Section 3.4.5). The system has been observed to converge toward limit cycles,
after which it can be perturbed by “mutations,” which are random changes of
rules. Stauffer (1991) and other researchers have studied the spreading of damage
in various kinds of two-dimensional lattices (grids) as a function of the probability
p of mutating rules within the grid. Critical values of p have been found at which
a phase transition seems to occur: above the critical p the damage spreads to
the entire lattice, while below it the system is stable with respect to damage
spreading.

Another well-known system in which the time evolution of damage has been
investigated is the Ising ferromagnet and related spin systems. In these “ther-
mal systems” transition probabilities are a function of the temperature. Stanley
et al. (1987) employed Monte Carlo simulations using Metropolis dynamics, find-
ing that there exists a critical temperature Tc, above which (i.e., at high tem-
peratures) an initial damage at a few cells spreads rapidly to the entire system,
while below Tc the damage eventually dissipates. Some apparent inconsistencies
in this work, due to the use of different transition probability functions, have
been resolved by Coniglio et al. (1989).

The general objective of the kind of research summarized above is the study
of the temporal limit behavior of the system as a function of some parameter,
such as the probability of fault or the thermal noise. For some systems critical
behavior has been shown to occur and in some cases critical exponents were com-
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putationally determined. For a review of damage dynamics in collective systems
from the point of view of computational physics see Jan and de Arcangelis (1994).

7.3 Probabilistic faults in cellular automata

Although the simulation methodology is similar, the main difference between the
studies described in the previous section and the work presented herein stems from
the fact that we focus on CAs that perform a specified computational task, rather
than on the long-term dynamics of a physical system under given constraints.
From our computational point of view, what is important is the way in which the
task performance is affected when the system is perturbed.

Our focus is on non-uniform CAs evolved via cellular programming to solve
the density and synchronization tasks (see Chapter 4).1 These CAs advance in
time according to prescribed (evolved) deterministic rules, however, noise can be
introduced, thereby rendering the CAs non-deterministic. For example, for a two-
state CA, at each time step the value that is the output of a given deterministic
rule can be reversed with probability pf , denoted the fault probability, each cell
being treated independently of the others (Figure 7.1). Thus, a cell updates
its state in a non-deterministic manner, setting it at the next time step to that
specified in the rule table, with probability 1 − pf , or the complementary state,
with probability pf . This definition of noise will be used in what follows since
it reasonably models the functioning of a multi-component machine in which
the computing elements are subject to stochastic transient faults. Other kinds
of perturbations are possible, such as cells becoming unavailable (“permanent
damage”) or switching to another rule for a long, possibly indefinite, period of
time. It is also possible to consider the flipping of cell states, either single cells or
clusters of cells. Moreover, each cell may be updated at each time step according
to one rule with probability p and according to a second rule with probability
1−p (Vichniac et al., 1986). The perturbed Kauffman automata (Stauffer, 1991),
in which a cell selects its rule probabilistically, to be then subject to random
mutations, is an example similar to ours.

The simulation methodology is based on the concept of “system replicas”
(Jan and de Arcangelis, 1994; Wolfram, 1983; Kauffman, 1969). Two systems
run in parallel, the original unperturbed one (pf = 0), and a second system,
subject to a non-zero probability of error (pf > 0). Both systems start with the
same initial configuration at time t = 0, after which their temporal behavior is
monitored and the Hamming distance between the two configurations at each time
step is recorded.2 This provides us with insight into the faulty CA’s behavior,
by measuring the amount by which it diverges from a “perfect” computation.
Our studies are stochastic in nature, involving a number of measures which are
obtained experimentally, averaged over a large number of initial configurations.

1The evolved CAs discussed in this chapter are fully specified in Appendix C.
2The Hamming distance between two configurations is the number of bits by which they

differ.
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(a) (b)

Figure 7.1. The synchronization task: Operation of a coevolved, non-uniform,
r = 1 CA, with probability of fault pf > 0. (The non-faulty version of this CA is
depicted in Figure 4.13b). Grid size is N = 149. The pattern of configurations is
shown for the first 200 time steps. The initial configurations were generated by
randomly setting the state of each grid cell to 0 or 1 with uniform probability.
(a) pf = 0.0001. (b) pf = 0.001.

The non-uniform CAs studied are ones that have evolved via cellular pro-
gramming to perform either the density or synchronization tasks, with our fault-
tolerance investigation picking up upon termination of the evolutionary process.
Figure 7.1 depicts the operation of an evolved CA for two different non-zero pf
values.

7.4 Results

Figure 7.2 depicts the average Hamming distance as a function of the fault
probability pf . We note that the curve is sigmoid-shaped, exhibiting three ob-
servable regions: a slow-rising slope (pf ≤ 0.0005), followed by a sharp one
(0.0005 < pf ≤ 0.01), that eventually levels off (pf > 0.01). This latter region
exhibits an extremely large Hamming distance, signifying an unacceptable level
of computational error. The most important result concerns the first (left-hand)
region, which can be considered the fault-tolerant zone, where the faulty CA op-
erates in a near-perfect manner. This demonstrates that our evolved CAs exhibit
graceful degradation in the face of errors. We also note that there is no essen-
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tial difference between the two tasks, density and synchronization, except for the
higher error level in the “unacceptable” zone, attained by the density CAs. These
simulations (as well as the others reported below) were repeated several times,
obtaining virtually identical results.
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Figure 7.2. Average Hamming distance versus fault probability pf . Five CAs
were studied: two that were evolved to perform the density task, and three that
were evolved to perform the synchronization task. Grid size is N = 149. For
each pf value the CA under test was run on 1000 randomly generated initial con-
figurations for 300 time steps per configuration. At each time step the Hamming
distance between the “perfect” CA and the faulty one is recorded. The average
over all configurations and all time steps is represented as a point in the graph.

The above measure furnishes us with our first glimpse into the workings of
the faulty CAs, demonstrating an important global characteristic, namely, their
ability to tolerate a certain level of faults. We now wish to “zoom” into the
fault-tolerant zone, where “good” computational behavior is exhibited, introduc-
ing measures to fine-tune our understanding of the faulty CAs’ operation. In
what follows we shall concentrate on one task, synchronization, due to the im-
proved evolved performance results in comparison to the density task, obtained
for the deterministic versions of the CAs (see Chapter 4).3 We now wish to study
the propagation of errors in time, toward which end we examine the Hamming

3Note that applying the performance measures of Chapter 4 to the deterministic versions of
the three evolved synchronization CAs discussed herein revealed no differences between them.
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Figure 7.3. Hamming distance as a function of time for three CAs that were
evolved to perform the synchronization task. Grid size is N = 149. Each CA is
run on 1000 random initial configurations for 300 time steps per configuration.
The Hamming distance per time step is averaged over these configurations. (a)
pf = 0.00005. (b) pf = 0.0001.
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distance between the perfect and faulty versions, as a function of time (step).
Our results are depicted in Figure 7.3. We note that while Hamming distance is
limited within the region suggested by Figure 7.2, there are differences between
the CAs. Most notable is the high error rate attained by CA 2 in the last 100
time steps.

Further investigation revealed that this is due to critical zones. These are
specific rules or rule blocks (i.e., blocks of cells containing the same rule) that
cause an “avalanche” of error spreading, which may eventually encompass the
entire system, as demonstrated in Figure 7.4. Figure 7.4a shows that the CA’s
error rate peaks around cell 60, which is at the border of rule blocks (see Ap-
pendix C). Indeed, when this cell is perturbed (Figure 7.4b), the error may
eventually spread to the entire system, resulting in the diminished performance
in later time steps, evident in Figure 7.3. Interestingly, this CA has the lowest
error rate for the initial part of the computation (Figure 7.3). CA 3 exhibits the
opposite time behavior, starting with a higher error rate, which increases, how-
ever, more slowly (Figure 7.3). Figure 7.5a shows that this CA exhibits an error
peak at the proximity of cell 90, however, a much sharper one than that of CA 2,
which partially explains the resulting error containment. Again, cell 90 is at the
border of two rule blocks (see Appendix C). Figure 7.5a exhibits a minimum at
cell 16, which is also a border cell (between rule blocks), demonstrating that such
border rules may act in the opposite manner, “stifling” error spreading rather
than enhancing it. CA 1 consists of two major rule blocks, exhibiting different
error dispersion behavior, as demonstrated in Figure 7.6. Thus, by introducing
time and space measures, we have shown that although all three CAs are within
the fault-tolerant zone, their behavior is quite different.

