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6.1  INTRODUCTION

Size perception (estimating an area of a blob without counting) is 
shared by humans (Brannon, Lutz, & Cordes, 2006) and animals (Cantlon 
& Brannon, 2007). Counting (to report the exact number of items in an 
array), on the other hand, is a more complex ability, which is currently 
known to be specific to humans. Although these two systems are different, 
current literature finds interesting overlaps, which might shed light on the 
development of counting ability through evolution.
First, there is early evidence of shared functional information be-

tween different systems through evolution in the work of Piaget (1955) 
and Flavell (1963), where they suggested that cognitive structures are 
content independent and domain general. Kashtan and Alon (2005) 
demonstrated a similar idea by simulating evolution of artificial neu-
ral networks (ANNs) in an environment with modularly varying goals, 
and showed that the final networks had more reusable building blocks 
than the control networks that evolved in an environment with a single 
fixed goal.
When it comes to numerical abilities, it is commonly suggested that the 

basic numerical intuitions that are shared between humans and animals 
are supported by an evolutionarily ancient approximate number system 
(ANS) where the number of discrete objects are represented as a continu-
ous mental magnitude (Cantlon, Platt, & Brannon, 2009; Dehaene, 2001). 
This core system enables the representation of the approximate number of 
items in visual or auditory arrays without verbally counting (Halberda, 
Mazzocco, & Feigenson, 2008) and might be the root for high-level human 
numerical abilities such as arithmetic (Dehaene, 2001).
Second, early imaging studies that were conducted in order to test 

the hypothesis of a common substrate for processing symbolic and non-
symbolic stimuli revealed a site in the left intraparietal sulcus (IPS) that 
showed greater activation during numerical compared to nonnumeri-
cal judgments (Fias, Lammertyn, Reynvoet, Dupont, & Orban,  2003). 
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Subsequent studies compared stimuli for size, luminance, or number and 
found that the right hIPS (horizontal segment of the IPS) is not devoted ex-
clusively to number processing but is engaged whenever subjects attend 
to the dimension of size—whether numerical or physical (Pinel, Piazza, Le 
Bihan, & Dehaene, 2004). Moreover, in one of the studies (Cohen Kadosh 
et  al.,  2005), a largely overlapping network of frontal, parietal, and oc-
cipitotemporal areas of both hemispheres was found, thus confirming the 
view that many of the neural resources used for number comparison are 
shared by other comparison tasks as well.
Today, it seems that the left IPS mainly responds to numerical stimuli 

in a format-specific manner—specifically, to symbolic stimuli. The right 
IPS, on the other hand, is activated regardless of stimuli format and is also 
activated by nonnumerical magnitudes. These findings led researchers 
to suggest that the right IPS might support a general magnitude system, 
used to process both numerical and nonnumerical magnitudes, rather 
than an abstract approximate number system (Chapter 15).
Third, there is also evidence that nonsymbolic number and cumula-

tive area representation contribute shared and unique variance to math-
ematical competence (Lourenco, Bonny, Ferandez, & Rao, 2012). College 
students were asked to estimate which array was greater in number or 
cumulative area, after which they completed a battery of standardized 
math tests. The authors found that individual differences in both number 
and cumulative area precision were correlated with interindividual dif-
ferences in arithmetic and geometry. Moreover, whereas number preci-
sion contributed unique variance to advanced arithmetic, cumulative area 
precision contributed unique variance to geometry. Based on their results, 
Lourenco et al. (2012) suggested that uniquely human branches of math-
ematics interface with an evolutionarily primitive general magnitude sys-
tem, which includes partially overlapping representations of numerical 
and nonnumerical magnitude.
When thinking about the evolutionary approach, we can identify similar 

patterns between primate approximate counting and human exact count-
ing. Recently, Cantlon, Piantadosi, Ferrigno, Hughes, and Barnard (2015) 
reported that nonhuman primates exhibit a cognitive ability that is algo-
rithmically and logically similar to human counting. In their experiment, 
monkeys were given the task of choosing between two food caches. First, 
they saw one cache baited with peanuts, one at a time. Then, the second 
cache was baited, one peanut at a time. At the point when the second cache 
was approximately equal to the first one, the monkeys spontaneously 
moved to choose the second cache even before that cache was completely 
baited. By using a novel Bayesian analysis, the authors showed that mon-
keys use an approximate counting algorithm for comparing quantities in 
sequence that is incremental, iterative, and condition controlled, similar to 
formal counting in humans.
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Developmental dyscalculia [DD; a severe difficulty in learning and 
making simple mathematical calculations (Kosc, 1974), with an estimated 
prevalence of about 5–7% (Shalev, 2007)] might also serve as a link between 
the ANS and symbolic arithmetic. Today, there is growing evidence that 
the relationship between numerical distance and IPS activity is disrupted 
in children with developmental dyscalculia (Fias et al., 2003), and many 
known effects are compromised in DD (eg, size congruity effect: Rubinsten 
& Henik, 2005, 2006; distance effect: Price, Holloway, Räsänen, Vesterinen, 
& Ansari, 2007). The cause of the deficit might be a network failure be-
tween continuous magnitude processing (ie, the size perception system) 
and discrete magnitude processing (ie, the counting system). Children as 
well as adults who suffer from these specific learning disabilities are at 
a disadvantage in both academic and everyday life situations, especially 
when it comes to handling money (Henik, Rubinsten, & Ashkenazi, 2014). 
Thus, a better evolutionary understanding of the development of count-
ing in relation to size perception can help researchers think of novel ways 
to improve day-to-day life of people with arithmetic disabilities.
Currently, the suggested computerized models explaining how the 

