Nuclear Inst ts and Methods in Physics R h A 389 (1997) 278-283
uclear Instruments and Methods in Physics Researc () NUCLEAR

INSTRUMENTS
& METHODS
IN PHYSICS

RESEARCH
Section A

Designing cellular automata using a parallel
evolutionary algorithm

Moshe Sipper**, Marco Tomassini®, Mathieu S. Capcarrere®

* Logic Svstems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens, CH-1015 Lausanne, Switzerland
® Logic Svstems Laboratory, Swiss Federal Institute of Technology, and Computer Science Institute, University of Lausanne,
CH-1015 Lausanne, Switzerland

Abstract

We have previously shown that non-uniform Cellular Automata (CA) can be evolved to perform computational tasks,
using the cellular programming evolutionary algorithm. In this paper we focus on two novel issues, namely the evolution
of asynchronous CAs, and the fault tolerance of our evolved systems. We find that asynchrony presents a more difficult
case for evolution though good CAs can still be attained. We show that our evolved systems exhibit graceful degradation
in performance, able to tolerate a certain level of faults. Our motivation for this study stems in part by our desire to attain

realistic systems that are more amenable to implementation as ‘evolving ware’, evolware.

PACS: 02.70.Rw; 07.05.Bx; 89.80. + h

Keywords: Non-uniform cellular automata; Asynchronous cellular automata; Cellular programming; Evolutionary

computation; Fault tolerance; Evolware

1. Introduction

Cellular Automata (CA) are dynamical systems in
which space and time are discrete. A cellular automaton
consists of an array of cells, each of which can be in
one of a finite number of possible states, updated syn-
chronously in discrete time steps according to a local,
identical interaction rule. The state of a cell is deter-
mined by the previous states of a surrounding neighbor-
hood of cells. This transition is usually specified in the
form of a rule table, delineating the cell's next state for
each possible neighborhood configuration. The cellular
array (grid) is n-dimensional, where n = 1,2,3 is used in
practice (in this work we shall concentrate on n = 1)
[1,2].

CAs exhibit three notable features. namely massive
parallelism, locality of cellular interactions, and simpli-
city of basic components {cells). They perform computa-
tions in a distributed fashion on a spatially extended grid;
as such they differ from the standard approach to parallel

* Corresponding author. Tel: + 41 21 693 2658,
fax: + 41 21 693 3705, e-mail: moshe.sipper@di.epfl.ch.

computation in which a problem is split into independent
sub-problems, each solved by a different processor, later
to be combined in order to yield the final solution. CAs
suggest a new approach in which complex behavior
arises in a bottom-up manner from non-linear, spatially
extended, local interactions [3]. A major impediment
preventing ubiquitous computing with CAs stems from
the difficulty of utilizing their complex behavior to per-
form useful computations. Designing CAs to have a spe-
cific behavior or to perform a particular task is highly
complicated, thus severely limiting their applications;
automating the design (programming) process would
greatly enhance the viability of CAs {3].

The model investigated in this paper is an extension of
the CA model, termed non-uniform cellular automata.
Such automata function in the same way as uniform
ones, the only difference being in the cellular rules that
need not be identical for all cells. We have previously
shown that non-uniform CAs can be ervolved to perform
computational tasks, employing a local, co-evolutionary
algorithm, an approach referred to as cellular program-
ming (sec Section 2). In this paper we focus on two
extensions of our model: whereas previous studies were
conducted using synchronous CAs, in Section 3 we

study the evolution of asynchronous, non-uniform CAs

0168-9002,97:817.00 Copyright . 1997 Elsevier Science B.V. All rights reserved

PII S0168-9002(96)00090-9

M. Sipper et al_ i Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 278283 279

(b)

Fig. 1. One-dimensional density task: Operation of two co-evolved, non-uniform. connectivity radius r = 1 CAs. White squares
represent cells in state 0, black squares represent cells in state 1. The pattern of configurations is shown through time (which increases
down the page). (a) A synchronous CA. Grid size is N = 149. CA is run for 150 time steps. (b} An asynchronous (model-1) CA. Grid size is
N = 150, with two 75-cell blocks (#, = 2). CA is run for 665 time steps. The randomly generated initial configurations have a density of
1s greater than 0.5, and the CAs relax to a fixed pattern of all 1s, which is the correct solution.