The final issue we consider is that of recuperation time. Since our CAs are
in effect computational systems, we wish to learn not only whether they recover
from faults but also how long this takes. Toward this end we introduced the
following measure: the CA of size N = 149 is run for 600 time steps with a given
fault probability pf . If the Hamming distance between the perfect and faulty
versions passes a certain threshold, which we have set to 0.05N bits, at time t1,
and then falls below this threshold at time t2, staying below for at least three
time steps, then recuperation time is defined as t2−t1. Note that such “windows”
of faulty behavior may occur more than once during the CA’s run (i.e., during
the 600 time steps); also note that t2 may equal 600 if the CA never recovers.
Simply put, this measure indicates the proportional amount of time that the
CA is within a window of unacceptable error level. Our results are depicted in
Figure 7.7. For pf < 0.0001 recuperation time is quite short for all three CAs,
however, above this fault level, CA 3 exhibits notably higher recuperation time
than the other two. It is interesting in that this CA has the lowest error level
over time (Figure 7.3).4 Thus, it is more robust to errors in general, however,
certain faults may entail longer recuperation time. This result, along with the

4Though Figure 7.3 shows results for pf ≤ 0.0001, we have verified that the same qualitative
behavior is exhibited for pf > 0.0001.
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Figure 7.4. Synchronization CA 2: Critical zones. (a) Hamming distance per
cell (averaged over 1000 random initial configurations, each run for 300 time
steps). Note the peak around cell 60 (the leftmost cell is numbered 0). (b)
Perturbing this cell causes an “avalanche” of error spreading. The figure depicts
the operation of the CA upon presentation of a random initial configuration.
After approximately 200 time steps, cell 60’s state is flipped. This cell is situated
at the border of rule blocks (see Appendix C). pf = 0.0001 for both (a) and (b).
Grid size is N = 149.
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Figure 7.5. Synchronization CA 3. (a) Hamming distance per cell (averaged
over 1000 random initial configurations, each run for 300 time steps). Note the
peak around cell 90, much sharper than that of Figure 7.4. (b) Perturbing this
cell does not cause an “avalanche” and the error remains contained. This results
in a lower Hamming distance as function of time (Figure 7.3). The figure depicts
the operation of the CA upon presentation of a random initial configuration.
After approximately 200 time steps, cell 90’s state is flipped. This cell is situated
at the border of rule blocks (see Appendix C). pf = 0.0001 for both (a) and (b).
Grid size is N = 149.



138 Studying Fault Tolerance in Evolved Cellular Machines

1.5

2

2.5

3

3.5

4

4.5

5

5.5

6

0 20 40 60 80 100 120 140

av
er

ag
e 

H
am

m
in

g 
di

st
an

ce

Cell

Synchronization 1

(a)

(b)

Figure 7.6. Synchronization CA 1. (a) Hamming distance per cell (averaged
over 1000 random initial configurations, each run for 300 time steps). Two major
rule blocks are present, each exhibiting a different error dispersion behavior,
the highest error level being that of the “middle” block (note that the left and
right blocks contain the same rule, as can be seen in Appendix C, and therefore
constitute one block due to the grid’s circularity). (b) Three cells are perturbed,
in different parts of the grid (cells 20, 70, 120). The error introduced in the
middle block propagates, whereas the other two are immediately stifled. The
figure depicts the operation of the CA upon presentation of a random initial
configuration. After approximately 200 time steps, the states of the above three
cells are flipped. pf = 0.0001 for both (a) and (b). Grid size is N = 149.
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others obtained above, demonstrates the intricate interplay between temporal
and spatial factors in our evolved non-uniform CAs.

0

5

10

15

20

25

30

35

40

45

1e-05 0.0001

re
cu

pe
ra

tio
n 

tim
e

p_f

Synchronization 1
Synchronization 2
Synchronization 3

Figure 7.7. Recuperation time as a function of fault probability pf . Each of the
three evolved CAs was run on 1000 random initial configurations for 600 time
steps. Average results are depicted in the graph. Grid size is N = 149.

7.5 Concluding remarks

We studied the effects of random faults on the behavior of one-dimensional, non-
uniform CAs, evolved via cellular programming to perform given computational
tasks. Our aim in this chapter was to shed some light on the behavior of such
systems under faulty conditions. Using the “system replicas” methodology, in-
volving a comparison between a perfect, non-perturbed version of the CA and
a faulty one, we found that our evolved systems exhibit graceful degradation in
performance, able to tolerate a certain level of faults. We then zoomed into the
fault-tolerant zone, where “good” computational behavior is exhibited, introduc-
ing measures to fine-tune our understanding of the faulty CAs’ operation. We
studied the error level as a function of time and space, as well as the recuperation
time needed to recover from faults.

Our study of evolved non-uniform CAs performing computational tasks re-
vealed an intricate interplay between temporal and spatial factors, with the pres-
ence of different rules in the grid giving rise to complex dynamics. Clearly, we
have only taken the first step, and there is much yet to be explored. Other types
of measures can be considered, such as fault behavior as a function of grid size,
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permanent faults along with their effects with respect to the rules distribution
within the grid, and “total damage time,” i.e., the time required for all cells to
be damaged at least once. Another interesting issue involves the introduction of
faults during the evolutionary process itself to see how well evolution copes with
such non-deterministic CAs. Future computing systems may contain thousands
or even millions of computing elements. For such large numbers of components,
the issue of resilience can no longer be ignored since faults will be likely to occur
with high probability. Studies such as the one carried out in this chapter may
help deepen our understanding of this important issue.



Chapter 8

Coevolving Architectures for
Cellular Machines

Every man is the architect of his own fortune.

Francis Bacon

8.1 Introduction

In the previous chapter we examined the issue of fault tolerance by considering
a generalization of the original CA model, involving non-deterministic updating
of cell states. In this chapter we generalize on a different aspect of the original
model, namely, its standard, homogeneous connectivity. Our investigation is
carried out by focusing on the density task (Chapter 4). As a reminder, in this
(global) task, the 2-state CA must decide whether or not the initial configuration
contains more than 50% 1s, relaxing to a fixed-point pattern of all 1s if the initial
density of 1s exceeds 0.5, and all 0s otherwise (e.g., Figure 4.1). Employing the
cellular programming algorithm, we found that high-performance systems can be
coevolved.

The task was originally studied using locally-connected, one-dimensional grids
(Mitchell et al., 1994b; Sipper, 1996; see Chapter 4). It can be extended in a
straightforward manner to two-dimensional, 5-neighbor grids, which posses the
same number of local connections per cell as in the one-dimensional, r = 2 case.
In Section 4.6, having applied our evolutionary algorithm, we found that markedly
higher performance is attained for the density task with two-dimensional grids,
along with shorter computation times. This finding is intuitively understood by
observing that a two-dimensional, locally-connected grid can be embedded in a
one-dimensional grid with local and distant connections. This can be achieved,
for example, by aligning the rows of the two-dimensional grid so as to form a
one-dimensional array; the resulting embedded one-dimensional grid has distant
connections of order

√
N , where N is the grid size. Since the density task is global

it is likely that the observed superior performance of two-dimensional grids arises
from the existence of distant connections that enhance information propagation
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across the grid.

Motivated by this observation concerning the effect of connection lengths
on performance, our primary goal in this chapter is to quantitatively study the
relationship between performance and connectivity on a global task, in one-
dimensional CAs. The main contribution of this chapter is in identifying the aver-
age cellular distance, acd (see next Section), as the prime architectural parameter,
which linearly determines CA performance. We find that high-performance ar-
chitectures can be coevolved concomitantly with the rules, and that it is possible
to evolve such architectures that exhibit low connectivity cost as well as high per-
formance (Sipper and Ruppin, 1997; Sipper and Ruppin, 1996). Our motivation
stems from two primary sources: (1) finding more efficient CA architectures via
evolution, and (2) the coevolution of architectures offers a promising approach
for solving a general wiring problem for a set of distributed processors, subject to
given constraints. The efficient solution of the density task by CAs with evolving
architectures may have important applications to designing efficient distributed
computing networks.