counting system functions use artificial neural networks along with differ-
ent unsupervised learning techniques (ie, teaching a predefined network 
to successfully perform a required task such as counting). Verguts and 
Fias (2004) used an unsupervised learning technique for teaching ANNs 
to process nonsymbolic and symbolic inputs. First, they presented the 
ANNs a nonsymbolic input (eg, a collection of dots) in a comparison task 
and showed the distance and size effects. Then, they presented symbolic 
and nonsymbolic inputs simultaneously and found that the ANNs used 
the number-selective neurons that were already available, when process-
ing symbolic stimuli. Their findings present a possible linkage between 
higher-order numerical cognition and more primitive numerical abilities.
Stoianov and Zorzi (2012) presented binary images (sets of black 

shapes on a white background) to ANNs in a comparison task (ie, “Which 
is larger?”) against a given reference number, and after an unsupervised 
learning process, the ANNs excelled in the task. The given stimuli differed 
by the number of objects presented and their cumulative area (the authors 
controlled both properties). They suggested a “deep network model” 
(which developed through unsupervised learning without using evolu-
tionary techniques), containing one visual input layer and two hidden 
layers, in order to explain the numerosity estimation process. According 
to their model, there are two types of neurons in hidden layer 1: neurons 
that deal with visual processing (center surround neurons) and neurons 
that deal with cumulative area, and hidden layer 2 neurons deal with nu-
merosity processing. In addition, hidden layer 2 neurons’ activity can be 
approximated by a linear combination of the activity of both types of hid-
den layer 1 neurons. The hierarchical model generated the same results 
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in a numerosity comparison task as did human adults, thus can serve as 
the key to understanding the neural mechanism underlying numerosity 
perception.
Based on the researches described earlier, we consider the following 

two potential hypotheses regarding the development of counting. One 
is that the counting system evolved on the basis of a primitive system 
designed to perceive size and evaluate amount of substance (Cantlon 
et al., 2009; Henik, Leibovich, Naparstek, Diesendruck, & Rubinsten, 2012; 
Lourenco et al., 2012). The other is that both systems evolved separately, in 
different periods of time.
In addition, as previously mentioned, exact counting is a complex task. 

Kaufman, Lord, Reese, and Volkmann (1949) suggested that the entire 
enumeration process is carried out first by subitizing, (ie, the phenom-
enon of giving a rapid, confident and accurate report of the amount of 
up to four presented items) and then by counting (from five items and 
above). Thus, subitizing might be a stepping-stone in the development of 
the exact counting system—a theory we examine in the current research.
Herein we present a novel approach of computerized simulation with 

ANNs for examining the development of counting ability, in a process 
known as evolutionary computation.

6.2  EVOLUTIONARY COMPUTATION

Evolutionary computation (EC) is a subfield in computer science that 
is inspired by biology. An evolutionary algorithm (EA) enables solving 
complex problems by using an evolutionary process metaphor.
An evolutionary process usually includes:

•	 An environment with limited resources, which is translated to the 
problem one wants to solve.

•	 Individuals, which are translated into candidate solutions.
•	 A concept of fitness (ie, the compatibility of the individual to 
survive and reproduce in the environment), which is translated to a 
probability of generating new solutions.

In nature, the competition for limited resources causes a selection of 
those who fit better to the environment (ie, natural selection), and as a 
result, the fitness of the population improves over time. The same hap-
pens in EAs, and as in nature, the fit individuals create a new generation 
(ie, new candidate solutions) by using parameters of recombination and 
mutation (see Box 6.1 for an example of a typical EA).
Genetic algorithms (GAs, Goldberg, 1989) are a simple variant of evo-

lutionary algorithms that use a simple alphabet (eg, a binary alphabet “0,” 
“1”) and can solve complex problems with a simple model representation. 
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It should be noted that even though GAs use binary discrete inputs, they 
can represent size, which is continuous, as can be seen in Fig. 6.1a.
Evolutionary algorithms are stochastic, meaning that even for identi-

cal parameter setups, results may vary, but they usually share the same 
trend. Genetic operators (eg, mutation and recombination) can lead to 
new, unexpected, and creative solutions to complex problems.

6.3  CURRENT STUDY (OR HOW CAN EVOLUTIONARY 
ALGORITHMS HELP IN UNDERSTANDING THE 
DEVELOPMENT OF THE COUNTING SYSTEM)?

In this study we computationally examined whether individuals that 
evolved a proficiency in size perception (ie, evolved to solve a classifica-
tion problem of BIG vs. SMALL; Table 6.1) have an advantage in learning 

FIGURE 6.1  Examples of continuous and discrete 2 × 4 binary arrays. (a) Continuous 
stimuli and (b) discrete stimuli. We define a stimulus as continuous if there is a path from 
each visible cell in the array to every other visible cell that passes through visible cells (in 
single up/down/left/right steps; Katz et al., 2013).