to perform two computational tasks. In Section 4 we
investigate the resilience of our evolved CAs, namely how
do they perform in the face of errors. Qur conclusions are
presented in Section 5. We believe that cellular program-
ming holds potential for attaining ‘evolving ware’, evol-
ware, which can be implemented in software, hardware,
or other possible forms, such as hioware. Of particular
interest is the issue of evolving hardware, which has
recently made its appearance on the artificial evolution
scene [4]. A prime motivation of the work reported
in this paper stems from our desire to attain more realis-
tic systems that are amenable to implementation as
evolware.

2. Previous work

We had first studied non-uniform CAs in Refs. [3,6]
and demonstrated in Ref. [7] that universal computation
can be attained in such CAs. The evolution of non-
uniform CAs was undertaken in Refs. [8-14], where the
cellular programming algorithm was presented; we
showed that high-performance, non-uniform CAs
can be evolved to perform non-trivial, global computa-
tional tasks. The cellular programming algorithm is
detailed in the above references; essentially, each cell of
our non-uniform CA maintains an evolving “genome”,
encoding its rule table in the form of a bit string. The
genomes are initialized at random, after which the
CA is run on numerous randomly generated initial con-

figurations.! The cell's fitness, used to drive the evolu-
tionary process. is its performance on these configura-
tions, defined in accordance with the task at hand. We
note in passing that our algorithm involves local co-
evolution, as such differing from the standard genetic
algorithm.

In Refs. [3.15] a standard genetic algorithm was used
to evolve uniform, one-dimensional CAs to perform two
computational tasks, density and synchronization. These
experiments involved two-state CAs (i.e., each cell can be
in one of two states, 0 or 1), with connectivity radius
r = 3. meaning that each cell is connected to 3 neighbors
on either side (thus, each cell has 2r + 1 neighbors includ-
ing itself). Spatially periodic boundary conditions are
used, resulting in a circular grid. We have used cellular
programming to evolve non-uniform CAs with a minimal
radius of r = 1 to solve both these tasks (as well as others,
including random number generation and image process-
ing). The one-dimensional density task is to decide
whether or not the initial configuration contains more
than 50% ls, relaxing to a fixed-point pattern of all 1s if
the initial density of 1s exceeds 0.5, and all Os otherwise
{Fig. 1). In the one-dimensional synchronization task the
CA, given any initial configuration, must rcach a final

! The term “configuration” refers to an assignment of states to
cells in the grid.

Illg. GENETIC ALGORITHMS

280 M. Sipper et al.. Nucl. Instr. and Meth. in Phys. Res. 4 389 (1997) 278 283

(b

Fig. 2. One-dimensional synchronization task: Operation of a co-evolved, asynchronous (model-3). non-uniform CA, with connectivity
radius r = 1. CA size is N = 150, partitioned into 4 blocks (#, = 4) with updating order: block 1 — block 2 — block 0 — block
3 = block 1 — block 2 — ... Operation is shown for two randomly generated initial configurations. (a) The CA’s configuration is
depicted at every time step. (b) The CA’s configuration is depicted at every logical step { = 4 time steps).

configuration, within M time steps, that oscillates be-
tween all Os and all 1s on successive time steps (Fig. 2). It
should be emphasized that both tasks comprise non-
trivial computational problems for a small radius CA
(r < N, where N is the grid size) [3,15].

Our previous studies involving cellular programming
consisted of evolving parallel cellular machines to per-
form computational tasks. Our machine model was at-
tained by considering a generalization of the original CA
model, namely non-uniform CAs, where cellular rules
need not necessarily be identical. In the following two
sections we study two additional generalizations, namely
asynchronous CAs and non-deterministic ones, our mo-
tivation stemming in part from our desire to attain more
realistic systems that are amenable to implementation as
evolware.