In the next section we describe the CA architectures studied in this chapter.
In Section 8.3 we study CA rule evolution with fixed architectures. In Section 8.4
we extend the cellular programming algorithm, presented in Section 4.3, such
that the architecture evolves along with the cellular rules, and in Section 8.5 we
study the evolution of low-cost architectures. Our findings, and their possible
future application to designing distributed computer networks, are discussed in
Section 8.6.

8.2 Architecture considerations

We use the term architecture to denote the connectivity pattern of CA cells. As
a reminder, in the standard one-dimensional model a cell is connected to r local
neighbors on either side, as well as to itself, where r is referred to as the radius
(thus, each cell has 2r + 1 neighbors; see Section 1.2.1). The model we consider
is that of non-uniform CAs with non-standard architectures, in which cells need
not necessarily contain the same rule or be locally connected; however, as with
the standard CA model, each cell has a small, identical number of impinging
connections. In what follows the term neighbor refers to a directly connected
cell. We shall employ the cellular programming algorithm to evolve cellular rules
for non-uniform CAs, whose architectures are fixed (yet non-standard) during the
evolutionary run, or evolve concomitantly with the rules; these are referred to as
fixed or evolving architectures, respectively.

We consider one-dimensional, symmetrical architectures, where each cell has
four neighbors, with connection lengths of a and b, as well as a self-connection.
Spatially periodic boundary conditions are used, resulting in a circular grid (Fig-
ure 8.1). This type of architecture belongs to the general class of circulant graphs
(Buckley and Harary, 1990): for a given positive integer N , let n1, n2, . . . , nk be
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a sequence of integers where

0 < n1 < n2 < · · · < nk < (N + 1)/2.

Then the circulant graph CN (n1, n2, . . . , nk) is the graph onN nodes v1, v2, . . . , vN ,
with node vi connected to each node vi±nj (mod N). The values nj are referred
to as connection lengths. The distance between two cells on the circulant is the
number of connections one must traverse on the shortest path connecting them.
The architectures studied here are circulants CN (a, b) (Figure 8.1).

Figure 8.1. A C8(2, 3) circulant graph. Each node is connected to four neigh-
bors, with connection lengths of 2 and 3.

We surmise that attaining high performance on global tasks requires rapid in-
formation propagation throughout the CA, and that the rate of information prop-
agation across the grid inversely depends on the average cellular distance (acd).
Before proceeding to study performance, let us examine how the acd of a CN (a, b)
architecture varies as a function of (a, b). As shown in Figure 8.2, the acd land-
scape is extremely rugged (the algorithm used to calculate the acd is described
in Appendix E). This is due to the relationship between a and b - if gcd(a, b) 6= 1
the acd is markedly higher than when gcd(a, b) = 1 (note that the circulant graph
CN (n1, n2, . . . , nk) is connected if and only if gcd(n1, n2, . . . , nk, N) = 1, Boesch
and Tindell, 1984).

It is straightforward to show that every CN (a, b) architecture is isomorphic
to a CN (1, d′) architecture, for some d′, referred to as the equivalent d′ (see
Appendix E). Graph CN (a, b) is isomorphic to a graph CN (1, d′) if and only if
every pair of nodes linked via a connection of length a in CN (a, b) is linked via
a connection of length 1 in CN (1, d′), and every pair linked via a connection of
length b in CN (a, b) is linked via a connection of length d′ in CN (1, d′).1 We
may therefore study the performance of CN (1, d) architectures, our conclusions
being applicable to the general CN (a, b) case. This is important from a practical
standpoint since the CN (a, b) architecture space is extremely large. However, if
one wishes to minimize connectivity cost, defined as a+ b, as well as to maximize

1This is not necessarily a one-to-one mapping. CN (a, b) may map to CN (1, d′1) and CN (1, d′2),
however, we select the minimum of d′1 and d′2, thus obtaining a unique mapping.
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Figure 8.2. The ruggedness of the acd landscape is illustrated by plotting acd
as a function of connection lengths (a, b) for grids of size N = 29. Each (a, b)
pair entails a different C29(a, b) architecture whose acd is represented as a point
in the graph.

performance, general CN (a, b) architectures must be considered (see Section 8.5).
The equivalent d′ value of a CN (a, b) architecture may be large, resulting in a
lower cost of CN (a, b) as compared with the isomorphic CN (1, d′) architecture
(for example, the equivalent of C101(3, 5) is C101(1, 32)).

Figure 8.3 depicts the acd for CN (1, d) architectures, N = 101. It is evident
that the acd varies considerably as a function of d; as d increases from d = 1, the
acd declines and reaches a minimum at d = O(

√
N). This supports the notion

put forward in Section 8.1 concerning the advantage of two-dimensional grids.

We concentrate on the following issues:

1. How strongly does the acd determine performance on global tasks? (Sec-
tion 8.3)

2. Can high-performance architectures be evolved, that is, can “good” d or
(a, b) values be discovered through evolution? (Section 8.4)
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Figure 8.3. C101(1, d): Average cellular distance (acd) as a function of d. acd is
plotted for d ≤ N/2, as it is symmetric about d = N/2.

3. Can high-performance architectures be evolved, that exhibit low connectiv-
ity cost as well? (Section 8.5)

8.3 Fixed architectures

In this section we study the effects of different architectures on performance, by
applying the cellular programming algorithm to the evolution of cellular rules,
using fixed, non-standard architectures. We performed numerous evolutionary
runs using CN (1, d) architectures with different values of d, recording the maximal
performance attained during the run. As in Chapter 4, performance is defined as
the average fitness of all grid cells over the last C configurations, normalized to
the range [0.0, 1.0] (see discussion in Section 4.4).

Figure 8.4 depicts the results of our evolutionary runs, along with the acd
graph. Markedly higher performance is attained for values of d corresponding
to low acd values and vice versa. While performance behaves in a rugged, non-
monotonic manner as a function of d, it is linearly correlated with acd (with a
correlation coefficient of 0.99, and a negligible p value) as depicted in Figure 8.5.

How does the architecture influence performance when the CA is evolved
to solve a local task? To test this we introduced the short-lines task: given
an initial configuration consisting of five non-filled intervals of random length
between 1 − 7, the CA must reach a final configuration in which the intervals
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Figure 8.4. C101(1, d): Maximal evolved performance on the density and short-
lines tasks as a function of d. The graph represents the average results of 420
evolutionary runs. 21 d values were tested for the density task and 7 for the
short-lines task. For each such d value, 15 evolutionary runs were performed with
50, 000 initial configurations per run. Each graph point represents the average
value of the respective 15 runs. Standard deviations of these averages are in
the range 0.003 − 0.011, i.e., 3% − 11% of the performance range in question
(deviations were computed excluding the two extremal values).
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Figure 8.5. C101(1, d): Maximal performance on the density task as a function of
average cellular distance. The linear regression shown has a correlation coefficient
of 0.99, with a p value that is practically zero.

form continuous lines (Figure 8.6). In this final configuration all cells within the
confines of an interval should be in state 1, and all other cells should be in state
0 (in our simulations, cells within an interval in the initial configuration were set
to state 1 with probability 0.3; cells outside an interval were set to 0). Figure 8.4
demonstrates that performance for this local task is maximal for minimal d, and
decreases as d increases.

These results demonstrate that performance is strongly dependent upon the
architecture, with higher performance attainable by using different architectures
than that of the standard CA model. We also observe that the global and local
tasks studied have different efficient architectures.

As each CN (a, b) architecture is isomorphic to a CN (1, d) one, and since per-
formance is correlated with acd in the CN (1, d) case, it follows that the perfor-
mance of general CN (a, b) architectures is also correlated with acd. It is interest-
ing to note the ruggedness of the equivalent d′ landscape, depicted in Figure 8.7,
representing the equivalent d′ value for each (a, b) pair. Table 8.1 presents the
performance results of four CN (a, b) architectures on the density task: C101(3, 5),
C102(3, 5), C101(3, 6), and C102(3, 6), demonstrating the dependence on the acd.
Since gcd(3, 5) = 1 whereas gcd(3, 6) 6= 1 (resulting in a lower acd for architec-
tures with the former connectivity), we find, as expected, that CN (3, 5) exhibits
significantly higher performance than CN (3, 6). Furthermore, since C102(3, 6) is
not a connected graph (see Section 8.2), this architecture displays even lower
performance. The operation of a coevolved, C149(3, 5) CA on the density task is
demonstrated in Figure 8.8.
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Figure 8.6. The short-lines task: Operation of a coevolved, non-uniform CA
of size N = 149, with a standard architecture of connectivity radius r = 2
(C149(1, 2)).

