December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies
in the Evolution of Chess Endgame Players

AMI HAUPTMAN

Department of Computer Science
Ben-Gurion University, Israel

www.cs.bgu.ac.il/~amiha

MOSHE SIPPER

Department of Computer Science
Ben-Gurion University, Israel

www.moshesipper.com

Received (received date)
Revised (revised date)

‘We examine a strong chess-endgame player, previously developed by us through genetic
programming, focusing on the player’s emergent capabilities and tactics in the context
of a chess match. First, we provide a detailed description of the evolutionary approach
by which our player was developed. Then, using a number of methods we analyze the
evolved player’s building blocks and their effect on play level. We conclude that evo-
lution has found combinations of building blocks that are far from trivial and cannot
be explained through simple combination—thereby indicating the possible emergence of
complex strategies.

Keywords: Evolutionary algorithms; Genetic programming; Chess.

1. Introduction

Genetic programming (GP) has been shown to successfully produce solutions to
hard problems from numerous domains, and yet an understanding of the evolved
“spaghetti code” is usually lacking. Indeed, it seems a GPer must wear two hats:
that of an evolutionary designer, and that of a molecular “biologist” [28].

We wore the first hat in [12] and presented successful chess endgame players,
evolved via GP. Using numerous elements of relatively simple chess knowledge em-
bodied as tree nodes and simple means of combining them logically, our evolved
players were able to perform on four types of endgames at a level nearly equal to
that of CRAFTY—a world-class chess program.

In this paper we wish to wear the second hat—that of the molecular “biologist” —
in an attempt to understand the resultant complex intelligence, hidden within the
innards of our evolved programs. We examine the complexity of our evolved pro-
grams by means of analyzing the performance of a strong player developed by
evolution, across various positions taken from games played by it. We argue that

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

2 Hauptman and Sipper

some of the strategic and tactical capabilities of our players are emergent. As far
as we are aware no strong chess program has been written by relying on elements
of chess knowledge—as we have done; programs to date rely mostly on deep search
(for example, see [6]).

This paper is organized as follows: In the next two sections we provide back-
ground on chess programs and summarize previous work on evolving chess strate-
gies, including the experiment in which our players were evolved. In Section 4 we
display a sample endgame, played by a strong player we developed, along with a
tactical analysis of its performance, comparing its move choices to those of a strong
chess engine. Section 5 looks further into the emergent aspects of our player’s skill
by testing its building blocks, both separately and constructively. Section 6 ends
with concluding remarks and future work.

2. Background and Previous Work
2.1. Machine chess

For more than 50 years the game of chess has served as a testing ground for re-
search in the field of artificial intelligence. During these five decades the progress
of chess programs in terms of their measured performance ratings has been steady.
This progress has come most directly from the increase in the speed of computer
hardware, and also straightforward software optimization. Deep Blue, the famous
computer program and hardware (32 computing nodes, each with eight integrated
processors) that defeated Kasparov in 1997, evaluated 200 million alternative po-
sitions per second [4]. In contrast, the first computer that executed Belle, the first
program to earn the title of U.S. master in 1983, was more than 100,000 times
slower. Faster computing and optimized programming allows a chess program to
evaluate chessboard positions further into the game tree, and thus achieve stronger
levels of play.

It is important to note, however, that state-of-the-art chess programs, such as
Fritz and Junior, do not rely on generating a great number of positions alone. Such
brute-force machines are now on the brink of extinction (and are referred to as
”dinosaurs” by chess engine programmers). Nowadays, most programs participat-
ing in world championships run on standard PCs. Advanced methods, such as the
NegaScout algorithm [20, 24], transposition tables [9] and the history heuristic [27]
are commonly used, together with sophisticated evaluation functions.

Since our research employs genetic algorithms to develop chess players, we start
with a description of the method.

2.2. Genetic Algorithms

Numerous fields of scientific research often had to deal with the classical problem of
optimization. While purely analytical methods have widely proved their efficiency,
they nevertheless suffer from an insurmountable weakness: reality rarely obeys the
differentiable functions so common in scientific models.

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 3

Nature, on the other hand, has adopted a somewhat different approach. The
problem of survival in a harsh, competitive environment was not straightforwardly
solved by an accurate model. If we view nature as a problem solver, attempting to
optimize survival of living beings, one of the first observations is that the very first
solutions (creatures) were not optimally suited for this task. However, during mil-
lions of years, solutions kept improving. Gradually, more complex, adapted species
developed, while the less fit perished. Only the fit survived the test of time.

The attempt to implement nature’s way in the field of computer science is known
as Genetic Algorithms (GAs). John Holland, from the University of Michigan, began
his work on genetic algorithms at the beginning of the 60s. A first achievement was
the publication of Adaptation in Natural and Artificial System in 1975 [13]. Holland
had a double aim: to improve the understanding of the natural adaptation process,
and to design artificial systems having properties similar to natural systems.

A GA is an iterative procedure, that consists of a constant-size population of
individuals, each one represented by a finite string of symbols, encoding a possible
solution in some problem space [26].

The generic GA (as described, e.g., by Mitchell [21]) works as follows: First, an
initial population of chromosomes, called individuals, is generated. Every evolution-
ary step, or generation, the individuals in the current population are evaluated by
applying a fitness function, and each member is assigned a fitness value. This value
indicates how well the individual solves the problem, and affects the probability of
its being selected for reproduction.

New individuals are created by stochastically applying the genetic operators to
selected individuals. Selection is biased towards elements of the current generation
which have better fitness, though it is usually not so biased that poorer elements
have no chance to participate, in order to prevent the solution set from converging
too early to a sub-optimal or local solution. There are several well-defined selection
methods; roulette-wheel selection and tournament selection are popular methods.

Following selection, genetic operators are applied to the selected individuals. The
most widely used ones are crossover, reproduction, and mutation. The crossover (or
recombination) operation is reminiscent of natural gene transfer from parents to
offspring. A simple form of crossover is the exchange of substrings after a randomly
selected crossover point. The result is two offspring, containing data from both
parents. Reproduction is simply passing individuals from the current generation to
the next one. Mutation is a unary operator, usually taking place after crossover. It
is used mainly to avoid premature convergence to a local minimum. Typically, one
or more bits are selected and flipped at random with some (small) probability.

These processes ultimately result in a new generation, differing from the current
one. The process then continues iteratively, until a termination condition is met.
Optimally, the algorithm terminates when the performance of the best individual of
the current generation abides to some predefined criteria. However, since GAs are
stochastic by nature, there is no guarantee of success. To avoid endless iterations,
execution is halted also when convergence is observed, or after a time limit is met.

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

4 Hauptman and Sipper

Produce an initial population of individuals
Evaluate the fitness of all individuals
While termination condition not met do
Select fitter individuals for reproduction
Recombine individuals
Mutate some individuals
Evaluate the fitness of the new individuals
End while

Fig. 1. Pseudocode of a generic genetic algorithm.

The generic pseudocode of a GA is given in Figure 1
Genetic algorithms have been successfully applied to numerous problems from
different domains (see [21] for several examples).