3. Evolving asynchronous CAs

One of the prominent features of the CA model is its
synchronous mode of operation, meaning that all cells
are updated simultaneously. A preliminary study of asyn-
chronous CAs, where one cell is updated at each time
step, was carried out in Ref. [16]. where the different
dynamical behavior of synchronous and asynchronous
CAs was compared; they argued that some of the appar-
cnt self-organization of CAs is an artifact of the synchro-
nization of the clocks. Ref. [17] noted that asynchronous
updating makes it more difficult for information to
propagate throughout the CA and that. furthermore,
such CAs may be harder to analyze. Asynchronous CAs

have also been discussed in Refs. [6.18,19]. though it
seems clear that they have received a limited amount of
attention to date.

The issue investigated in this section is that of evolving
asynchronous CAs to perform the density and synchroni-
zation tasks. The grid is partitioned into blocks in which
synchronous updating takes place (i.e., all cells within
a block are updated simultaneously), while the blocks
themsclves are updated asynchronously (rather than
have all blocks updated at once); thus, inter-block updat-
ing is synchronous while intra-block updating is asyn-
chronous.? The number of blocks per grid, #,, is a tun-
able parameter. entailing a scale of asynchrony, ranging
from complete synchrony (#, = 1) to complete asyn-
chrony (#, = N). There are two main differences be-
tween our investigation and previous ones: (1) rather
than consider only complete asynchrony (#, = N), we
have introduced the above scale, and (2) asynchronous
CAs were previously studied from a more abstract point
of view, whereas we are interested in erolving them to
perform a veritable computation.

Three models of asynchrony are considered. which
differ in the scheduling of intra-block updating (inter-
block updating is always synchronous):

Model 1: At cvery time step each block is updated
independently of the others with probability pupgac.

2 A preliminary investigation of a CA-derived model based on
the “blocks™ idea was carried out in Ref. [6].

M. Sipper et al.; Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 278-283 281

chosen so as to insure that at least one block is updated
per time step with probability > 0.99.

Model! 2: Each time step a different block is chosen at
random without replacement, such that every #, steps,
all blocks are updated exactly once. We denote by logical
step the succession of #, time steps necessary for one full
update cycle, in which all cells are updated (thus, one
logical step is equivalent to one time step in the syn-
chronous model, with respect to cell updating).

Model 3: All blocks are updated in a fixed, random
order every logical step. This is similar to the second
model. in that cach cell is guaranteed to have updated its
state every logical step, however, the (random) update
order is fixed (rather than sclected anew each logical
step). Note that though the update order is deterministic,
this model is interesting in that cells are not updated in
a regular manner; neighboring cells may be updated at
different points in time, which renders the computation
more difficult.

Cyclic behavior cannot arise in the first model since
the notion of a logical step. i.e., a fixed number of time
steps after which all cells will have been updated, does
not exist; however, a fixed point, such as that desired for
the density problem, can be attained. Models 2 and 3 can
be applied to the synchronization problem since cyclic
behavior may be attained, if onc considers the CA’s
configuration every logical step, i.c., the alternation be-
tween all Os and all 1s takes place every #, time steps.

Our results for the density task show that model-1
asynchronous CAs can be evolved whose performance is
comparable to the synchronous case.* provided the num-
ber of blocks does not exceed three (#, < 3): for #, > 3,
successful asynchronous CAs did not evolve. Fig. 1b
demonstrates the operation of an evolved. non-uniform,
model-1 asynchronous CA on the density task. For the
synchronization task, successful model-3 CAs with
#p < & were evolved (grid sizes considered were in the
range N e [100,150]); applying model 2, no successful CA
had emerged from the evolutionary process. Fig. 2 dem-
onstrates the operation of an evolved. non-uniform,
model-3 asynchronous CA on the synchronization task.