8.4 Evolving architectures

In the previous section we employed the cellular programming algorithm to evolve
non-uniform CAs with fixed CN (a, b) or CN (1, d) architectures. We concluded
that judicious selection of (a, b) or d can notably increase performance, which is
highly correlated with the average cellular distance. The question we now pose is
whether a-priori specification of the connectivity parameters is indeed necessary
or can an efficient architecture coevolve along with the cellular rules. Moreover,
can heterogeneous architectures, where each cell may have different di or (ai,bi)
connection lengths, achieve high performance? Below we denote by CN (1, di)
and CN (ai, bi) heterogeneous architectures with one or two evolving connection
lengths per cell, respectively. Note that these are the cell’s input connections,
on which information is received; as connectivity is heterogeneous, input and
output connections may be different, the latter specified implicitly by the input
connections of the neighboring cells.

In order to evolve the architecture along with the rules, the cellular pro-
gramming algorithm presented in Section 4.3 is modified. Each cell maintains a
“genome” consisting of two “chromosomes:” the first, encoding the rule table,
is identical to that delineated in Section 4.3, while the second chromosome en-
codes the cell’s connections as Gray-code bit strings (Haykin, 1988).2 In what
follows we use grids of size N = 129; thus, the architecture chromosome contains

2A prime characteristic of the Gray code is the adjacency property, i.e., adjacent integers
differ by a single bit. This is desirable where genetic operators are concerned (Goldberg, 1989).
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Figure 8.7. The ruggedness of the equivalent d′ landscape is illustrated by plot-
ting d′ as a function of (a, b), for C29(a, b).

(a, b) N acd equivalent mean maximal
d′ performance

(3, 5) 101 5.98 32 0.96 (0.006)
(3, 5) 102 6.02 21 0.96 (0.005)
(3, 6) 101 13 2 0.88 (0.01)
(3, 6) 102 not connected none 0.75 (0.07)

Table 8.1. Maximal evolved performance for CN (a, b) on the density task. For
each architecture, 15 evolutionary runs were performed with 50, 000 initial con-
figurations per run. The average maximal performance attained on these runs is
shown along with standard deviations in parentheses (deviations were computed
excluding the two extremal values).
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(a) (b)

Figure 8.8. The density task: Operation of a coevolved, non-uniform, C149(3, 5)
CA. (a) Initial density of 1s is 0.48. (b) Initial density of 1s is 0.51. Note that
computation time, i.e., the number of time steps until convergence to the correct
final pattern, is shorter than that of the GKL rule (Figure 4.1). Furthermore, it
can be qualitatively observed that the computational “behavior” is different than
GKL, as is to be expected due to the different connectivity architecture.

6 bits for evolving C129(1, di) architectures and 12 bits for C129(ai, bi) architec-
tures. As an example of the latter, if cell i’s architecture chromosome equals, say,
000110000100, then it is connected to cells i±4 and i±7 ( mod N), since 000110
and 000100 are the Gray encodings of the decimal values 4 and 7, respectively.

The algorithm now proceeds as in Section 4.3. Initial configurations are pre-
sented and fitness scores of each cell are accumulated over C configurations, after
which evolution occurs. As with the original algorithm, a cell has access only
to its neighbors, and applies genetic operators to the genomes of the fitter ones.
Each cell has four connections (in addition to a self-connection), but these need
not be identical for all cells, thereby entailing heterogeneous connectivity. We
have found that performance can be increased by using slower evolutionary rates
for connections than for rules. Thus, while rules evolve every C = 300 configura-
tions, connections evolve every C ′ = 1500 configurations. The two-level dynamics
engendered by the concomitant evolution of rules and connections markedly in-
creases the size of the space searched by evolution. Our results demonstrate that
high performance can be attained, nonetheless.

We performed several evolutionary runs using CN (1, di) architectures, two
typical results of which are depicted in Figure 8.9. We find it quite remarkable
that the architectures evolved succeed in “selecting” connection lengths di that
coincide in most cases with minima points of the acd graph, reflecting the strong
correlation between performance and acd. This, along with the high levels of
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desig- rule(s) architecture #c P129,104 T129,104

nation

CA (1) evolved, non-uniform evolved, non-std. 5 0.791 17

CA (2) evolved, non-uniform evolved, non-std. 5 0.788 27

CA (3) evolved, non-uniform evolved, non-std. 5 0.781 12

φ100 evolved, uniform fixed, standard 7 0.775 72

φ11102 evolved, uniform fixed, standard 7 0.751 80

φ17083 evolved, uniform fixed, standard 7 0.743 107

GKL designed, uniform fixed, standard 7 0.825 74

Table 8.2. A comparison of performance and computation times of the best CAs.
P129,104 is a measure introduced by Mitchell et al., representing the fraction of
correct classifications performed by the CA of size N = 129 over 104 initial con-
figurations, randomly chosen from a binomial distribution over initial densities.
T129,104 denotes the average computation time over the 104 initial configurations,
i.e., the average number of time steps until convergence to the final pattern. #c is
the number of connections per cell. The CAs designated by (1), (2), and (3), are
three of our coevolved CAs; those designated by φi are CAs reported by Mitchell
et al. Coevolved CA (1) is fully specified in Appendix D.

performance attained, demonstrates that evolution has succeeded in finding non-
uniform CAs with efficient architectures, as well as rules. In fact, the performance
attained is higher than that of the fixed-architecture CAs of Section 8.3. Fig-
ure 8.10 demonstrates the operation of a coevolved, C129(1, di) CA on the density
task.

As noted in Section 4.4, Mitchell et al. (1993; 1994b) discussed two possible
choices of initial configurations, either uniformly distributed over densities in
the range [0.0, 1.0], or binomially distributed over initial densities. As explained
therein, this distinction did not prove essential in our studies and we concentrated
on the former distribution. Nonetheless, we find that our evolved CAs attain
high performance even when applying the more difficult binomial distribution.
Observing the results presented in Table 8.2, we note that performance exceeds
that of previously evolved CAs, coupled with markedly shorter computation times
(as demonstrated, e.g., by Figure 8.10). It is important to note that this is
achieved using only 5 connections per cell, as compared to 7, used by the fixed,
standard-architecture CAs. It is most likely that our CAs could attain even better
results using a higher number of connections per cell, since this entails a notable
reduction in acd.
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Figure 8.9. Evolving architectures. Results of two typical evolutionary runs
using C129(1, di). Each figure depicts a histogram of the number of occurrences
of evolved di values across the grid, overlaid on the acd graph. Performance in
both cases is 0.98. Mean di value is 31.5 for run (a), 30.8 for run (b).
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(a) (b)

Figure 8.10. Density task: Operation of a coevolved, non-uniform, C129(1, di)
CA. (a) Initial density of 1s is 0.496. (b) Initial density of 1s is 0.504. Note that
computation time is shorter than that of the fixed-architecture CA (Figure 8.8),
and markedly shorter than that of the GKL rule (Figure 4.1).

8.5 Evolving low-cost architectures

In the previous section we showed that high-performance architectures can be
coevolved using the cellular programming algorithm, thus obviating the need to
specify in advance the precise connectivity scheme. The mean di value of evolved,
C129(1, di) architectures was in the range [30, 40] (e.g., Figure 8.9). It is natural
to ask whether high-performance architectures can be evolved, which also exhibit
low connectivity cost per cell, defined as di for the CN (1, di) case, and ai + bi for
CN (ai, bi).

In order to evolve low-cost architectures, we employ the “architectural” cellu-
lar programming algorithm of Section 8.4, with a modified cellular fitness value,
f ′i , incorporating the performance of cell i as well as its connectivity cost:

f ′i = fi − α(ai + bi)/N

for CN (ai, bi) architectures, and

f ′i = fi − αdi/N

for CN (1, di) ones, where fi denotes the original fitness value of cell i as defined
in Section 4.3, and α is a coefficient in the range [0.02, 0.04]. The algorithm
now proceeds as in Section 8.4, with an added evolutionary “pressure” toward
low-cost architectures.