BOX 6.1

E X A M P L E  O F  A  T Y P I C A L  E A :

Begin

1.	 Initialize the population with random candidate solutions;
2.	 Evaluate each candidate;
3.	 Repeat until (termination condition is satisfied)

3.1	 Select parents
3.2	 Recombine pairs of parents
3.3	 Mutate the resulting offspring
3.4	 Evaluate new candidates
3.5	 Select individuals for the next generation

End
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to count. In order to test our hypothesis, we chose genetic algorithms to 
develop artificial neural networks through an evolutionary process. We 
used this technique to evolve ANNs that could excel in a size perception 
task and then further evolve the same networks to count. Our main goal 
was to examine whether these ANNs have an advantage in evolving the 
ability to count over new learners of counting (ie, ANNs that did not first 
evolve to perceive size).

6.4  NEUROEVOLUTION OF AUGMENTING 
TOPOLOGIES (NEAT)

NEAT is a method for evolving artificial neural networks using genetic 
algorithms, developed by Stanley and Miikkulainen (2002). It simulates 
evolution by starting with small, simple networks that become increas-
ingly complex through evolution. Just as organisms in nature increased 
in their complexity through evolution, so do neural networks in NEAT. 
This process of continual elaboration allows finding highly sophisticated 
and complex neural networks. NEAT evolves both the connection weights 
and architecture (by adding and removing connections and nodes) of the 

TABLE 6.1 � Size Perception, Counting, and Control Groups’ Genetic Algorithms 
With Their Fitness Functions and Outputs

# Evolution Fitness and output

1 SP A given input is classified as BIG if its number of ones ≥ array.
length/2, and otherwise as SMALL. The same logic is applied 
to the output. BIG is an output with a number of ones that is ≥ 
[array.length/2]. SMALL is an output of a number of ones that 
is < [array.length/2].

2 C For a given input, the exact number of ones given is expected to 
be in the output (without order considerations).

3 SP-C The size perception fitness function is switched to the counting 
fitness function mid-run after 25 generations (the entire size 
perception run took an average of 48.5 generations).

4 C1 This is a random classification task. The set of inputs was 
divided randomly into two groups: one group expected a BIG 
output and the other a SMALL one, similar to SP (see table 
item 1).

5 C1-C The control 1 fitness function switched to the counting fitness 
function after 25 generations. We expected an output of the 
exact number of ones, similar to C (see table item 3).

Note: SP, evolved to perceive size; C, evolved to count; SP-C, evolved first to perceive size and then to 
count; C1, evolved to excel in control 1 task; and C1-C, evolved first to excel in control 1 task and then to 
count (Katz et al., 2013).
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neural networks. The networks start with minimal topologies (this is anal-
ogous to natural evolution that begins from simple forms) and gradually 
become more complex (Stanley & Miikkulainen, 2002).
We chose to use NEATa in order to evolve ANNs to perceive size and 

to count. We analyzed the complexities of the final networks created by 
evolution by examining the number of inner nodes added to the networks 
as the task became more complex.

6.5  METHODS

6.5.1  Stimuli

In order to represent the visual input, we used a 2 by 4 two-dimensional 
binary array. A total of 256 (28) possible stimuli could be produced by this 
array; some of these are discrete and some are continuous. We defined a 
stimulus as continuous if there was a path from each visible cell in the ar-
ray to every other visible cell that passed through visible cells (in single 
up/down/left/right steps). According to this definition, of the 256 pos-
sible stimuli, 147 are discrete and 109 are continuous (Katz, Benbassat, 
Diesendruck, Sipper, & Henik, 2013; Fig. 6.1).
We divided the stimuli into three sets of stimuli:

1.	 The “continuous” set.
2.	 The “discrete” set.
3.	 Both continuous and discrete, which was called the “all” set.

Sets (1) and (2) were composed of 108 stimuli randomly divided into 
training and test sets of 54 stimulib each (no repetitions). Set (3) was com-
posed of a training set of 128 (256/2) stimuli and a test set, which included 
the remaining 128 stimuli.
Prior to being inserted into the NEAT system, the stimulus was flat-

tened into a one-dimensional array of 0s and 1s (Fig. 6.2).
All the evolutionary simulations that we performed included a compar-

ison to a reference number. In each trial the given blob (ie, binary string) 
was compared to the half size of the string array (in all three simulations 
it was 8/2 = 4 for a Boolean array of 2 × 4), meaning: “Is the number of 
‘ones’ in the current blob larger than 4?”

bThis value was chosen because there were 147 discrete and 109 continuous stimuli out of 
256, and we wanted to keep an equal number of stimuli in the training and test groups; 
thus, we chose the minimal group (i.e., 109) and divided it into two equal groups of 54 
stimuli (one for training and one for testing).

aSpecifically, the NEAT4J Java implementation.
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6.5.2  Procedure

Several different types of evolutionary procedures were tested during 
the study. Every evolutionary run was performed 30 times using each of the 
3 stimuli sets (continuous, discrete, and all), resulting in a total of 90 runs 
per type. The procedure was similar for all run types. Every run began 
with a training stage, where the population was trained to succeed in a 
certain task (ie, classify BIG/SMALL blobs or counting the exact number 
of squares of the given blob) until its average fitness score (ie, the score of 
the function that should be optimized in order to continue to the next gen-
eration in evolution; see Fig. 6.3 for fitness calculation formula) exceeded 

FIGURE 6.2  Example of encoding a stimulus into a binary string. (a) Encoding a single 
discrete stimulus of 2 × 4 to a binary representation. (b) Flattening the two-dimensional ar-
ray into a one-dimensional array. (c) A demonstration of how an ANN can perform tasks of 
size perception and counting on the same input (Katz et al., 2013).