The deterministic updating schedule of model 3 ren-
ders it easier for evolution to cope with. as compared
with model 2. For both, however, an obstacle that hin-
ders the evolutionary algorithm is the need to adapt to
block boundaries. A “good” rule in cell i may be of no
use, or even detrimental, in cell / + 1. if a block boundary

3 Performance results for the synchronous case are reported,
e.g., in Ref. [8].

occurs between these two cells. Two strategies were ob-
served to emerge from the evolutionary process in order
to cope with this problem: either specialized rules are
evolved at block boundaries (different than the rules
present in the rest of the block), or a rule is evolved that is
essentially insensitive to the presence or absence of
a boundary.

4. Fault tolerance in evolved CAs

In this section we return to synchronous, non-uniform
CAs, our interest lying in studying their resilience, name-
ly how do they perform in the face of errors. The CAs in
question are those that have evolved to solve either the
density or synchronization tasks, with our fault-tolerance
investigation picking up upon termination of the evolu-
tionary process. We shall focus on one type of error
where a cell updates its state in a non-deterministic
manner: at each time step, the cell’s next state is that
specified in the rule table, with probability 1 — p, or the
complementary one with probability pg; p, is denoted the

fault probabiliry, representing the probability that a cell

will incorrectly update its state. Fig. 3 depicts the opera-
tion of an evolved, non-uniform CA on the synchroniza-
tion task for two different p; values.

In order to study the evolved CAs’ fault-tolerance
properties, we have applied a number of measures, one of
which is reported below. This measurc, based on Ref.
[20]. involves a comparison between a “perfect” version
of the CA (p; =0) and a faulty one (p; > 0); both are
presented with the same initial configuration at time step
t = 0, and the Hamming distance between configurations
at successive time steps is recorded.® This provides
us with insight into the faulty CA’s behavior, by measur-
ing the amount by which it diverges from a “perfect”
computation.

Our results, presented in Fig. 4, show that Hamming
distance is a sigmoid-shaped function of the fault prob-
ability p;. Essentially, three regions can be observed:
a slow-rising slope (pr < 0.0005), followed by a sharp one
(0.0005 < pr < 0.01), ending with an attenuated slope
(pr > 0.01); this latter region exhibits an extremely large
Hamming distance, signifying an unacceptable level of
computational error. The most important result concerns
the first (left-hand) region, which can be considered the

Sault-tolerant zone, where the faulty CA operates in

a near-perfect manner. This demonstrates that our evol-
ved CAs exhibit “graceful degradation™ in the face of
errors. A more detailed investigation of this issue can be
found in Ref. [21].

*The Hamming distancc between two configurations is the
number of bits by which they differ.

iHg. GENETIC ALGORITHMS

282 M. Sipper et al. - Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 278-283

Nl
—_—

=g
=

(a

Fig. 3. One-dimensional synchronization task: Operation of a co-evolved, non-uniform.r = 1 CA, with probability of fault p; > 0. Grid
size is N = 149. Initial configurations were generated at random: (a) py = 0.0001: (b} py = 0.001.

average Hamming distance

0"_..—.‘“’:.!

1e-05 0.0001 0.001 0.01 0.1

p_f

Fig. 4. Average Hamming distance versus fault probability p.. Four CAs were studied - two that werc cvolved to solve the density task,
and two that were evolved to solve the synchronization task. Grid size is N = 149. For each py value the CA under test was run on 1000
randomly generated initial configurations for 300 time steps. At each time step the Hamming distance between the “perfect” CA and the
faulty one is recorded. The average over all configurations and all time steps is represented as a point in the graph.

5. Conclusions namely asynchrony and fault tolerance. We introduced
three models of asynchrony, previously unstudied in this
We studied the evolution of non-uniform CAs via context, finding that asynchronous CAs can be evolved

cellular programming, concentrating on two novel issues, to perform the computational tasks in question. Though

M. Sipper et al. { Nucl. Instr. and Meth. in Phys. Res. A 389 (1997) 278-283 283

it seems that asynchrony presents a more difficult case
for evolution, it is premature to draw any definitive
conclusions at this point, since we have only considered
two problems, using relatively small-size grids. We feel
that successful asynchronous CAs can be evolved,
though this will probably entail larger grids (coupled
with larger blocks). We found that our evolved systems
exhibit graceful degradation in performance, able to
tolerate a certain level of faults. Though preliminary,
we hope that further studies along these lines will
help deepen our knowledge of evolving cellular systems,
as well as propel us toward the attainment of more
realistic systems, that can ultimately be implemented as
evolware.