Figure 8.11 depicts the results of two typical evolutionary runs using CN (1, di)
architectures. Comparing this figure with Figure 8.9, we note that low-cost ar-
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chitectures are indeed evolved, exhibiting markedly lower connectivity cost, with
only a slight degradation in performance.

In Section 8.2 we observed that every CN (a, b) architecture is isomorphic to
a CN (1, d′) architecture, for some equivalent d′. We noted that general CN (a, b)
architectures come into play when one wishes to minimize connectivity cost, as
well as to maximize performance; the equivalent d′ value of a CN (a, b) architec-
ture may be large, resulting in a lower cost of CN (a, b) as compared with the
isomorphic CN (1, d′) architecture. These observations motivated the evolution
of general CN (ai, bi) architectures, a typical result of which is demonstrated in
Figure 8.12. We note that coevolved, CN (ai, bi) architectures surpass CN (1, di)
ones in that better performance is attainable with considerably lower connectivity
cost.

8.6 Discussion

In this chapter we studied the relationship between performance and connectivity
in evolving, non-uniform CAs. Our main findings are:

1. The performance of fixed-architecture CAs solving global tasks depends
strongly and linearly on their average cellular distance. Compared with
the standard CN (1, 2) architecture, considerably higher performance can be
attained at very low connectivity values, by selecting a CN (1, d) or CN (a, b)
architecture with a low acd value, such that d, a, b� N .

2. High-performance architectures can be coevolved using the cellular pro-
gramming algorithm, thus obviating the need to specify in advance the
precise connectivity scheme. Furthermore, it is possible to evolve such ar-
chitectures that exhibit low connectivity cost as well as high performance.

We observed that the average cellular distance landscape is rugged and showed
that the performance landscape is qualitatively similar. This suggests an added
benefit of evolving, heterogeneous architectures over homogeneous, fixed ones:
while the latter may get stuck in a low-performance local minimum, the evolving
architectures, where each cell “selects” its own connectivity, result in a melange
of local minima, yielding in many cases higher performance.

We have provided empirical evidence as to the added efficiency of CN (1,
√
N)

architectures in solving global tasks, suggesting that the density problem has a
good embedding in two dimensions. A theoretical result by Boesch and Wang
(1985) states that the minimal diameter of CN (a, b) circulants is achieved with
CN (O(

√
N), O(

√
N)). This suggests that the performance landscape has a global

maximum at a, b = O(
√
N) (but with a 6= b).

We note in passing that as it is physically possible to construct systems of
(up to) three dimensions, one can gain the equivalent of long-range connections
gratuitously. By this we mean that a physical realization of a locally-connected,
three-dimensional system implicitly “contains” a remotely-connected system of
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Figure 8.11. Evolving low-cost architectures. Results of two typical evolution-
ary runs using C129(1, di). Each figure depicts a histogram of the number of
occurrences of evolved di values across the grid, overlaid on the acd graph. (a)
Performance is 0.97, mean di value is 13.6. (b) Performance is 0.96, mean di
value is 9.
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Figure 8.12. Evolving low-cost architectures. Result of a typical evolutionary
run using C129(ai, bi). The figure depicts a histogram of the number of occurrences
of evolved ai and bi values across the grid. Performance is 0.97, mean ai+bi value
is 6.1.

lower dimensionality.3 An interesting extension of our work would be the evolu-
tion of architectures using such higher-dimensional grids, which may result in yet
better performance, coupled with reduced connectivity cost.

Using our algorithm to solve the density task offers a promising approach
for solving a general wiring problem for a set of distributed processors: in this
problem one is given a set of processors that should be connected to each other in
a way that minimizes average processor distance (i.e., the number of processors
a message must traverse on its path between two given processors). Problem
constraints may include minimal and maximal connection lengths, prespecified
neighbors for some or all cells, and the (possibly distinct) number of impinging
connections per processor. Using our algorithm to solve the density task, where
each processor is identified with a cell, and connectivity constraints are applied
by holding the corresponding connections fixed, will enable the evolution of an
efficient wiring scheme for a given distributed computing network, by maximizing
the efficiency of global information propagation.

3As noted, a two-dimensional, locally-connected system cf size N can be embedded in a
one-dimensional system with connections of length

√
N . Similarly, a three-dimensional system

can be embedded in a two-dimensional system with connections of length N 1/3, and in a one-
dimensional system with connections of length N 2/3 and N1/3.
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Our simulations have shown that the cellular programming algorithm may
degenerate connections. For example, some runs of the short-lines task with
evolving CN (1, di) architectures ended up with most cells having di = 0. This
motivates the use of an algorithm that starts out with a large number of connec-
tions per cell, to be reduced by evolution, thus yielding increased performance
and lower connectivity cost. Ultimately, we wish to attain a system that can
adapt to the problem’s inherent “landscape.”

In summary, this chapter has shed light on the importance of selecting efficient
CA architectures, and demonstrated the feasibility of their evolution.
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Chapter 9

Concluding Remarks and
Future Research

“Would you tell me, please, which way I ought to go from here?”
“That depends a good deal on where you want to get to,” said the Cat.

Lewis Carroll, Alice’s Adventures in Wonderland

The parallel cellular machines “designed” by nature exhibit striking problem-

solving capabilities. The central question posed in this volume was whether we

can mimic nature’s achievement, creating artificial machines that exhibit char-

acteristics such as those manifest by their natural counterparts. Clearly, this

ambitious goal is yet far off, however, we hope to have taken a small step for-

ward. This chapter ends our tour of parallel cellular machines, in which we

studied issues pertaining to their dynamical behavior, the complex computation

they exhibit, and the application of artificial evolution to attain such systems.

We selected non-uniform cellular automata as our basic machine model, and

showed that universal computation can be attained in simple, non-uniform cellu-

lar spaces that are not universal in the uniform case; furthermore, this is accom-

plished by utilizing a small number of distinct rules (quasi-uniformity). Thus,

we demonstrated that simple, non-uniform CAs comprise viable parallel cellular

machines.

We then took an artificial-life perspective, presenting a modified non-uniform

CA model, with which issues of evolution, adaptation, and multicellularity were

studied. We described designed multicellular organisms that display several in-

teresting behaviors, and then turned our attention to evolution in various envi-

ronments. We concluded that non-uniform CAs and their extensions comprise

simple yet versatile models for studying artificial-life phenomena.

In the last and main part of this volume, we asked whether parallel cellu-

lar machines can evolve to solve non-trivial, global problems. Toward this end

we presented the cellular programming approach, by which such machines lo-

cally coevolve to perform computational tasks. We studied in detail a number of

problems, some of which suggest possible application domains for our approach,
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showing that high-performance systems can be evolved. We presented the firefly

machine, an evolving, online, autonomous hardware system that implements the

cellular programming algorithm, thus demonstrating that “evolving ware,” evol-

ware, can be attained. The issue of fault tolerance was studied next, looking into

the question of robustness, or resilience, namely, how resistant are our evolved

machines in the face of errors. We found that they exhibit graceful degradation

in performance, able to tolerate a certain level of faults. Finally, we studied

non-standard connectivity architectures, showing that these entail definite per-

formance gains, and that, moreover, one can evolve the architecture through a

two-level evolutionary process, in which the cellular rules evolve concomitantly

with the cellular connections.

The work reported herein represents a first step in an exciting, nascent do-

main. While results to date are encouraging, there are still several possible av-

enues of future research, some of which have been explored to a certain extent,

while others await to be pursued. Below, we have assembled a list of such future

directions (refer also to Section 3.5, where we discussed some additional possible

extensions specific to the ALife model presented in Chapter 3):

1. What classes of computational tasks are most suitable for evolving cellular

machines? and, what possible applications do they entail? We have noted

feasible application areas such as image processing and random number

generation. Clearly, more research is necessary in order to elaborate these

directions as well as to find new ones.

2. Computation in cellular machines. How are we to understand the emergent,

global computation arising in our locally-connected machines? Crutchfield

and Mitchell (1995) and Das et al. (1994; 1995) carried out an interest-

ing analysis using automated methods developed by Crutchfield and Young

(1989), Hanson and Crutchfield (1992), and Crutchfield and Hanson (1993),

for discovering computational structures embedded in the space-time behav-

ior of CAs. Currently, we have performed a more in-depth analysis within

the context of our framework in Chapter 4 (see also Sipper, 1996). This

issue is interesting both from a theoretical point of view as well as from

a practical one, where it may help guide our search for suitable classes of

tasks for such machines.