FIGURE 6.3  Fitness calculation. The fitness is the summation of all scores of the inputs 
(ie, the stimuli presented to the current individual). The score is calculated according to 
the distance of each digit from the expected array to the observed array (after sorting both 
arrays).
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10%, and more specifically, the value 0.999.c If this condition was not met, 
the algorithm halted after 3000 generations. Next, an evaluation of the 
population took place. During this test stage, each individual was evalu-
ated in relation to each of the tasks relevant to the fitness functions used; 
an additional test on counting accuracy was performed in all runs. For ex-
ample, the “size perception” population trained to perceive size (ie, clas-
sify BIG/SMALL blobs) was tested on size perception (ie, again asked to 
classify BIG vs. SMALL blobs) but also tested on counting (ie, asked to 
count the number of squares of the given blob, see Box 6.2 for the proce-
dure schema).

cThe value 0.999 in size perception and in counting, and 0.998 in subitizing, as this was 
found to be sufficient in order to excel in this task in the testing stage.

BOX 6.2

F R O M  S I Z E  P E R C E P T I O N  T O 
C O U N T I N G  S I M U L AT I O N  S C H E M A

By using evolutionary computation techniques, we generated ar-
tificial neural networks that excelled in size perception and presented 
a significant advantage in evolving the ability to count over those that 
evolved this ability from scratch.
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6.5.3  Genetic Algorithm Parameters

We used the same evolutionary parameters in all the simulations that 
will be described here:

•	 Population size of 100 individuals
•	 Termination condition: fitness of 0.999 or 0.998c or 3000 generations if 
previous condition was not met

•	 Mutation probability Pm = 0.25 (ie, when creating a new generation of 
ANNs, this is the probability of adding/removing connections and 
nodes in the new ANN offspring)

•	 Crossover probability Pc = 1 (ie, the probability that the new ANN 
offspring will end up having half the genes from one parent and half 
from the other)

6.5.4  Calculation of Fitness Function

The fitness was the summation of all scores of the inputs (ie, the stimuli 
presented to the current individual). The score was calculated by the sum-
mation of the differences between the expected array index and the ob-
served array index, and it was normalized by max, which is the output 
length—in our case, 8 (Katz et al., 2013).
Each evolutionary run defined the expected output it got from NEAT. 

When a result from NEAT was received, the fitness function checked if the 
expected output was equal to the observed one. If so, it assigned a 100% 
score, otherwise it calculated a score according to the distance of each digit 
from the expected array to the observed one (after sorting both arrays) as 
follows:

6.6  SIMULATIONS

The following two Simulations #1 and #2 were first presented briefly in 
Katz et al. (2013) and are being described here with great detail in order to 
set the context for the new Simulation #3.

6.6.1  Simulation 1: From Size Perception to Counting  
(Katz et al., 2013)

We created five evolutionary runs in order to test our hypothesis. The 
goal was to train a set of ANNs in a certain task and then switch to a dif-
ferent task by changing the fitness function mid-run. The algorithm per-
formed the switch from one fitness function to the other after a predefined 
number of generations, which was chosen after several trial-and-error 
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runs. We opted for this approach instead of waiting for the networks to 
excel in the tasks, in order to avoid the “overfitting” phenomenon in the 
consecutive runs (ie, bloated networks with too many inner nodes that 
excelled specifically on the training inputs rather than solving the more 
general problem). Thus, we switched from the size classification tasks to 
the counting task after 25 generations (Table 6.1).

6.6.2  Results

We conducted 3 different two-way ANOVA (analysis of variance) tests, 
for 3 different dependent variables: counting score, number of genera-
tions, and number of inner nodes in an ANN.
The 3 (stimuli type) × 5 (evolutionary runs) design was between sub-

jects, since each evolutionary run produced a different population of 
ANNs. The following 5 evolutionary runs were performed:

1.	 Size perception (SP)—the ANNs evolved to perceive size.
2.	Counting (C)—the ANNs evolved to count.
3.	 Size perception and then counting (SP-C)—the ANNs evolved first to 
perceive size and then to count.

4.	Control group (C1)—the ANNs evolved to excel in a control 1 task (a 
classification task; Table 6.1).

5.	 Control and then counting (C1-C)—the ANNs evolved first to excel in 
the control 1 task and then to count.

Each of the 5 evolutionary runs (see previous list) ran 3 times—each 
time with a new stimuli type:

1.	 Continuous stimuli only
2.	Discrete stimuli only
3.	 Both continuous and discrete stimuli

In the following analyses, we present the results that are relevant to our 
theoretical considerations, with significance level of p <  0.05. As previ-
ously mentioned, these results were first reported in Katz et al. (2013) and 
are being explained here with great detail to set the context for the new 
results of Simulation 3).

6.6.2.1  Counting Score (Score of the Final Counting Test)
The counting score (based on the fitness calculation, see Fig.  6.3) was 

higher in networks that first evolved to perceive size or to perform other 
classification tasks than networks that evolved to count independently 
(eg, SP-C vs. C: F (1, 435) = 58.49, MSE = 0.0062, p < 0.01, ηp

2 = 0.118, and 
also C1-C vs. C: F (1, 435) = 385.49, MSE = 0.0062, p < 0.01, ηp

2 = 0.47).
In addition, when the tasks were easy (ie, the networks evolved to excel 

in a single task, eg, SP, C1, and not two tasks as in SP-C or C1-C), the score 
for discrete stimuli was higher than for continuous stimuli [eg, continuous 
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vs. discrete in SP: F (1, 435) = 84.47, MSE = 0.0062, p < 0.01, ηp
2 = 0.162, and 

also continuous vs. discrete in C1: F (1, 435) = 215.89, MSE = 0.0062, p < 0.01, 
ηp

2 = 0.33]. However, when the tasks became more complex, the opposite 
pattern was observed and the ANNs with continuous stimuli had bet-
ter scores at counting [continuous vs. discrete in C1-C: F (1, 435) = 6.146, 
MSE = 0.0062, p < 0.05, ηp

2 = 0.0139; in C and SP-C the differences were 
not significant, see Fig. 6.4].