2.3. Genetic Programming

Representation is a key issue in problem solving, and genetic algorithms are no
exception. Well-formed representations not only capture the essence of the problem,
but do so in a compact way, minimizing noise overhead, and allowing to focus on
what is truly relevant.

When solving real-world problems very few GA implementations use the generic
representation we described above. One of the main problems is that string-based
representation schemes are difficult and unnatural for many problems. The need for
more powerful representations has been recognized for some time [16]. Moreover,
using fixed-length strings forces predetermination of the size and shape of solutions.
This has been the bane of machine learning systems for many years [25].

Since using computer programs as a model for solving problems is one of the
most fundamental aspects of computer science, it is clear that programs could also
be used as the representation of solutions formed and manipulated by GAs. This
notion is implemented in Genetic Programming.

Genetic Programming (GP) is a sub-class of evolutionary algorithms, introduced
by Koza [16]. In GP, individuals are not represented by fixed-length strings, but by
hierarchical computer programs of variable size. The language chosen by Koza was
LISP (LISt Processing, in particular, the Common LISP dialect [29] is typically
used). The reasons for choosing the LISP programming language are multiple. The
main reason is that since LISP expressions are of nested form, the group of legal
LISP expressions is closed under most genetic operators, while the group of legal C
programs, for example, is not. This point is further discussed below.

GP Trees are constructed from functions and terminals. The functions are usu-
ally arithmetic and logic operators (including IF expressions) located at the inner
nodes of the tree; the terminals are zero-argument functions, located at the leaves,
which serve both as constants and as sensors. Sensors are a special type of function

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 5

that query the domain environment.

During the course of artificial evolution, GP trees are continually executed as
programs, and changes are continually applied to them. This is when the advantages
of LISP come to the fore. As stated above, GP individuals are composed of LISP
expressions—nested lists of symbols (S-expressions). Due to the virtual synonymity
of S-expressions and their parse trees, it is both possible and convenient to treat a
computer program in the genetic population as data so that it can first be genetically
manipulated. Then, with the same ease, the result of the manipulation can be
executed as a program.

Most compiled programming languages internally convert, at the time of com-
pilation, a given program into a parse tree representing the underlying composition
of functions and terminals of that program. More often than not, this tree is un-
available to the programmer. If we were to write a genetic program in C or C++,
for example, we would probably not have direct access to the parse tree, and would
need to apply genetic operators to the program’s code itself. This is far more dif-
ficult, due to the fact that the code’s syntactic structure is not readily apparent
in the text itself without applying grammatical rules; without structural knowledge
replacing tokens this will probably lead to syntactically illegal programs. While GAs
can deal with low-fitness programs, illegal ones pose a serious problem and must be
avoided.

On the other hand, since S-expressions are, in effect, their own parse trees, this
problem is avoided altogether—as long as we replace an entire sub expression (or
sub tree) with another, the program will retain its syntactic legality. We are ready
to apply the genetic operators.

The genetic operators used in GP are essentially the same as those described for
the generic GA. However, since we are dealing with trees, some genetic operators
need to be redefined:

e The GP binary crossover operator randomly selects an internal node in
each of the two individuals and then swaps the sub-trees rooted at these
nodes. An example is shown in Figrue 2. Note that tree depth may vary
due to crossover.

e The unary mutation operator randomly selects one node from the tree,
deletes the subtree rooted at that node, and then grows a new sub-tree
instead. An example is shown in Figure 3.

Another widely used operator in GP is the reproduction operator, described in
Section 2.2, but there is nothing different in applying it on programs.

Very similarly to the generic GA, at each generation individuals are selected
for reproduction based on their fitness. A common fitness method is competitive
fitness, in which an individual’s score depends not on some absolute measure, but
on success against its peers. This way, not only are we less dependant on finding an
absolute measure for fitness (which is exceedingly difficult for complex problems),
but it is also more likely that the population will learn to perform better in the

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

6 Hauptman and Sipper

/%g) 5
e

Fig. 2. Crossover operator in GP. Top: parent trees, with crossover points shaded. Bottom: Off-
spring resulting from crossover at shaded points.

broader sense, without maximizing a single fitness function [1].

2.4. FEwvolutionary algorithms and chess

Fine-tuning the evaluation functions lies at the center of efforts in the field of
applying evolutionary algorithms to developing chess players. As GP has recently
been argued to deliver “high-return, human-competitive machine intelligence” [18],
this method (along with other forms of evolutionary algorithms) has been applied
repeatedly to this domain. While numerous AI methods have been applied to the
field of chess, we only review those related to genetic algorithms.

Kendall and Whitwell [15] used evolutionary algorithms to tune evaluation-
function parameters. They focused mainly on the weights of the remaining pieces,

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 7

PAIN /N

X)(A)(Z)
el ®§
SO

Fig. 3. Mutation operator. A sub-tree (root marked in gray) is selected from the parent individual
(left) and removed. A new sub-tree (right) is grown instead (marked in gray).

and neglected more sophisticated board-evaluation functions. Typical functions in-
cluded: material values for the different pieces, penalty for bishops in initial posi-
tions, bonus for pawns in center of chessboard, penalty for doubled pawns and for
backward pawns, castling bonus if this move was taken and penalty if it was not,
and rook bonus for an open line or on the same line of a passed pawn. The resulting
individuals were successfully matched against commercial chess programs, but only
when the lookahead for the commercial program was strictly limited.

Gross et al. [11] introduced a system that integrates GP and Evolution Strate-
gies to learn to play chess. This system did not learn from scratch, but instead
a “scaffolding” algorithm that could perform the task already was improved by
means of evolutionary techniques. This was accomplished by fine-tuning an alpha-
beta search to traverse less nodes, using three separately evolving modules within
the search: a depth module, determining the remaining search depth for the given
node; a move-ordering module, changing the ordering of all possible moves; and a
position module, returning a value for a given chess position. The main result was
that evolution improved the search algorithm so that it wins by only using 50%
of the resources needed by the f-negascout algorithm [20, 24], and only 6% of the
resources used by a simple alpha-beta algorithm [19].

A recent important work was done by Fogel et al. [8]. A genetic algorithm was
employed to improve tuning of parameters that governed a set of features regarding
board evaluation. Evaluation functions were structured as a linear combination of:
1) the sum of the material values attributed to each player; 2) values derived from
tables indicating the worth of having certain pieces at certain values—“positional
value tables” (PVTs); and 3) three neural networks: one for each player’s front two
rows, and one for the central 16 squares. Games were played using an alpha-beta

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

8 Hauptman and Sipper

search, the depth of which was four ply, except for certain advantageous positions,
where the search depth was extended to six ply.

The best evolved neural network achieved an above-Master level of performance,
estimated at 2437 ?. Although this work proved that evolution can be successful at
developing good artificial chess players, it is important to note that the nonevolved
programs used, without the inclusion of the neural networks, still performed at an
Expert level (estimated at 2066). Thus, the evolutionary procedure did not account
for the entire level of performance, but only for the (non-trivial) transition from
Expert to Master.

Another important aspect of all works described above is that no apparent effort
was made to match human modes of thinking, relying more on knowledge and less
on search. Such attempts are typically restricted to the field of cognitive psychology.