3. Studying the evolutionary process. The evolutionary algorithms discussed

in this volume involve local coevolution, as such presenting novel and inter-

esting dynamics worthy of further study. We wish to enhance our under-

standing of how evolution creates complex, global behavior in such locally-

interconnected systems of simple parts. A first step along this path has been

taken herein, for both the ALife model, as well as the cellular programming

algorithm.

4. Modifications of the evolutionary algorithms. The representation of CA
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rules (i.e., the “genome”) used in our experiments consists of a bit string,

containing a lexicographic listing of all possible neighborhood configura-

tions (see Sections 3.4.1 and 4.2). It has been noted by Land and Belew

(1995b) that this representation is fairly low-level and brittle since a change

of one bit in the rule table can have a large effect on the computation per-

formed. They evolved uniform CAs to perform the density task using other

bit-string representations, as well as a novel, higher-level one, consisting

of condition-action pairs; it was demonstrated that better performance is

attained when employing the latter. More recently, Andre et al. (1996a;

1996b) used genetic programming (Koza, 1992), in which a rule is repre-

sented by a LISP expression, to evolve uniform CAs to perform the density

task. This resulted in a CA which outperforms the hand-designed GKL rule

(Section 4.2) for certain grid sizes. These experiments demonstrate that

changing the bit-string representation, i.e., the encoding of the “genome,”

may entail notable performance gains; indeed, this issue is of prime import

where evolutionary algorithms in general are concerned (for a discussion

see, e.g., Mitchell, 1996, Chapter 5). Such encodings could be incorporated

into the ALife model of Chapter 3, as well as within the framework of cel-

lular programming. We noted in Section 4.3 that fitness in the cellular

programming algorithm is assigned locally to each cell. Another possibility

might be to assign fitness scores to blocks of cells, in accordance with their

mutual degree of success on the task at hand. Such “block” fitness can also

be applied to the ALife model of Chapter 3. It is clear that the novelty of

our algorithms leaves much yet to be explored.

5. Modifications of the cellular machine model. In this volume we stud-

ied a number of generalizations of the original CA model, including non-

uniformity of rules, non-deterministic updating (and its relationship to fault

tolerance), non-standard architectures, heterogeneous architectures, and

enhanced, “mobile” cellular rules. Other possible avenues to explore in-

clude: (1) The application of asynchronous state updating in the cellular

programming paradigm, as carried out for the ALife model in Section 3.4.6.

A first step along this line was undertaken by Sipper et al. (1997b; 1997c).

(2) Three-dimensional grids (and tasks). In this volume we studied one-

and two-dimensional grids. Ultimately, three-dimensional systems may be

built, enabling new kinds of phenomena to emerge, in analogy to the phys-

ical world (de Garis, 1996). As a simple observation consider the fact

that signal paths are more collision prone in two dimensions, whereas in

three dimensions they may pass each other unperturbed (as an example,

consider the mammalian brain). We also noted in Section 8.6 the advan-

tages of three-dimensional systems in terms of signal propagation. Current

technology is mostly two-dimensional (e.g., integrated circuits are basically

composed of one or more 2D layers), however, future systems, based, e.g.,

on molecular computing (Drexler, 1992), will be three-dimensional.
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Our motivation for the above modifications of the cellular machine model

partly stems from our desire to attain realistic systems that are more

amenable to implementation as evolware.

6. Scaling. As noted in Section 4.7, this involves two separate issues: the

evolutionary algorithm and the evolved solutions. We have already explored

these to some extent in this volume, though further research is still in order,

specifically:

(a) How does the evolutionary algorithm scale with grid size? Though to

date we have performed experiments with different grid sizes, a more

in-depth inquiry is needed. Note that as our cellular programming

algorithm is local it scales better in terms of hardware resources than

the standard (global) genetic algorithm. Adding grid cells requires

only local connections in our case, whereas the standard genetic algo-

rithm includes global operators such as fitness ranking and crossover.

Indeed, this locality property facilitated the construction of the firefly

machine, as noted in Chapter 6. The ALife model of Chapter 3 also

exhibits this property.

(b) How can larger grids be obtained from smaller (evolved) ones, i.e.,

how can evolved solutions be scaled? This has been purported as an

advantage of uniform CAs, since one can directly use the evolved rule

in a grid of any desired size. However, this form of simple scaling does

not bring about task scaling; as demonstrated, e.g., by Crutchfield and

Mitchell (1995) for the density task, performance decreases as grid size

increases. For non-uniform CAs quasi-uniformity may facilitate scaling

since only a small number of rules must ultimately be considered.

To date, we have attained successful systems using a simple scaling

procedure, involving the duplication of the rules grid (Section 5.5),

and a more sophisticated scaling approach, which takes into account

the evolved grid’s local and global structures (Section 4.7).

7. Implementation. As discussed above, this is one of the prime motivations

of our work, the goal being to construct evolware.

8. Hierarchy. The idea of decomposing a system into a hierarchy of layers,

each carrying out a different function, is ubiquitous in natural as well as

artificial systems. As an example of the former, one can cite the human

visual system, which begins with low-level image processing in the retina,

ending with high-level operations, such as face recognition, performed in

the visual cortex. Artificial, feed-forward neural networks are an example

of artificial systems exhibiting a layered structure. This idea can be in-

corporated within our framework, thereby obtaining a hierarchical system,

composed of evolving, layered grids. This could improve the system’s per-
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formance, facilitate its scaling, and indeed enable entirely new (possibly

more difficult) tasks to be confronted.

A related issue is that of the level at which evolution is carried out. For

example, our study of architectures consisted of “handing over” to evolu-

tion the architectural structure (i.e., the connectivity scheme), in addition

to the already present evolving rules structure. In analogy to nature, one

can envision the evolution of such structures, that are later “frozen,” rep-

resenting a framework within which evolution must “content” itself. For

example, crossover in nature cannot create any conceivable DNA chain,

since the (evolved) genomic structure constrains the possible outcomes. A

similar point was raised in Section 6.4, upon noting that the firefly machine

consists of a fixed part and an evolving part, both specified via configu-

ration strings of the programmable FPGA circuit. We remarked that an

interesting outlook on this setup is to consider the evolutionary process as

one where an organism evolves within a given species, the former specified

by the FPGA’s evolving part, the latter specified by the fixed part. This

raises the interesting question of whether one can evolve the species itself.

Phylogeny (P)

Epigenesis (E)

Ontogeny (O)

Figure 9.1. The POE model. Partitioning the space of bio-inspired systems
along three axes: phylogeny, ontogeny, and epigenesis.

9. If one considers Life on Earth since its very beginning, then the following

three levels of organization can be distinguished (Danchin, 1976; Danchin,

1977; Sanchez et al., 1997; Sipper et al., 1997a): the phylogenetic level

concerns the temporal evolution of the genetic programs within individuals

and species, the ontogenetic level concerns the developmental process of a

single multicellular organism, and the epigenetic level concerns the learning

processes during an individual organism’s lifetime, allowing it to integrate

the vast quantity of interactions with the outside world (examples of the

latter include the nervous system, the immune system, and the endocrine

system).

In analogy to nature, the space of bio-inspired systems can be partitioned
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along these three axes: phylogeny, ontogeny, and epigenesis, giving rise

to the POE model, schematically depicted in Figure 9.1 (Sanchez et al.,

1997; Sipper et al., 1997a). As an example, consider the following three

paradigms, each positioned along one axis: (P) evolutionary algorithms

are the (simplified) artificial counterpart of phylogeny in nature, (O) self-

reproducing automata are based on the concept of ontogeny, where a single

mother cell gives rise, through multiple divisions, to a multicellular organ-

ism, and (E) artificial neural networks embody the epigenetic process, where

the system’s synaptic weights, and perhaps topological structure, change

through interactions with the environment. Within the domains collec-

tively referred to as soft computing (Yager and Zadeh, 1994), characterized

by ill-defined problems, coupled with the need for continual adaptation or

evolution, the above paradigms yield impressive results, often rivaling those

of traditional approaches.