6.6.2.2  Generations
SP and C1 runs were faster (ie, had a smaller number of generations) 

than all other tasks (SP: M  =  48.5, SD  =  9.21; C1: M  =  44.9, SD  =  5.15; 
C: M = 308.22, SD = 4.32; SP-C: M = 330.7, SD = 16.33; C1-C: M = 334.7, 
SD  =  24.33). More generations were required to evolve the networks 
to count after evolving to perform any other task [C vs. C1-C: F (1, 
435) = 183.49, MSE = 172.51, p < 0.01, ηp

2 = 0.296].

FIGURE 6.4  Counting scores results of Simulation 1—from size perception to counting. 
The counting score of the ANNs that first evolved to perceive size and then to count (SP-C) is 
higher than the counting score of ANNs that evolved to count (C) from scratch (Table 6.1; Katz 
et al., 2013). C1, control group with a random classification task; yellow, ANNs that evolved and 
were tested with both types of stimuli (continuous and discrete); purple, ANNs that evolved 
and were tested with continuous stimuli; and red, ANNs that evolved and were tested with 
discrete stimuli. In all evolutionary runs, the actual stimuli were different between the training 
(by evolution) and testing sets. The “*” represents significant differences: the counting score 
when evolving first to perceive size and then to count is significantly higher than the counting 
score received when evolving to count from scratch, with continuous stimuli; and the counting 
score when evolving to count after first learning a random classification task is significantly 
higher than the score when evolving to count from scratch, with both stimuli types.



136	 6.  DEVELOPMENT OF COUNTING ABILITY

﻿

6.6.2.3  Inner Nodes (A Measurement for Network Complexity)
Complex runs (ie, runs that had a complex task to learn such as count-

ing) generated ANNs with more inner nodes than the simpler ones (com-
plex runs: C: M = 11.81, SD = 4.71; SP-C: M = 12.39, SD = 4.6; and C1-
C: M = 12.05, SD = 5.04 and simpler runs: SP: M = 3.64, SD = 1.64; C1: 
M = 3.96, SD = 1.37).
In addition, during the complex runs the ANNs that evolved and were 

tested on discrete stimuli contained more inner nodes than the ones evolved 
and tested with continuous stimuli [discrete vs. continuous in C1-C: F (1, 
435) = 25.25, MSE = 13.87, p < 0.01, ηp

2 = 0.05, and discrete vs. continuous 
in SP-C: F (1, 435) = 5.55, MSE = 13.87, p < 0.05, ηp

2 = 0.002, but discrete vs. 
continuous in C was not significant].

6.6.3  Simulation 2: Continuous Versus Discrete  
(Katz et al., 2013)

In the evolutionary runs discussed earlier, we trained and tested ANNs 
on a certain stimuli type (eg, evolved with continuous and tested with 
continuous), the results of which seemed to imply that continuous stimuli 
were more suitable to the task of evolving counting ability. In order to 
examine if this was so, or if the high score for continuous stimuli in the 
counting test was just due to continuous stimuli being less complex to 
process than discrete stimuli, we proceeded to train on continuous stimuli 
and test on discrete stimuli and vice versa.

6.6.4  Results

We conducted an ANOVA with an array of 2 (evolutionary runs) × 4 
(stimuli type). The following 2 evolutionary runs were performed:

1.	 Size perception (SP)—the ANNs evolved to perceive size.
2.	 Counting (C)—the ANNs evolved to count.

Both evolutionary runs had a final test in Counting. Each evolutionary 
run was performed 4 times, each time with a new stimuli type:

1.	 Evolved with continuous stimuli and tested with discrete stimuli
2.	 Evolved with discrete stimuli and tested with continuous stimuli
3.	 Evolved with continuous stimuli and tested with continuous stimuli
4.	 Evolved with discrete stimuli and tested with discrete stimuli

Similar to previous analyses, we present the results relevant to our 
theory, with a significance level of p <  0.05. As previously mentioned, 
these results were first reported in Katz et  al. (2013) and are being 
explained here with great detail to set the context for the new results of 
Simulation 3.
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6.6.4.1  Counting Score
The interaction between stimuli and evolutionary run was significant, 

F (3, 232) = 15.16, MSE = 0.0084, p <  0.01, ηp
2 = 0.16. In both SP and C 

runs, the counting score when evolved with continuous but tested with dis-
crete was higher than when evolved and tested with continuous stimuli, F 
(1, 232) = 26.6, MSE = 0.0084, p < 0.01, ηp

2 = 0.09).
Different results were observed with discrete stimulid: When evolved with 

discrete and tested with continuous, the counting score was lower than the 
counting score of the control groups (ie, evolving and testing with discrete 
stimuli, F (1, 232) = 108.87, MSE = 0.0084, p < 0.01, ηp

2 = 0.32). In addition, 
the ANNs that evolved to count with discrete stimuli were worse in counting 
than those that evolved to perceive size with discrete stimuli (but were tested 
in counting): F (1, 232) = 4.14, MSE = 0.0084, p < 0.05, ηp

2 = 0.017. Another 
interesting result was that in SP runs, when evolving ANNs with continuous 
stimuli and testing with discrete stimuli, the counting score was higher than 
the other way around (ie, evolving ANNs with discrete stimuli and test-
ing with continuous stimuli): SP: F (1, 232) = 41.09, MSE = 0.0084, p < 0.01, 
ηp

2 = 0.15, and counting: F (1, 232) = 70.97, MSE = 0.0084, p < 0.01, ηp
2 = 0.23.