3. GP-EndChess

We previously developed a chess endgame player using GP [12]. In our work, each
individual—a LISP-like tree expression—represented a strategy, the purpose of
which was to evaluate a given board configuration and generate a real-valued score.
The tree’s internal nodes are called functions, and the leaves—terminals. We used
simple Boolean functions (AND, OR, NOT), and IF functions; terminals were used
to analyze certain features of the game position. We included a large number of
terminals, varying from simple ones (such as the number of moves for the player’s
king), to more complex features (for example, the number of pieces attacking a
given piece). A more complete description of functions and terminals used is given
below.

In order to better control the structure of our programs we used Strongly Typed
Genetic Programming (STGP) [22], a method in which types are assigned to all
GP-tree edges. This way, it is possible to impose structural constraints on the tree
(for example, deciding that a given terminal may or may not be the value returned
from the entire tree).

3.1. Board evaluation

Our aim was to develop evaluation strategies that bear similarity to human board
analysis (for example, see [5] and [6]). Thus, instead of looking deep into the game
tree we traverse less nodes—but consider each node more thoroughly. As such, our
strategies use only limited lookahead—typically 1.

aChess players may obtain a nationally (or internationally) recognized numerical rating, using a
scoring system developed by the mathematician Arpad Elo (therefore referred to as an “ELO”
score). Beginners start at 1300 points, and every win raises a player’s rating using a formula that
takes the difference from the opponent’s rating into account (i.e., more points for defeating a
stronger opponent). Master level is typically attained at 2200 points, and Grandmaster at 2400
(although these titles are only earned at special official tournaments).

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 9

The machine player received as input all possible board configurations reachable
from the current position by making one legal move (this is quite easy to compute).
After these boards are evaluated, the one that received the highest score is selected,
and that move is made. Thus, an artificial player is generated by combining an
(evolved) board evaluator with a program that generates all possible next moves.

Although this approach has been successfully used in a number of game-strategy
evolution scenarios (see [7]), it was, as far as we know, the first time it was applied
to chess endgames.

3.2. Tree topology

Our programs played chess endgames consisting of kings, queens, and rooks (in
the future we shall also consider bishops and knights). Each game started from a
different (random) legal position, in which no piece is attacked, e.g., two kings, two
rooks, and two queens in a KQRKQR endgame. Although at first each program was
evolved to play a different type of endgame (KRKR, KRRKRR, KQKQ, KQRKQR,
etc.), which implies using different game strategies, the same set of terminals and
functions was used for all types. Moreover, this set was also used for our more
complex runs, in which GP chess players were evolved to play several types of
endgames. Our ultimate aim was the evolution of general-purpose strategies.

Still, as most chess players would agree, playing a winning position (e.g., with
material advantage) is very different than playing a losing position, or an even one.
For this reason, each individual contained three trees: an advantage tree, an even
tree, and a disadvantage tree. These trees were used according to the current status
of the board. The disadvantage tree is smaller, since achieving a stalemate and
avoiding exchanges requires less complicated reasoning.

3.3. Tree nodes

While evaluating a position, an expert chess player considers various aspects of the
board. Some are simple, while others require a deep understanding of the game.
Chase and Simon found that experts recalled meaningful chess formations better
than novices [6]. This lead them to hypothesize that chess skill depends on a large
knowledge base, indexed through thousands of familiar chess patterns.

We assumed that complex aspects of the game board are comprised of simpler
units, which require less game knowledge, and are to be combined in some way. Our
chess programs use terminals, which represent those relatively simple aspects, and
functions, which incorporate no game knowledge, but supply methods of combining
those aspects. As we used STGP, all functions and terminals were assigned one or
more of two data types: Float and Boolean. We also included a third data type,
named Query, which could be used as any of the former two.

The function set used included the If function, and simple Boolean functions. Al-
though our tree returns a real number, we omitted arithmetic functions, for several

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

10 Hauptman and Sipper

Table 1. Function set of GP individual. B: Boolean, F: Float.

F=If3(B,, F1, F) If B; is non-zero, return F7, else return Fy

B=0r2(B4, B>) Return 1 if at least one of By, B> is non-zero, 0 otherwise
B=0r3(B;, B2, Bs) Return 1 if at least one of B;, Bs, Bs is non-zero, 0
otherwise

B=And2(B;, B>) Return 1 only if B; and B, are non-zero, 0 otherwise
B=And3(B;, Bs, Return 1 only if B;, Bs, and B3 are non-zero, 0 other-

Bs3) wise
B=Smaller(By, B2) Return 1 if B; is smaller than Bs, 0 otherwise
B=Not(Bs) Return 0 if B; is non-zero, 1 otherwise

reasons. First, a large part of contemporary research in the field of machine learn-
ing and game theory (in particular for perfect-information games) revolves around
inducing logic rules for learning games (for example, see [10], [3] and [2]). Second,
according to the players we consulted, while evaluating positions involves consid-
ering various aspects of the board, some more important than others, performing
logic operations on these aspects seems natural, while mathematical operations does
not. Third, we observed that numeric functions sometimes returned extremely large
values, which interfered with subtle calculations. Therefore the scheme we used was
a (carefully ordered) series of Boolean queries, each returning a fixed value (either
an ERC or a numeric terminal, see below). See Table 1 for the complete list of
functions.

We developed most of our terminals by consulting several high-ranking chess
players (the highest-ranking player we consulted was Boris Gutkin, ELO 2400, In-
ternational Master, and fully qualified chess teacher). The terminal set examines
various aspects of the chessboard, and is be divided into 3 groups:

1. Float values, created using the ERC (Ephemeral Random Constants) mecha-
nism (see [17] for details). An ERC is chosen at random to be one of the following
six values £1-{1,1, 2} - MAX (M AX was empirically set to 1000), and the inverses
of these numbers. This guarantees that when a value is returned after some group

of features has been identified, it will be distinct enough to engender the outcome.

2. Simple terminals, which analyze relatively simple aspects of the board, such
as the number of possible moves for each king, and the number of attacked pieces
for each player. These terminals were derived by breaking relatively complex as-
pects of the board into simpler notions. More complex terminals belong to the next
group (see below). For example, a player should capture his opponent’s piece if it is
not sufficiently protected, meaning that the number of attacking pieces the player
controls is greater than the number of pieces protecting the opponent’s piece, and

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 11

the material value of the defending pieces is equal to or greater than the player’s.
Adjudicating these considerations is not simple, and therefore a terminal that per-
forms this entire computational feat by itself belongs to the next group of complex
terminals.

The simple terminals comprising this second group are derived by refining the
logical resolution of the previous paragraphs’ reasoning: Is an opponent’s piece
attacked? How many of the player’s pieces are attacking that piece? How many
pieces are protecting a given opponent’s piece? What is the material value of pieces
attacking and defending a given opponent’s piece? All these questions are embodied
as terminals within the second group. The ability to easily embody such reasoning
within the GP setup, as functions and terminals, is a major asset of GP.

Other terminals were also derived in a similar manner. See Table 2 for a complete
list of simple terminals. Note that some of the terminals are inverted—we would
like terminals to always return positive (or true) values, since these values represent
a favorable position. This is why we used, for example, a terminal evaluating the
player’s king’s distance from the edges of the board (generally a favorable feature
for endgames), while using a terminal evaluating the prozimity of the opponent’s
king to the edges (again, a positive feature).