The methodologies presented in this volume can be situated along one axis,

either the phylogenetic one (e.g., the evolving cellular machines) or the on-

togenetic one (e.g., the multicellular systems of Section 3.3). Sanchez et al.

(1997) and Sipper et al. (1997a) raised the intriguing possibility of creating

systems situated within the POE space that exhibit characteristics of two,

and ultimately all three axes. This may lead to novel bio-inspired systems,

endowed with evolutionary, reproductive, regenerative, and learning capa-

bilities. Thus, enhancing the capacities of the systems described in this

volume could result through “infiltration” of the POE space.

Parallel cellular machines hold potential both scientifically, as vehicles for

studying phenomena of interest in areas such as complex adaptive systems and

artificial life, as well as practically, showing a range of potential future applica-

tions, ensuing the construction of adaptive systems. We hope this volume has

shed some light on the behavior of such machines, the complex computation they

exhibit, and the application of artificial evolution to attain such systems.



Appendix A

Growth and Replication:
Specification of Rules

This appendix specifies the rules for the system presented in Section 3.3.4. Note

that an A cell dies after attaching a one to the structure, a B cell either dies or

spawns a C cell after attachment of zero. All other entries (not shown) of A and

B cell rules specify a move to a random vacant cell, while those for C and D cells

specify no change.

A cell

Formation of ones:

1 1 1 1
A → 1

1 1
A 1 → 1 1

A → 1
1 1 1 1

1 A → 1 1
1 1

B cell

Formation of zeros:

1 1 1 1
B → 0 B → 0

1 1 1 1

1 1
B 0 → 0 0
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Formation of zero and spawning of C cell:

0 B → 0 0
1 1 C

C cell

Downward movement:

0 0 0 0
1 C → 1

C

1 1 1 1
1 C → 1

C

1 1 1 1
0 C → 0

C

Beginning of upward replication movement and spawning of D cell:

0 0 0 0 C
C → D 0

Upward replication movement and transfer of one position to the right:

1 1 1 1 C
0 C → 0 0
0

1 1 1 1 C
1 C → 1 1
0 0 0 0

1 1 1 1 C
1 C → 1 1
1 1 1 1

0 0 0 0 C
1 C → 1 1
1 1 1 1

0 0 0 0 C
1 C → 1 1
0 0 0 0

C
0 C → 0 0
1 1 1 1

End of upward replication movement:

C →
0 0 0 B
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D cell

Move to bottom left-hand side of structure (start position):

0 0 D 0 0
D 0 → 0

0 D 0
D →

0 0 D 0 0
D →

Immediate death in case two half structures do not exist:

D 0 → 0
1 1

D 0 → 0

Upward replication movement:

1 1 D
0 D 0 → 0 0

1 1 D
1 D 1 → 1 1
0 0

1 1 D
1 D 1 → 1 1
1 1

0 0 D
1 D 1 → 1 1
1 1

0 0 D
1 D 1 → 1 1
0 0

D
0 D 0 → 0 0
1 1

Death after completion of upward movement:

D →
0 0
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Appendix B

A Two-state, r=1 CA that
Classifies Density

This appendix is a summary of the result presented by Capcarrère et al. (1996). In

the density classification problem, the one-dimensional, two-state CA is presented

with an arbitrary initial configuration, and should converge in time to a state of

all 1s if the initial configuration contains a density of 1s > 0.5, and to all 0s if

this density < 0.5; for an initial density of 0.5, the CA’s behavior is undefined.

Spatially periodic boundary conditions are used, resulting in a circular grid.

It has been shown that for a uniform one-dimensional grid of fixed size N ,

and for a fixed radius r ≥ 1, there exists no two-state CA rule which correctly

classifies all possible initial configurations (Land and Belew, 1995a). This says

nothing, however, about how well an imperfect CA might perform, one possible

approach for obtaining successful CAs being artificial evolution, as described in

this volume.

The density classification problem studied to date specifies convergence to

one of two fixed-point configurations, which are considered as the output of the

computation. Recently, Capcarrère et al. (1996) have shown that a perfect CA

density classifier exists, upon defining a different output specification. Consider

the uniform, two-state, r = 1 rule-184 CA, defined as follows:

si(t+ 1) =

{
si−1(t) if si(t) = 0
si+1(t) if si(t) = 1

where si(t) is the state of cell i at time t. Upon presentation of an arbitrary initial

configuration, the grid relaxes to a limit-cycle, within dN/2e time steps, that

provides a classification of the initial configuration’s density of 1s: if this density>

0.5 (respectively, < 0.5), then the final configuration consists of one or more blocks

of at least two consecutive 1s (0s), interspersed by an alternation of 0s and 1s; for

an initial density of exactly 0.5, the final configuration consists of an alternation

of 0s and 1s. The computation’s output is given by the state of the consecutive

block (or blocks) of same-state cells (Figure B.1). As proven by Capcarrère et al.
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(1996), this rule performs perfect density classification (including the density=0.5

case). We note in passing that the reflection-symmetric rule 226 holds the same

properties of rule 184.

As the input configuration is random, this entails a high Kolmogorov com-

plexity. Intuitively, for a given finite string, this measure concerns the size of

the shortest program that computes the string (Li and Vitányi, 1993). Both the

fixed-point output of the original problem, as well as the novel “blocks” output,

involve a notable reduction with respect to this complexity measure. It has been

noted by Mitchell et al. (1994b) that the computational complexity of the input

is that of a non-regular language (Hopcroft and Ullman, 1979) since a counter

register is needed, whose size is proportional to log(N), whereas the fixed-point

output of the original problem involves a simple regular language (all 0s or all

1s); we note that the novel output specification also involves a regular language

(a block of two state-0 or state-1 cells). Capcarrère et al. (1996) thus concluded

that their newly proposed density classifier is as viable as the original one with

respect to these complexity measures, while surpassing the latter in terms of

performance.
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(a) (b)

(c) (d)

Figure B.1. Density classification: Demonstration of the uniform rule-184 CA
on four initial configurations. The pattern of configurations is shown for the first
200 time steps. Initial configurations in figures (a)-(c) were randomly generated.
(a) Grid size is N = 149. Initial density is 0.497, i.e., 75 cells are in state 0,
and 74 are in state 1. The final configuration consists of an alternation of 0s and
1s with a single block of two cells in state 0. (b) N = 149. Initial density is
0.537. The final configuration consists of an alternation of 0s and 1s with several
blocks of two or more cells in state 1. (c) N = 150. Initial density is 0.5. The
final configuration consists of an alternation of 0s and 1s. (d) N = 149. Initial
configuration consists of a block of 37 zeros, followed by 37 ones, followed by 37
zeros, ending with 38 ones. The final configuration consists of an alternation of
0s and 1s with a single block of two cells in state 1. In all cases the CA correctly
classifies the initial configuration.
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Appendix C

Specification of Evolved CAs

The five one-dimensional, non-uniform, r = 1 CAs, evolved via cellular program-

ming, and discussed in Chapters 4 and 7, are fully specified in Table C.1. The

specification includes the rule found in each cell, where rule numbers are given

in accordance with Wolfram’s convention, representing the decimal equivalent of

the binary number encoding the rule table (as in Figure 4.6). All grid sizes are

N = 149. Cell 0 is the leftmost cell. Spatially periodic boundary conditions are

used, resulting in a circular grid. For an r = 1 CA this means that the leftmost

and rightmost cells are connected.
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Synch. 1:

From cell To cell Rule
0 32 31
33 105 83
106 106 19
107 148 31

Synch. 2:

From cell To cell Rule
0 55 21
56 56 85
57 58 21
59 60 53
61 73 63
74 132 31
133 148 21

Density 1:

From cell To cell Rule
0 39 226
40 40 234
41 71 226
72 72 234
73 142 226
143 144 224
145 148 226

Synch. 3:

From cell To cell Rule
0 15 53
16 16 55
17 29 59
30 89 43
90 100 39
101 101 7
102 148 53

Density 2:

From cell To cell Rule
0 106 226

107 108 224
109 131 226
132 132 234
133 148 226

Table C.1. Specification of evolved CAs.