Finally, the results when evolving with discrete stimuli and testing with 
continuous stimuli were the worst among all other combinations in both 
size perception and counting runs, F (1, 232) = 37.89, MSE = 0.0084, p < 0.01, 
ηp

2 = 0.14, and the counting score in this case was the same for size percep-
tion and counting, F (1, 232) = 3.65, MSE = 0.0084, p = ns, ηp

2 = 0.02 (Fig. 6.5).

6.6.4.2  Generations
Training ANNs on continuous stimuli and testing on discrete ones re-

quired the same number of generations as training ANNs on discrete stim-
uli and testing on continuous ones. In addition, this number of generations 
was equal to the number of generations of the control groups (for all four 
SP runs it took about 46 generations: M = 46.13, SD = 7.41, and for all four 
counting runs it took about 308 generations: M = 308.45, SD = 4.09).

6.6.4.3  Inner Nodes
The interaction between stimuli and evolutionary run was significant, 

F (3, 232) = 5.321, MSE = 13.32, p < 0.01, ηp
2 = 0.064. In the counting runs, 

more inner nodes were produced when the ANNs evolved with dis-
crete stimuli (M = 15.66, SD = 5.99) than when evolved with continuous 
stimuli (M = 11.46, SD = 3.702, F (1, 232) = 10.25, MSE = 13.32, p < 0.05, 
ηp

2 = 0.04). Moreover, the number of inner nodes in counting runs in ANNs 
that evolved with discrete stimuli and tested with continuous stimuli was 

dThere might be a different explanation for the result differences between discrete and con-
tinuous stimuli because there were no discrete 0s, 1s, 7s, or 8s, and a minority of the 6s were 
discrete, which might have caused a bias toward the subitizing range numbers.
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higher than all other stimuli combinations, F(1, 232) = 4.21, MSE = 13.32, 
p < 0.05, ηp

2 = 0.02. In SP runs, the number of inner nodes stayed the same 
for all stimuli combinations (M = 3.43, SD = 1.72).

6.6.5  Simulation 3a: Adding a Subitizing Task

In order to improve the counting score (that stood at approximately 60% 
accuracy in the counting tests in the previous simulations), six additional 
evolutionary run types containing subitizing tasks were created (Table 6.2).

6.6.6  Results

An ANOVA with an array of 3 (stimuli types) × 6 (evolutionary runs) 
was conducted. The following 6 evolutionary runs were performed:

1.	 Size perception (SP)—the ANNs evolved to perceive size.
2.	Counting (C)—the ANNs evolved to count.
3.	 Subitizing (Sub)—the ANNs evolved to subitize.
4.	 SP-Sub—the ANNs evolved first to perceive size and then to subitize.

FIGURE 6.5  Counting scores results of Simulation 2—continuous versus discrete. The 
ANNs that were evolved to count with continuous stimuli and were tested with discrete 
stimuli presented better counting skills than the other group, which evolved to count with 
discrete stimuli but was tested with continuous stimuli. The “*” represents significant differ-
ences: the counting score in both SP and C tasks when evolved with continuous and tested 
with discrete is significantly higher than the counting score received when evolved on dis-
crete and tested on continuous, and is also significantly higher than the score of the control 
group (ie, evolved and tested on continuous stimuli); but when evolving on discrete stimuli 
and tested on continuous, the counting score is significantly lower than counting score of 
the control group (ie, evolved on discrete and tested on discrete stimuli). (Katz et al., 2013).
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5.	 SP-Sub-C—the ANNs evolved first to perceive size, then evolved to 
subitize, and finally evolved to count.

6.	 C1-Sub-C—the ANNs evolved first to excel in the control 1 task, then 
evolved to subitize and finally evolved to count.

Each of the 6 evolutionary runs ran 3 times—each time with a new 
stimuli type:

1.	 Continuous stimuli only
2.	Discrete stimuli only
3.	 Both continuous and discrete stimuli

6.6.6.1  Counting Score
The interaction between stimuli and evolution was significant, F (10, 

522)  =  2.68, MSE  =  0.01, p <  0.05, ηp
2  =  0.05. All the combinations of 

subitizing with counting led to better counting scores than counting inde-
pendently, F(1, 522) = 162.54, MSE = 0.01, p < 0.01, ηp

2 = 0.24. Most inter-
esting were the following significant comparisons: SP-Sub-C vs. C: F (1, 
522) = 106.04, MSE = 0.01, p < 0.01, ηp

2 = 0.16, and C1-Sub-C vs. C: F (1, 
522) = 108.62, MSE = 0.01, p < 0.01, ηp

2 = 0.17, which is the classification 
control group.

TABLE 6.2  Subitizing-Related Genetic Algorithms and Their Fitness Function

# Evolution Fitness

1 Sub For a given input with 1–4 ones, the expected output contains 
the exact same number of ones. For inputs with N > 4 ones, an 
output of N − 1 or N + 1 ones is also acceptable.