3. Complex terminals. These are terminals that check the same aspects of the
board a human player would. Some prominent examples include: the terminal Opp-
PieceCanBeCaptured considering the capture of a piece; checking if the current po-
sition is a draw, a mate, or a stalemate (especially important for non-even boards);
checking if there is a mate in one or two moves (this is the most complex terminal);
the material value of the position; comparing the material value of the position to
the original board—this is important since it is easier to consider change than to
evaluate the board in an absolute manner. See Table 3 for a full list of complex
terminals.

3.4. Fitness evaluation

As we used a competitive evaluation scheme, the fitness of an individual was deter-
mined by its success against its peers. We used the random-2-ways method, in which
each individual plays against a fixed number of randomly selected peers (see [23] for
full details). Each of these encounters entails a fixed number of games, each starting
from a randomly generated position.

The score for each game is derived from the outcome of the game. Players that
manage to mate their opponents receive more points than those that achieve only
a material advantage. Draws are rewarded by a score of low value and losses entail
no points at all.

The final fitness for each player is the sum of all points earned in the entire
tournament for that generation. We used the standard reproduction, crossover, and
mutation operators, as in [17]. The major parameters were: population size — 80,

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

12 Hauptman and Sipper

Table 2. Simple terminals. Opp: opponent, My: player.

B=NotMyKingInCheck()

Is the player’s king not being checked?

B=IsOppKingInCheck()

Is the opponent’s king being checked?

F=MyKingDistEdges()

The player’s king’s distance form the edges of
the board

F=0OppKingProximity ToEdges()

The player’s king’s proximity to the edges of
the board

F=NumMyPiecesNotAttacked()

The number of the player’s pieces that are not
attacked

F=NumOppPiecesAttacked()

The number of the opponent’s attacked pieces

F=ValueMyPiecesAttacking()

The material value of the player’s pieces which
are attacking

F=ValueOppPiecesAttacking()

The material value of the opponent’s pieces
which are attacking

B=IsMyQueenNotAttacked()

Is the player’s queen not attacked?

B=IsOppQueenAttacked()

Is the opponent’s queen attacked?

B=IsMyFork()

Is the player creating a fork?

B=IsOppNotFork()

Is the opponent not creating a fork?

F=NumMovesMyKing)()

The number of legal moves for the player’s
king

F=NumNotMovesOppKing()

The number of illegal moves for the opponent’s
king

F=MyKingProxRook()

Proximity of my king and rook(s)

F=0OppKingDistRook(

Distance between opponent’s king and rook(s)

)
B=MyPiecesSameLine()

Are two or more of the player’s pieces protect-
ing each other?

B=OppPiecesNotSameLine()

Are two or more of the opponent’s pieces pro-
tecting each other?

B=IsOppKingProtectingPiece()

Is the opponent’s king protecting one of his
pieces?

B=IsMyKingProtectingPiece()

Is the player’s king protecting one of his
pieces?

generation count — between 150 and 250, reproduction probability — 0.35, crossover
probability — 0.5, and mutation probability — 0.15 (including ERC).

3.5. Results

Our evolved players were capable of drawing (and winning once in a while) against
the CRAFTY engine (version 19.01) by Hyatt (CRAFTY’s source code is avail-

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 13

Table 3. Complex terminals. Opp: opponent, My: player. Some of these terminals perform looka-
head, while others compare with the original board.

F=EvaluateMaterial() The material value of the board

B=IsMateriallncrease() Did the player capture a piece?

B=IsMate() Is this a mate position?

B=IsMatelnOne() Can the opponent mate the player after this
move?

B=O0OppPieceCanBeCaptured() Is it possible to capture one of the opponent’s
pieces without retaliation?

B=MyPieceCannotBeCaptured() Is it not possible to capture one of the player’s
pieces without retaliation?

B=IsOppKingStuck() Do all legal moves for the opponent’s king ad-
vance it closer to the edges?
B=IsMyKingNotStuck() Is there a legal move for the player’s king that

advances it away from the edges?

B=IsOppKingBehindPiece() Is the opponent’s king two or more squares
behind one of his pieces?

B=IsMyKingNotBehindPiece() Is the player’s king not two or more squares
behind one of my pieces?

B=IsOppPiecePinned|() Is one or more of the opponent’s pieces
pinned?
B=IsMyPieceNotPinned() Are all the player’s pieces not pinned?

able at ftp://ftp.cis.uab.edu/pub/hyatt). CRAFTY is a state-of-the-art chess
engine, which uses a typical brute-force approach, with a fast evaluation function
(NegaScout search) and all the standard enhancements [14]. CRAFTY finished sec-
ond at the 12th World Computer Speed Chess Championship, held in Bar-Tlan
University in July 2004. According to www.chessbase.com, CRAFTY has a rating
of 2614 points, which places it at the human Grandmaster level. CRAFTY is thus,
undoubtedly, a worthy opponent.

GP individuals were also pitted against MASTER: A strategy we developed
by consulting several highly skilled chess players, including an International Chess
Master (see Section 3.3). We implemented the ideas gleaned—both as terminals,
and as more sophisticated terminal combinations, reflecting deep considerations
while evaluating a position—to form the strongest man-made evaluation function
we could construct: MASTER. Our evolved program, GPEC, turned out to be
notably better than MASTER, the best program we could come up with.

We challenged both CRAFTY and MASTER in fast-paced games (known as
blitz games), playing 4 types of endgames: KRKR (i.e., King and Rook vs. King

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

14 Hauptman and Sipper

Table 4. Percent of wins, advantages, and draws for best GP-EndChess player in tournament
against two top competitors.

%Wins %Advs %Draws
MASTER 6.00 4.00 80.00
CRAFTY 2.00 2.00 77.00

and Rook), KRRKRR, KQKQ, and KQRKQR. Strategies were first evolved to
play one type of endgame, and then to play multiple endgames. The former means
that the same pieces (one endgame type) were used as starting board, with their
positions changing randomly, while the latter means that several combinations of
pieces (several endgame types) were used, their placement also being random. Since
random starting positions can sometimes be uneven (for example, allowing the
starting player to attain a capture position), every starting position was played
twice, each player playing both Black and White. This way a better starting position
could benefit both players and the tournament was less biased (this stratagem was
adopted for both fitness evaluation and post-evolutionary benchmarking).

Although individuals developed in multiple-endgame runs achieved slightly lower
scores against our two opponents, scores were still close to draw, including some
wins as well. In addition, GP individuals learned more generalized patterns, allowing
them to compete successfully in several types of games. This suggests stronger
learning has taken place. Table 4 summarizes the results attained [12].

4. Analysis of Moves

The previous section presented results pertaining to the ensemble of evolutionary
experiments performed. In this section we “zoom in” on evolved capabilities of one
strong player. We wish to demonstrate that some of the considerations made by our
player (embodied by different scores assigned to moves in each position)—the out-
put—cannot be trivially explained by the elements supplied as building blocks for
evolution—the input.