References

[1] S. Wolfram, Physica D 10 (1984) 1.

[2] T. Toffoli and N. Margolus, Cellular Automata Machines
(The MIT Press, Cambridge, MA, 1987).

[3] M. Mitchell, J.P. Crutchficld and P.T. Hraber, Physica D
75 (1994) 361.

[4] E. Sanchez and M. Tomassini, (eds.), Towards Evolvable
Hardware, Lecture Notes in Computer Science, Vol. 1062
(Springer, Berlin, 1996).

[5] M. Sipper. Non-uniform cellular automata: Evolution in
rule space and formation of complex structures, in Artifi-
cial Life IV, eds. R.A. Brooks and P. Maes (The MIT Press,
Cambridge, MA, 1994) 394-399.

[6] M. Sipper. Artificial Life J. 2 (1995) 1.

{71 M. Sipper, Quasi-uniform computation-universal cellular
automata, in: ECAL’95: 3rd European Conf. on Artificial
Life, eds. F. Moran, A. Moreno, JJ. Merelo and P. Cha-
¢6n, Lecture Notes in Computer Science, Vol. 929 (Spring-
er, Berlin. 1995) 544-554.

[8] M. Sipper, Physica D 92 (1996) 193.

[9] M. Sipper. Designing evolware by cellular programming.
in: Proc. Int. Conf. on Evolvable Systems: from Biology to
Hardware (ICES96), Lecture Notes in Computer Science,
(Springer, Heidelberg, 1997), to appear.

[10] M. Sipper and E. Ruppin, Physica D, 99 (1997) 428.

[11] M. Sipper and E. Ruppin, Co-evolving cellular architec-
tures by cellular programming, in: Proc. IEEE 3rd Int.
Conf. on Evolutionary Computation (ICEC96), (1996)
306-311.

[12] M. Sipper and M. Tomassini, Co-evolving parallel random
number generators, in: Parallel Problem Solving from Na-
ture - PPSN 1V, eds. H.-M. Voigt, W. Ebeling, I. Rechen-
berg and H.-P. Schwefel, Lecture Notes in Computer
Science, Vol. 1141 (Springer, Heidelberg, 1996) 950-959.

[13] M. Sipper and M. Tomassini, Int. J. Modern Phys. C,
7 (1996) 181.

[14] M. Sipper. Evolving uniform and non-uniform cellular
automata networks, in: Annual Reviews of Computational
Physics, Vol. V, ed. D. Stauffer (World Scientific, 1997).

[15] R. Das. J.P. Crutchfield, M. Mitchell and J.E. Hanson,
Evolving globally synchronized cellular automata, in:
Proc. 6th Int. Conf. on Genetic Algorithms, ed. LJ.
Eshelman (Morgan Kaufmann, San Francisco, CA, 1995)
336-343.

[16] T.E. Ingerson and R.L. Buvel, Physica D 10 (1984) 59.

[17] S. Wolfram, Physica D 22 (1986) 385.

[18] M.A. Nowak, S. Bonhoeffer and R.M. May, Spatial games
and the maintenance of cooperation, Proc. National Acad-
emy of Sciences USA, Vol. 91 (1994) 48774881.

[19] H. Bersini and V. Detour, Asynchrony induces stability in
cellular automata based models. in: Artificial Life IV, eds.
R.A. Brooks and P. Macs (The MIT Press, Cambridge,
MA, 1994) 382 387.

[20] S. Wolfram. Rev. Modern Phys.. 55 (1983) 601.

[21] M. Sipper, M. Tomassini and O. Beuret, Studying prob-
abilistic faults in evolved non-uniform cellular automata,
Int. J. Modern Physics C 7(6) (1996} 923.

I1Ig. GENETIC ALGORITHMS