2 SP-Sub The size perception fitness function switched to the subitizing 
fitness function mid-run after 25 generations.

3 Sub-C The subitizing fitness function switched to the counting fitness 
function mid-run after 200 generations (number of generations 
before switch chosen experimentally).

4 C For a given input, the exact number of ones given is expected to 
be in the output (without order considerations).

5 SP-Sub-C The size perception fitness function switched to the subitizing 
fitness function after 25 generations, and after 200 additional 
generations there was another switch to the counting fitness 
function.

6 C1-Sub-C The control 1 (random classification task—see Table 6.1 item 4) 
fitness function switched to the subitizing fitness function after 
25 generations, and after 200 additional generations there was 
another switch to the counting fitness function.

Note: SP, evolved to perceive size; C, evolved to count; Sub, evolved to excel in the subitizing task; SP-Sub, 
evolved first to perceive size and then to excel in subitizing; SP-Sub-C, evolved first to perceive size, then 
evolved to excel in subitizing and finally evolved to count; and C1-Sub-C, evolved first to excel in control 
1 task, then evolved to excel in subitizing and finally evolved to count.
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In the majority of the runs, ANNs that evolved with continuous stim-
uli attained better counting scores than ANNs that evolved with discrete 
stimuli, F (1, 522) = 39.75, MSE = 0.01, p < 0.01, ηp

2 = 0.07 (Fig. 6.6).

6.6.6.2  Generations
A significantly higher number of generations were required to achieve 

peak performance in the counting task with a subitizing stage than with-
out it [ie, Sub-C (M = 518.4, SD = 36.44) vs. C (M = 308.22, SD = 4.32)].

6.6.6.3  Inner Nodes
Discrete stimuli ANNs were composed of more inner nodes than 

continuous stimuli ANNs, meaning that the networks specialized in 
discrete stimuli were larger and more complex than the ones special-
ized in continuous stimuli, F (1, 522) = 52.88, MSE = 30.098, p < 0.01, 
ηp

2 = 0.09.

FIGURE 6.6  Counting scores result of Simulation 3a—adding a subitizing task. All the 
combinations of subitizing with counting led to better counting scores than counting indepen-
dently, and in the majority of the runs, ANNs that evolved with continuous stimuli attained 
better counting scores than when evolved with discrete stimuli. Sub, subitizing; SP, size per-
ception; C, counting; C1, control group with random classification task; yellow, ANNs that 
evolved and were tested with both types of stimuli (continuous and discrete); purple, ANNs 
that evolved and were tested with continuous stimuli; and red, ANNs that evolved and were  
tested with discrete stimuli. In all evolutionary runs, the actual stimuli were different 
between the training (by evolution) and testing sets. The “*” represents significant differ-
ences: the counting score in both SP-Sub-C and C1-Sub-C runs were significantly higher than 
the counting score recived in the C runs.
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6.6.7  Simulation 3b: Continuous Versus Discrete  
With Subitizing

As in Simulation 2, in order to make sure that the high score for continu-
ous stimuli in the counting test was not just due to continuous stimuli being 
less complex to process than discrete stimuli were, we performed another 
set of evolutionary runs, now with a subitizing task, and evolved the ANNs 
on continuous stimuli and tested them on discrete stimuli and vice versa.

6.6.8  Results

6.6.8.1  Counting Score
An ANOVA with an array of 4 (stimuli types) × 4 (evolutionary runs) 

was conducted. The following 4 evolutionary runs were performed:

1.	 Size perception (SP)—the ANNs evolved to perceive size.
2.	 Subitizing (Sub)—the ANNs evolved to subitize.
3.	Counting (C)—the ANNs evolved to count.
4.	 SP-Sub-C—the ANNs evolved first to perceive size, then evolved to 
subitize, and finally evolved to count.

Each evolutionary run was performed 4 times, each time with a new 
stimuli type, as follows:

1.	 Evolved with continuous stimuli and tested with discrete stimuli
2.	 Evolved with discrete stimuli and tested with continuous stimuli
3.	 Evolved with continuous stimuli and tested with continuous stimuli
4.	 Evolved with discrete stimuli and tested with discrete stimuli

As in Simulation 2, we noted significantly higher counting scores when 
evolving ANNs with continuous stimuli and testing with discrete stim-
uli than the other way around, F (1, 464) = 341.68, MSE = 0.009, p < 0.01, 
ηp

2 = 0.42. In addition, the ANNs that evolved with continuous stimuli 
but tested with discrete stimuli were better than their control group (ie, 
that were evolved and tested on continuous stimuli), F (1, 464) = 11.29, 
MSE = 0.009, p < 0.01, ηp

2 = 0.03.
When evolved with discrete stimuli, the ANNs in the control group 

(that evolved and were tested with discrete stimuli) were better in count-
ing than those who evolved with discrete stimuli and were tested with 
continuous stimuli, F (1, 464) = 244.31, MSE = 0.009, p < 0.01, ηp

2 = 0.34.
Finally, when comparing the ANNs that evolved with continuous 

stimuli (regardless of the type of stimuli in the counting tests) to the ones 
that evolved with discrete stimuli, we can see that SP-Sub-C was signifi-
cantly better in counting than all other evolutionary runs, F (1, 464) = 72.25, 
MSE = 0.009, p < 0.01, ηp

2 = 0.13 (Fig. 6.7).
Note that the difference in counting score between the groups that 

evolved with continuous stimuli in the SP-Sub-C run was not significant, 
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F (1, 464) = 0.23, MSE = 0.009, p = 0.63, ηp
2 = 0.0005. The average count-

ing score in the counting run when evolved with continuous stimuli and 
tested with discrete stimuli was M = 0.61, SD = 0.16. The improved count-
ing score after adding the subitizing task between the size perception and 
the counting tasks was M = 0.77, SD = 0.15.