We describe a sample game played by a strong GP-Endchess individual, obtained
at generation 190, dubbed GPEC190, or GPEC for short. scored 0.485 points against
CRAFTY and MASTER on average (0.5 being a draw) in multiple-endgame runs.
Table 5 summarizes the terminology used below. Here is the code for GPEC’s
advantage tree:

(If3 (0r2 (And2 OppKingStuck OppKingInCheck)
(And3 MyFork NotMyPieceAttUnprotected (And3
MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind)))
(If3 (Or2 (And2 OppKingStuck OppKingInCheck)
(And3 MyFork NotMyPieceAttUnprotected (And3
MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind)))
(If3 (And3 MyFork NotMyPieceAttUnprotected
(And3 MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind))
(If3 OppKingStuck MyKingDistEdges MyKingDistEdges)
(I1£3 OppKingStuck OppKingProxEdges OppKingInCheckPieceBehind))

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 15

Table 5. Chess-game terminology.

a..h columns

1.8 TOWS

K King

Q Queen

R Rook

QxR Queen captures Rook (“x” is a capture)

Qed+ Queen moves to e4 and CHECKS (“+” is a check)
Qed+ Queen moves to e4 and MATES (“#” is a mate)
mate-in-n Mate is unavoidable in n moves

Crft = 4.2 Score assigned by CRAFTY to given position

Positive scores Favorable for White
Negative scores Favorable for Black

9.0 (material) value of Queen
5.0 (material) value of Rook
1.5 If this is the score (or higher) the player is considered to be

in a winning position

(If3 (Not (Or3 OppKingInCheckPieceBehind
(And3 -1000*MateInOne (0Or2 (And2 OppKingStuck
OppKingInCheck) (And3 MyFork NotMyPieceAttUnprotected
(0r2 (And2 OppKingStuck OppKingInCheck) (And3
MyFork NotMyPieceAttUnprotected (0Or2 (And2
OppKingStuck OppKingInCheck) (And3 MyFork
NotMyPieceAttUnprotected (Or2 (And2 OppKingStuck
OppKingInCheck) (And3 MyFork NotMyPieceAttUnprotected
(And3 MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind)))))))))
NotMyKingInCheck) (And2 MyFork OppPieceAttUnprotected)))
(If3 OppKingStuck NumMyPiecesUNATT NumMyPiecesUNATT)
(If3 (0r2 (And2 OppKingStuck OppKingInCheck)
(And3 MyFork NotMyPieceAttUnprotected (And3
MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind)))
(If3 (0r2 (And2 OppKingStuck OppKingInCheck)
(And3 MyFork NotMyPieceAttUnprotected (And3
MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind)))
MyKingDistEdges (If3 (Not (Or3 OppKingInCheckPieceBehind
(And3 -1000*MateInOne (Or2 (And2 OppKingStuck
OppKingInCheck) (And3 MyFork NotMyPieceAttUnprotected
(And3 MyFork NotMyPieceAttUnprotected (And3
MyFork NotMyPieceAttUnprotected OppKingInCheckPieceBehind))))
NotMyKingInCheck) (And2 OppKingInCheck OppKingInCheckPieceBehind)))
(If3 OppKingStuck NumMyPiecesUNATT NumMyPiecesUNATT)
(If3 (And2 MyFork OppPieceAttUnprotected)
(If3 OppKingStuck NumMyPiecesUNATT NumMyPiecesUNATT)
(If3 NotStallmateAdv 10*MaterialValue #NotMovesOppKing))))
(If3 OppKingStuck NumMyPiecesUNATT NumMyPiecesUNATT))))
(If3 OppKingStuck NumMyPiecesUNATT NumMyPiecesUNATT))

In the games below GPEC plays against itself, with CRAFTY being used to
analyze every move (i.e., CRAFTY also plays each board position of the game).
Although GPEC played both Black and White (the original idea here was to see

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

16 Hauptman and Sipper

Fig. 4. Sample Game: Opening position.

how GPEC fares both as Black and White) we focus only on White’s moves, since
in the following examples the number of possible moves for White is on average
above 30, while for Black—only 3-4.

CRAFTY here serves as a superb yardstick, allowing us to compare the scores
assigned by GPEC to “real” scores (CRAFTY’s scores were obtained by deep anal-
ysis of each move, typically lasting 25-30 seconds, at the average speed of above
1500 KNodes/sec, so are therefore highly reliable). Since exact scores assigned by
different chess engines to moves vary widely, calculating a correlation factor between
CRAFTY’s scores and GPEC’s scores would be futile. However, if a win (mate-in-
n) exists, or there is a smaller advantage to one of the sides, (near) optimal moves
are more easily identified (as maintaining the advantage), and distinguished from
“bad” ones (losing the advantage).

Since in this type of position (KQRKQR, with no piece attacked at the start-
ing position) the player to move first (White in our experiments) has the strategic
advantage, in order to verify correct play we should check that the player main-
tains the advantage, especially if a mate-in-n was identified by CRAFTY, making
the optimal line of play well defined. The player should assign higher scores to
moves assigned higher scores by CRAFTY, and lower scores to moves forfeiting the
advantage.

Instead of going into the details of each move, we display scoring tables for the
moves considered, and their assigned scores (both by CRAFTY and GPEC), and
only discuss some of the moves.

We discuss a sample game, for which the moves appear in Table 6. The starting
position is given in Figure 4.

As can be seen, the best moves according to CRAFTY were always included in
GPEC’s highest-rated moves (top scores). However, play was not always optimal
(for example, see second move) since other, sub-optimal, good moves also received
high scores. Since there are always 36 or more possible moves, it is highly unlikely
that such a result would stem from mere chance.

We hereby discuss some of GPEC’s tactics, and and relevant terminals that may
effect them:

e Capturing pieces (also known as material) is an integral part of any chess-
playing program'’s strategy. Indeed, one might even construct a strong chess
program based solely on material considerations and deep lookahead. How-
ever, since blindly capturing pieces is far from being a perfect strategy, an
important test to a program’s playing strength is its ability to avoid cap-
turing “poisoned” pieces (eventually leading to losing the game). Knowing
that capturing a piece is wrong typically requires tapping more elaborate

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 17

Table 6. Top-scoring possible moves for White in sample game, along with scores assigned by
CRAFTY and GPEC. Each column represents the best options for White for the given moves
(according to GPEC). All moves not appearing in the table were assigned a score of 0.0 by GPEC.
Moves for Black are not included since the number of possible moves is very small. Moves played
by GPEC are shown in bold. The bottom lines show the total number of possible moves for this
position, and Black’s reply. This game was only six moves long.