Appendix D

Specification of an Evolved
Architecture

Coevolved CA (1), whose performance measures are given in Table 8.2, is fully

specified in Table D.1. As the architecture in question is non-uniform, C129(1, di),

this involves 129 rules and di values. The 32-bit rule string is shown as 8 hexadec-

imal digits, with neighborhood configurations given in lexicographic order. The

first (leftmost) bit specifies the state to which neighborhood 00000 is mapped to,

and so on until the last (rightmost) bit, specifying the state to which neighbor-

hood 11111 is mapped to. The 5 neighborhood bits represent the values of cells

i− di, i− 1, i, i+ 1, i+ di (mod N), respectively. Cell 0 is the leftmost grid cell.

Spatially periodic boundary conditions are used, resulting in a circular grid.
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Cell Rule di Cell Rule di Cell Rule di Cell Rule di
0 135107FF 59 33 035117F7 56 66 135107F7 44 99 135107F7 59
1 135107FF 44 34 115107F7 56 67 135107F7 44 100 035117F7 40
2 135107F7 63 35 115107F7 8 68 135107F7 44 101 135117F7 8
3 035107FF 40 36 135107FF 8 69 135107F7 8 102 035117F7 40
4 035107FF 40 37 135107FF 56 70 035107F7 8 103 035107F7 40
5 035107F7 15 38 035107FF 56 71 035117FF 52 104 035107F7 56
6 035117F7 40 39 035107F7 48 72 035107FF 11 105 135107F7 56
7 035107F7 56 40 035107F7 8 73 035107FF 59 106 035105FF 56
8 135117F7 56 41 035107FF 44 74 035107FF 59 107 035117F7 56
9 035107F7 63 42 135107FF 59 75 035107F7 55 108 135117F7 56
10 035107F7 63 43 135107FF 43 76 035117FF 56 109 135117F7 56
11 035107F7 52 44 135107F7 63 77 035107FF 40 110 135107F7 56
12 035127FF 11 45 035107FF 59 78 035107F7 44 111 035107FF 56
13 035127FF 59 46 035117F7 43 79 135117F7 15 112 135107F7 56
14 135117F7 8 47 035107FF 43 80 035107F7 15 113 135107F7 56
15 035107F7 11 48 035107FF 40 81 035107F7 59 114 135107FF 52
16 135117F7 11 49 035117F7 56 82 135107F7 40 115 035107F7 43
17 035117F7 43 50 035105FF 56 83 035107F7 63 116 035107FF 43
18 135107FF 4 51 035107F7 56 84 035107F7 4 117 035107F7 43
19 035117FF 4 52 035107FF 63 85 035127FF 56 118 035107FF 56
20 035117F7 4 53 135107FF 52 86 135107F7 56 119 135107F7 56
21 035117F7 59 54 035105FF 4 87 135107F7 8 120 035107F7 40
22 135107F7 12 55 135107FF 56 88 035157F7 7 121 135107FF 8
23 135107F7 40 56 135107FF 56 89 035117F7 63 122 03510FFF 8
24 135107F7 59 57 035107F7 4 90 035107F7 40 123 035107FF 56
25 035107F7 55 58 035107FF 4 91 035107F7 56 124 135107F7 56
26 135107F7 40 59 135107FF 11 92 035107F7 56 125 035107F7 56
27 035107F7 56 60 135107F7 11 93 035107FF 4 126 035107FF 56
28 035107FF 56 61 035107F7 59 94 035117F7 56 127 035107F7 11
29 035107FF 56 62 035107FF 56 95 135107F7 12 128 135107FF 59
30 035107FF 39 63 135117F7 56 96 035107FF 56
31 035107F7 56 64 135117F7 48 97 035117FF 63
32 035117F7 48 65 035117F7 48 98 035107F7 59

Table D.1. Specification of a CA with an evolved architecture and rules.



Appendix E

Computing acd and equivalent d′

Determining the diameter and average cellular distance (acd) of a general circu-

lant is a difficult problem (Buckley and Harary, 1990). The minimum diameter

has been determined for all circulants on N nodes and two connection lengths

(Boesch and Wang, 1985). Our interest is in the special case of CN (a, b). We

observe that by symmetry we need only consider the paths from node 0 to each

other node j, j = 1, . . . , N − 1 (provided such a path exists). Thus, we express j

as ax + by mod N , x, y ∈ [−N,N ] (Boesch and Tindell, 1984). The graphs de-

picted in Section 8.2 were computed by considering all possible (a, b) pairs. For

each such pair, minimum cellular distances from node 0 to all other nodes were

computed by considering all possible x, y pairs; the average of these distances

was then calculated.

To find the isomorphic CN (1, d′) architecture for a given CN (a, b) we proceed

as follows: consider the list of nodes in the CN (a, b) graph, 0, 1, . . . , N − 1. Now

rearrange this list such that nodes originally a units apart are now adjacent

(unless gcd(a,N) > 1, in which case b is taken). The equivalent d′ is then the

minimal number of unit connections to node b from the head of the list (or a,

if gcd(a,N) > 1). For example, C7(2, 3) nodes are rearranged in the following

order: 0, 2, 4, 6, 1, 3, 5, and the equivalent d′ value is therefore d′ = 2 (minimal

number of unit connections from node 0 to node 3).
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fer, A. 1997. Phylogeny, ontogeny, and epigenesis: Three sources of biological

inspiration for softening hardware. In T. Higuchi, M. Iwata, and W. Liu (eds.),

Proceedings of the First International Conference on Evolvable Systems: From

Biology to Hardware (ICES96), vol. 1259 of Lecture Notes in Computer Sci-

ence, pp 35–54. Springer-Verlag, Heidelberg.

Sanchez, E. and Tomassini, M. (eds.) 1996. Towards Evolvable Hardware, vol.

1062 of Lecture Notes in Computer Science. Springer-Verlag, Heidelberg.

Schwefel, H.-P. 1995. Evolution and Optimum Seeking. John Wiley & Sons, New

York.

Simon, H. A. 1969. The Sciences of the Artificial. The MIT Press, Cambridge,

Massachusetts.

Sipper, M. 1994. Non-uniform cellular automata: Evolution in rule space and

formation of complex structures. In R. A. Brooks and P. Maes (eds.), Artificial

Life IV, pp 394–399. The MIT Press, Cambridge, Massachusetts.

Sipper, M. 1995a. An introduction to artificial life. Explorations in Artificial Life

(special issue of AI Expert) pp 4–8. Miller Freeman, San Francisco, CA.

Sipper, M. 1995b. Quasi-uniform computation-universal cellular automata. In

F. Morán, A. Moreno, J. J. Merelo, and P. Chacón (eds.), ECAL’95: Third

European Conference on Artificial Life, vol. 929 of Lecture Notes in Computer

Science, pp 544–554. Springer-Verlag, Heidelberg.

Sipper, M. 1995c. Studying artificial life using a simple, general cellular model.

Artificial Life, vol. 2, no. 1, pp 1–35. The MIT Press, Cambridge, MA.

Sipper, M. 1996. Co-evolving non-uniform cellular automata to perform compu-

tations. Physica D, vol. 92, pp 193–208.

Sipper, M. 1997a. Designing evolware by cellular programming. In T. Higuchi, M.

Iwata, and W. Liu (eds.), Proceedings of the First International Conference on

Evolvable Systems: From Biology to Hardware (ICES96), vol. 1259 of Lecture

Notes in Computer Science, pp 81–95. Springer-Verlag, Heidelberg.

Sipper, M. 1997b. The evolution of parallel cellular machines: Toward evolware.

BioSystems, vol. 42, pp 29–43.

Sipper, M. 1997c. Evolving uniform and non-uniform cellular automata networks.

In D. Stauffer (ed.), Annual Reviews of Computational Physics, vol. V, pp



Bibliography 191

243–285. World Scientific, Singapore.

Sipper, M. and Ruppin, E. 1996. Co-evolving cellular architectures by cellular

programming. In Proceedings of IEEE Third International Conference on

Evolutionary Computation (ICEC’96), pp 306–311.

Sipper, M. and Ruppin, E. 1997. Co-evolving architectures for cellular machines.

Physica D, vol. 99, pp 428–441.

Sipper, M., Sanchez, E., Mange, D., Tomassini, M., Pérez-Uribe, A., and Stauffer,
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God appears and God is light
To those poor souls who dwell in night,
But does a human form display
To those who dwell in realms of day.

William Blake, Auguries of Innocence