6.7  SUMMARY OF MAIN RESULTS

The results of Simulation 1—From Size Perception to Counting—indicat-
ed that the counting skills can be improved [ie, higher counting scores, 
less complex structure of the net (less inner nodes and less links), but it 
took more generations] if ANNs were first evolved to perform another, 
simpler, classification task (eg, size perception or some other classification 
task) and then evolved further to count (Katz et al., 2013).
In Simulation 2—Continuous Versus Discrete—we found that training 

with continuous stimuli resulted in significantly better counting skills 
than training with discrete stimuli, despite the reasonable assumption that 
discrete stimuli would lend themselves better to the counting task.d

In addition, evolving with discrete stimuli resulted in larger and more 
complex networks (ie, more inner nodes and links) than when evolving 
with continuous stimuli. Moreover, it seems that a certain division be-
tween continuous and discrete stimuli appears to be useful when training 
ANNs to improve their counting skills (Katz et al., 2013).

FIGURE 6.7  Counting scores of Simulation 3b—continuous versus discrete with subi-
tizing. SP, ANNs that evolved to excel in size perception; Sub, ANNs that evolved to excel in 
subitizing; C, ANNs that evolved to excel in counting; and SP-Sub-C, ANNs that evolved to 
excel in all three tasks (size perception, subitizing, and counting). The “*” represents signifi-
cant differences: the counting score in SP-Sub-C run was significantly higher when evolved 
with continuous and tested with discrete stimuli than the counting score received when 
evolved with discrete and tested with continuous stimuli.
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Finally, our results in Simulations 3a and 3b—Adding a Subitizing Task 
and Continuous Versus Discrete With Subitizing—indicated that subitizing 
was indeed a key stage in the evolution of counting systems.
It is important to mention that the division we did between discrete 

and continuous stimuli might not reflect nature. As mentioned in the 
Stimuli section (under Methods), we defined a stimulus as continuous 
if there was a path from each visible cell in the array to every other vis-
ible cell that passed through visible cells (in single up/down/left/right 
steps). Nevertheless, the division might have implications for the devel-
opment of rehabilitation methods. For example, it is known that dyscal-
culic people have poor counting skills, but based on their compromised 
size effects (eg, size congruity effect: Rubinsten & Henik, 2005, 2006), they 
might also have deficits in the ANS or in the networks interfacing ANS 
with the exact counting system. Thus, training in size perception tasks 
with continuous stimuli might result in improving their counting skills.

6.8  DISCUSSION

In the current research, we examined the following two hypotheses: 
(1) the counting system developed through evolution from a more primi-
tive size perception system and (2) both systems evolved independently 
in different epochs of time. According to our results, the counting system 
that evolves from scratch fails to excel at counting; thus it is possible that the 
counting system we are familiar with might have evolved on the back of some less 
precise system, instead of evolving independently.
However, it appears that better counting systems can evolve from dif-

ferent kinds of primitive systems (classification systems in our case) with 
no specific relation to size perception. Yet, this finding may be due to the 
size perception task that we chose (the BIG/SMALL decision) or because 
of the small dataset.
In addition, it took more generations to evolve a proficiency in counting 

in all the evolutionary runs that contained at least two tasks than when 
evolving only to count from scratch. This might be because the networks 
had to change their structure in order to adjust to a new task in the middle 
of the run (eg, to switch from size perception to counting, or from subitiz-
ing to counting).
The work of Kashtan, Noor, and Alon (2007) might shed some light on 

the reason for high counting scores that were as probable when evolving 
from populations previously trained for control tasks as they were when 
evolving from populations trained for size perception. Kashtan and co-
workers made the ANNs switch between goals during an evolutionary 
learning process and found that as each new goal shared some subprob-
lems with the previous goal, the networks evolved to be more modular 
and developed modules that were useful for both tasks. They found that 
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modularly varying goals could push populations away from local fitness 
maxima, thus guiding them toward evolvable and modular solutions; in 
addition, the harder the problem, the faster the speedup. Although, in the 
current study, the goal was switched between size perception and count-
ing only once, in future research we may switch the goals alternately until 
the ANNs excel at both tasks.

6.8.1  Complexity of the Net

Overall, when we examined the networks structure, we saw that ANNs 
who evolved to count with discrete stimuli had more complex networks 
than when evolving with continuous stimuli (ie, more inner nodes, more 
links between nodes). In addition, evolving with continuous but testing 
with discrete led to better counting scores than the other way around. 
When we examined the structure of the ones who evolved on discrete, we 
saw an economical (ie, less inner nodes, less links), well-organized struc-
ture. Fig. 6.8 shows the structures of two ANN individuals from the count-
ing (C) runs. The bottom layer is the input layer, the top layer is the out-
put layer, and the inner nodes are found in between them. Note that each 
individual ANN at the beginning of the evolutionary process has only 8 
inputs and 8 outputs. The hidden nodes and the network’s connections 
change during the evolutionary process resulting in the final networks.
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