Movel CRAFTY GPEC Move2 CRAFTY GPEC
Qd3+ mate-in-9 6.0 Rab+ mate-in-8 6.0
Qf3+ mate-in-9 6.0 Qf5+ mate-in-8 6.0
Qg4+ 6.75 6.0 Qe3+ mate-in-13 6.0
Qel+ 6.7 5.0 Qxc4d 6.7 4.0
Qbl+ 0.0 4.0 Qg3+ 0.0 3.0
possible: | 39 moves Possible: | 37 moves

Black: Keb Black: Kd5

Move3 CRAFTY GPEC Move4 CRAFTY GPEC

Rd3+ mate-in-12 6.0 Qe6+ mate-in-11 4.0

Ra6+ 6.05 5.0 Qe8+ mate-in-11 4.0

Qb6+ 6.8 4.0 Qf3+ mate-in-15 0.0

Qd3+ 0.0 2.0

Qg3+ 0.0 2.0

Possible: | 39 moves Possible: | 36 moves

Black: Kc6 Black: Kch

Moveb CRAFTY GPEC Moveb6 CRAFTY GPEC

Qd5+ mate-in-7 5.0 Rb3+ mate-in-4 6.0

Qf5+ 6.5 5.0 Qxc4 6.05 5.0

Qe3+ mate-in-8 5.0 Qd6+ 6.8 4.0

Qc8+ mate-in-13 4.0 Qeb+ 0.0 2.0
Qd8+ 0.0 2.0

Possible: | 40 moves Possible: | 39 moves

Black: Kb6 Black: Kab6

knowledge, or looking ahead deeper into the game tree. On the second move
GPEC can capture the opponent’s rook by Qxc4. This is a good move
(scored 6.7 by CRAFTY), not a blunder, but still sub-optimal since there
exist other moves leading to mate-in-8 and mate-in-13. GPEC awarded
6.0 points to the two optimal moves (leading to mate-in-8) and to Qe3+,
which is slightly sub-optimal (mate-in-13) and stochastically selected Qe3+.
The capture move received only 4.0 points. Preferring a move leading to
mate-in-13 over a strong capturing move is by no means a trivial achieve-
ment for a program with a lookahead of 1! To sum up, GPEC has learned

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

18 Hauptman and Sipper

through emergent evolution the value of material (manifested in not los-
ing pieces), but knows when it is less important. Relevant terminals are:
EvaluateMaterial, IsMateriallncrease, IsMyQueenNotAttacked, IsMyFork,
OppPieceAttackedUnprot.

e GPEC has learned to identify the need to repeatedly check the opponent
(most moves in the table are checking moves), which is usually crucial to
maintaining the advantage. Still, there is much difference between various
checking moves (noted both by GPEC’s and CRAFTY’s varying scores to
these moves). Related terminals: IsOppKingInCheck, IsOppKingBehind-
Piece, IsMate.

e Cornering the opponent’s king was an important factor in GPEC’s decision.
As can be seen in the table, moves leaving less free squares to the oppo-
nent’s king received higher scores (this is reflected in the NumNotMovesOp-
ponentKing terminal’s output). While this tactic is important when try-
ing to deliver a mate, GPEC correctly avoids such moves that jeopardize
the attacking piece. Moreover, GPEC still differentiated between cornering
moves, assigning higher scores to moves leading to relatively closer mates
(see moves 4, 5, 6). More relevant terminals: IsOppKingStuck, OppKing-
Proximity ToEdges, IsOppKingBehindPiece.

e GPEC preferred to attack with the queen, instead of the rook (though some-
times the rook is selected to attack). This was correct in various positions
(as can be seen in CRAFTY’s scores). The queen is also more capable of
delivering forks. Relevant terminals: ValueMyPiecesAttacking, IsMyFork.

The list given here is only partial, but aids in grasping some of the complicated
considerations involved in our player’s decisions.

It should be mentioned that our evolved player played extremely well, though
not perfectly. The main flaw was the lack of diversity in scoring—GPEC typically
assigned a score of 0.0 to most non-winning moves. It is true that identifying the
winning moves is usually sufficient to win, but when playing on the losing side it
is still important to delay the loss as much as possible, as the opponent may make
a mistake. As we know that GPEC can differentiate near-mates from further ones,
this was not utilized while playing the losing side.

5. Strategic Emergence

In the previous section we witnessed a strong (though not perfect) level of play pre-
sented by the evolved individual. Now, we turn to examining the emergent aspects
of this skill. First, we will try to break it down and show that it is more than the
sum of its components (GP-tree terminals). Then, we will gradually construct the
strongest players we can, using increasingly large groups of these “parts,” and test
their performance.

As several terminals were deemed relevant to our player’s strategies, we first
turn to examining them in isolation.

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 19

5.1. Single terminals

The “atoms” of our individual are single terminals. The basic method for calculating
scores is the same as the one we used in [12]: 1 point is awarded per win, and 0.5
points per draw (as in chess tournaments)—averaged across 500 games. Thus, an
overall value of 1 would be a perfect score, and 0.5 would mean playing at a level
more or less equal to the opponent’s. The score against CRAFTY and against
MASTER is averaged to receive the overall final score. We assessed the playing
strength of each terminal, using three measures:

(1) First, we examined the playing strength of individuals containing only the given
terminal in their evaluation function (playing vs. CRAFTY and MASTER). ®
Each terminal was assigned a score reflecting its performance, marked SsynGLE-
Since 0.16 is the score for random evaluation functions in our experiments,
terminals that score 0.16 (or less) presented zero (or even negative) playing
strength.

(2) For the second measure, marked Sprs, we “handicapped” several strong
endgame players we developed (including GPEC190), by disabling the given
terminal (altering its function to return either a random number or zero when-
ever it was called, instead of the regular output). The scores reflect the average
decrease in performance when the given terminals were thus disabled.

(3) The third measure was the result of sets of experiments (containing 10 runs for
each terminal), in which we evolved individuals containing all terminals listed
except for the given terminal. Under this condition, the strongest individuals
possible were evolved. We averaged their performance, and subtracted it from
0.485, which is GPEC’s score (to reflect the fact that if stronger individuals
were evolved without the terminal, it is probably less influential). This score is
presented as the last measure ¢, marked Syo.

The Strength of each terminal was computed as the average of all three measures:
Strength = § - (SsinaLe + Sprs + Sno).

Results are summarized in Table 7. As can be seen, the contribution of each
“atom” to GPEC’s overall success—even when measured in multiple ways—is rela-
tively small. As noted above, Ss;ngLE scores below 0.16 mean that the terminal is,
in and of itself, worse than a random function (although a random function would
score 0 on the 2nd and 3rd measures). As some terminals used by GPEC190 (for ex-
ample, OppKingStuck) received zero or negative SsrnerE scores, it is highly likely
that using these terminals is non-trivial for evolution with the full terminal set.

b1t was possible to test out terminals this way (the entire evaluation function being the terminal),
since they are all implemented such that they return larger values for better properties of the board.
For example, compare NotMyKingInCheck (returning 1 when the player’s king is not attacked,
and 0 otherwise) to OppKingInCheck (returning 1 when the opponent’s king is attacked).

“For some terminals, this score is less significant since there are other terminals with highly similar
functionality available to evolution. For example: MaterialValue and IsMateriallncrease.

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

20 Hauptman and Sipper

Table 7. We present the 12 most influential single terminals, sorted by overall Strength score (right
column). This score was derived from 3 measures: SsyyeLE, the average score against CRAFTY
and MASTER when using only the given terminal in the evaluation function, after subtracting
0.16 (random evaluation function score); Sprg, the average decrease in performance of several
strong players when the given terminal is still present—but disabled (returns a random value);
SNo, the average score for the best evolved individuals when evolving with all terminals ezcept
the given one, subtracted from 0.5, which is the playing strength required to draw with CRAFTY.
The overall Strength of the terminal is the average of these 3 measures.

Terminal SsinerLe | Sprs | Sno | Strength
NotMyPieceAttackedUnprot 0.26 0.131 | 0.10 0.164
IsMateInOne 0.16 0.105 | 0.15 0.138
NotMyPieceAttacked 0.32 0.010 | 0.04 0.123
NumMyPiecesNotAttacked 0.30 0.008 | 0.06 0.123
Material Value 0.18 0.056 | 0.11 0.115
IsMate 0.16 0.08 | 0.10 0.113
IsMateriallncrease 0.19 0.021 | 0.12 0.110
OppKingStuck 0.14 0.048 | 0.12 0.103
OppKingProximity ToEdges 0.16 0.106 | 0.02 0.096
IsMyFork 0.16 0.024 | 0.05 0.078
NotMyKingStuck 0.16 0.027 | 0.03 0.073
OppKingInCheck 0.04 |0.027] 010 | 0.057

Another interesting thing to note is that the terminal NumNotMovesOppKing,
which is clearly an integral part of GPEC190’s strategy (due to the apparent close-
ness of GPEC’s evaluation scores and those of this terminal) did not even make it
to the top 12 (it is ranked only 15th). Also, IsMateInOne (ranked 2nd) is not used
by GPEC190, and several other strong players.

We conclude that single terminals are weak and insufficient to explain the overall
playing strength of a full-blown evolved strategy, even if some diversity can be seen
in their Strength measures.

5.2. Terminal pairs

We turn to examining small “molecules” containing 2 atoms each: we selected
pairs of strong terminals—the top-ranking ones from Table 7 (except that
we avoided pairing similar terminals, such as NotMyPieceAttackedUnprot and
NotMyPieceAttacked)—and attempted to reach the maximal level of play attain-
able with these pairs. This was accomplished by evolving GP individuals using only
one pair of terminals (per experiment), and all functions from the function set (see
Tables 1, 2 and 3). The depth of the GP-trees was bound by 4.

Results appear in Table 8, reflecting the best evolved individual’s playing
strength against CRAFTY and MASTER for each pair. As can be seen in this
table, combining two elements does not necessarily yield a better result. Sometimes

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 21

Table 8. Scores for pairs of several top-ranking terminals. The top table lists the terminals used,
along with SsrngrE scores (for reference). Note that the terminals are sorted according to over-
all Strength, and not Ssynygrg scores. In the bottom table, column % shows the scores of the
terminal at row ¢, paired with all those in the rows above it. For example, the value at col-
umn 5, row 3 (0.185) is the score when the 3rd and 5th terminals together—Material Value and
OppKingProximityToEdges—comprise the evaluation function. Scores are actual points awarded
for the strongest individuals in each run.

Index Terminal SSINGLE‘

1 NotMyPieceAttackedUnprot 0.26

2 IsMateInOne 0.16

3 Material Value 0.18

4 OppKingStuck 0.14

5 OppKingProximity ToEdges 0.16

6 IsMyFork 0.16

7 OppKingInCheck 0.04
Index 2 3 4 5 6 7

1 0.23 | 0.217 | 0.212 | 0.232 | 0.252 | 0.26

2 0.191 | 0.149 | 0.151 | 0.194 | 0.04
3 0.19 | 0.185 | 0.178 | 0.18
4 0.169 | 0.146 | 0.174
5 0.15 | 0.05
6 0.164

the scores for the pair were higher than each of the individual terminals compris-
ing it (for example, MaterialValue and OppKingStuck combined, received a score
of 0.19, which is higher than their separate scores), but mostly this did not oc-
cur. The score of the terminal NotMyPieceAttackedUnprot, which was 0.26, was
not improved with any combination of any single terminal (and was often even
hampered).

Thus, it may be observed that emergence did not occur here—the road to im-
proving individual terminals’ performance lies far beyond simply pairing them with
other strong terminals, even when many combinations are tried by evolution.

5.3. Variant terminal groups

In light of the experiments described above, in order to better understand the con-
nection between the number of “atoms” or “molecules” to the player’s performance,
and to partially answer the questions regarding the linearity of improvement, we
conducted a final series of experiments. Here the size of individuals was allowed to
grow up to full-scale “poly-molecules” (“cells”), comprising all terminals. This way,
the increase in playing level (and emergent aspects) may be observed as we move
from simple units to more complex ones.

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

22 Hauptman and Sipper

05 T T T T T T

0.45

0.4

0.35

Score

0.3

0.25 - B

0.2 —

1 1 1 1 1 1
5 10 15 20 25 30
Number of Terminals

Fig. 5. Best results obtained by evolution using an increasing number of terminals.

This was accomplished by increasing the size, S, of the terminal group in each
set of experiments. Starting from S = 1, for each S in {1,6,11,..31} (31 being the
total number of different terminals), we manually select S terminals and conduct
an experiment (evolutionary process) using only these terminals, with all functions
available. Since weaker terminals may be randomly selected, and evolutionary runs,
being partially stochastic, may sometimes fail to come up with good solutions, we
repeated the process several times for each S.

After each run the strongest individual’s score against both CRAFTY and MAS-
TER was averaged for all runs (with the same S-value). Since improvement with
larger groups of terminals had been more difficult, several small “cells” were con-
structed by hand (e.g., a few functions containing a good combination of two or
more terminals were constructed), and added to the process. Results appear in
Figure 5.

It is important to note that although the graph seems quasi-linear, improvement
is strictly non-linear, since as the level of play increases, improvement becomes
more difficult. Indeed, reaching the higher scores (in the experiments with more
terminals), took considerably more time and computational effort.

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 23

6. Concluding Remarks and Future Work

After describing the experiments that gave rise to strong evolved chess endgame
players we analyzed them in several empirical ways. Moreover, we examined the
emergent capabilities of evolved individuals, primarily in the sense that their knowl-
edge of the game (reflected in their scores) transcended the knowledge that was
infused into them.

We started by breaking up a strategy into its comprising parts, and examining
the parts’ effect in several ways. As expected, simple functions did not perform well
on their own. However, their effect was more pronounced when removed (the Syo
measure); for example, while the IsMateInOne terminal, on its own, scored 0.16 (the
same score as the random function), when it was disabled in strong players, their
scores decreased on average by Sprs = 0.105, which is a strong effect on playing
level (as noted in the previous section, when a player’s level is high, competition
becomes harsh, and every point counts).

Pairs of terminals did not prove to be much of an improvement. Although for
now we only checked the pairs’ scores (and did not conduct the more elaborate
testing we did with single terminals), we were still surprised by the difficulty in
joining strong terminals together correctly to use with the entire function set, even
in such small groups.

As a result, considerably more computational effort was put into constructing
the variant terminal groups. In addition, evolution was aided with several functions
specifically tailored for this experiment. While this helped evolution converge faster,
it may have diverted it towards local maxima. More time and effort is needed to
ascertain whether evolution may find better solutions, comprised of smaller parts.

All in all, we gained insight into the emergent aspects of our evolving play-
ers’ capabilities. An important conclusion is that the “leap” in performance occurs
somewhere around 21 terminals, since the level of play presented by players with
more terminals surpassed the capabilities of MASTER, which was constructed by
hand, and represents our best non-evolutionary improvement.

The methodology used herein may also be applied to other domains. Since GP
is widely used throughout the academic world, as well as in numerous industrial
applications, emergent qualities of solutions crafted by GP may be examined by
following the steps described herein: determining the strength (defined according
to the task domain) of each member of the terminal and function sets, as well
as combinations of these elements thereof, which in turn may shed light on the
transcendence from simple atoms to fully functioning solutions.

In the future we intend to tackle more endgames. Also, we intend to introduce
more game-tree search (deeper than the lookahead of 1 used in these experiments)
to the process, and examine its effect on playing strengths of groups of terminals
of varying sizes. As contemporary search engines present strong playing level using
deep search and little knowledge, we feel that combining search with knowledge will
yield even better insights into the emergent aspect of the intelligence presented by

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

24 Hauptman and Sipper

artificial chess players.

References

[1]

[2]

[12]

P. J. Angeline and J. B. Pollack. Competitive environments evolve better solutions
for complex tasks. In Proceedings of the 5th International Conference on Genetic
Algorithms (GA-93), pages 264-270, 1993.

M. Bain. Learning Logical Exceptions in Chess. PhD thesis, University of Strathclyde,
Glasgow, Scotland, 1994.

G. Bonanno. The logic of rational play in games of perfect information. Pa-
pers 347, California Davis - Institute of Governmental Affairs, 1989. available at
http://ideas.repec.org/p/fth/caldav /347 html.

M. Campbell, A. J. Hoane, Jr., and F.-H. Hsu. Deep blue. Artificial Intelligence,
134(1-2):57-83, 2002.

C. F. Chabris and E. S. Hearst. Visualization, pattern recognition, and forward search:
Effects of playing speed and sight of the position on grandmaster chess errors. Cog-
nitive Science, 27:637-648, 2003.

N. Charness. Expertise in chess: The balance between knowledge and search. In K. A.
Ericsson and J. Smith, editors, Toward a general theory of Ezpertise: Prospects and
limits. Cambridge University Press, Cambridge, 1991.

G. J. Ferrer and W. N. Martin. Using genetic programming to evolve board evaluation
functions for a board game. In 1995 IEEE Conference on Evolutionary Computation,
volume 2, pages 747-752, Perth, Australia, 1995. IEEE Press.

D. Fogel, T. J. Hays, S. Hahn, and J. Quon. A self-learning evolutionary chess pro-
gram. In Proceedings of the IEEE, volume 92:12, pages 1947-1954. IEEE Press, 2004.
P. W. Frey. Chess Skill in Man and Machine. Springer-Verlag New York, Inc., Secau-
cus, NJ, USA, 1979.

J. Firnkranz. Machine learning in computer chess: The next generation. International
Computer Chess Association Journal, 19(3):147-161, 1996.

R. Gross, K. Albrecht, W. Kantschik, and W. Banzhaf. Evolving chess playing pro-
grams. In W. B. Langdon, E. Canti-Paz, K. Mathias, R. Roy, D. Davis, R. Poli,
K. Balakrishnan, V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C.
Schultz, J. F. Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings
of the Genetic and Evolutionary Computation Conference, pages 740-747, New York,
9-13 2002. Morgan Kaufmann Publishers.

A. Hauptman and M. Sipper. GP-endchess: Using genetic programming to evolve
chess endgame players. In M. Keijzer, A. Tettamanzi, P. Collet, J. I. van Hemert,
and M. Tomassini, editors, Proceedings of the 8th European Conference on Genetic
Programming, volume 3447 of Lecture Notes in Computer Science, pages 120-131,
Lausanne, Switzerland, 2005. Springer.

J. H. Holland. Adaptation in natural artificial systems. University of Michigan Press,
Ann Arbor, 1975.

A. X. Jiang and M. Buro. First experimental results of ProbCut applied to chess. In
Proceedings of 10th Advances in Computer Games Conference, pages 19-32. Kluwer
Academic Publishers, Norwell, MA, 2003.

G. Kendall and G. Whitwell. An evolutionary approach for the tuning of a chess eval-
uation function using population dynamics. In Proceedings of the 2001 Congress on
Evolutionary Computation CEC2001, pages 995-1002, COEX, World Trade Center,
159 Samseong-dong, Gangnam-gu, Seoul, Korea, 27-30 2001. IEEE Press.

J. R. Koza. Genetic programming: On the Programming of Computers by Means of

December 20, 2006 9:40 WSPC/INSTRUCTION FILE chessemer-2

[17]

[18]

[19]
[20]
[21]
[22]

23]

[24]
[25]
[26]

27]
28]

[29]

Emergence of Complex Strategies in the Evolution of Chess Endgame Players 25

Natural Selection. MIT Press, Cambridge, MA, 1992.

J. R. Koza. Genetic Programming II: Automatic Discovery of Reusable Programs.
MIT Press, Cambridge Massachusetts, 1994.

J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec, J. Yu, and G. Lanza. Ge-
netic Programming IV: Routine Human-Competitive Machine Intelligence. Kluwer
Academic Publishers, Norwell, MA, 2003.

T. A. Marsland and M. S. Campbell. A survey of enhancements to the alpha-beta
algorithm. In Proceedings of the ACM National Conference, pages 109-114, 1981.

T. A. Marsland, A. Reinefeld, and J. Schaeffer. Research note: Low overhead alter-
natives to sss. Artificial Intelligence, 31:185-199, 1987.

M. Mitchell. An Introduction to Genetic Algorithms. The MIT Press, Cambridge,
MA, 1996.

D. J. Montana. Strongly typed genetic programming. Evolutionary Computation,
3(2):199-230, 1995.

L. A. Panait and S. Luke. A comparison of two competitive fitness functions. In W. B.
Langdon, E. Canti-Paz, K. Mathias, R. Roy, D. Davis, R. Poli, K. Balakrishnan,
V. Honavar, G. Rudolph, J. Wegener, L. Bull, M. A. Potter, A. C. Schultz, J. F.
Miller, E. Burke, and N. Jonoska, editors, GECCO 2002: Proceedings of the Genetic
and Evolutionary Computation Conference, pages 503-511, New York, 2002. Morgan
Kaufmann Publishers.

A. Reinefeld. Spielbaum-Suchverfahren. Springer, Berlin, Heidelberg, 1989.

A. L. Samuel. Machine learning. Technology Review, 62:42—45, 1959.

E. Sanchez and M. Tomassini, editors. Evolutionary Algorithms in Towards Evolvable
Hardware, The Evolutionary Engineering Approach, Papers from an international
workshop, Lausanne, Switzerland, October 2-3, 1995, volume 1062 of Lecture Notes
in Computer Science. Springer, 1996.

J. Schaeffer. The history heuristic and alpha-beta search enhancements in practice.
IEEE Trans. Pattern Anal. Mach. Intell., 11(11):1203-1212, 1989.

M. Sipper. Machine Nature: The Coming Age of Bio-Inspired Computing. McGraw-
Hill, New York, 2002.

G. L. Steele Jr. CommonLisp the Language. Digital Press, second edition, 1990.

