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Abstract

High order networks, studied over the past few yeam, have been shown to improve learning rates, increase
storage capacity and ~uce the number of layem ~uircd in com~rison with fimt order nets. One issue
which usually remains in the background, is the relative ~t-performance of such nets. In this ~per we
address this issue in a more general framework, which we define, namely generalized high order networks.
We present a ~t-performance model and demonstrate its usability by analyzing some well-known fimt and
high order networks. Our aim is to provide a simple, yet illuminating model, which enables the evaluation

and analysis of generalized high order networks.

Ke)iwordf. Cost-perfonnance analysis; analog neural networks; high order networks.

1. Introduction

Artificial neural networks have been an object of intense, diverse research over the past few
years. This interest has been fueled by new theoretical results and by advances in computer
technology that make it possible to simulate networks of much higher complexity than was
possible before. Moreover, microelectronic technology has reached a stage where large neural
networks can be integrated onto a single chip. Analog implementations of neural networks
were built as early as the 1960s [37, 23], however, they were small scale and used discrete

components.
Electronic neural networks rely on strongly simplified models of neurons. Analog neural

network implementations [10, 8] use analog components and computations. Neuronal inputs
and outputs are voltages and synapses (interconnections) are implemented as resistors with
conductances as weight values. The transfer function is generally implemented as an amplifier.
All the currents coming from other neurons are summed on the input wire and the output
voltage of the neuron is a function of this total current and the transfer function.
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Computing sums of produc~ is a key operation perfonned by the network and a hardware
implementation has to focus on doing this efficiently [10]. Very often only modest precision
is required so that it is possible to use analog computation for this task. In an analog network,
a single resistor can perfonn a multiplication using Ohm's law, and summing of currents on
a wire is provided by Kirchhoff's law.

There are a number of issues which make the use of analog circui~ attractive [8]. First,
analog circuits are faster than digital implementations in terms of speed-to-amount of hardware
ratio. Second, since these analog componen~ require less circuitry, it is possbile to pack more
componen~ onto a single VLSI chip. The simplicity of these devices also makes them very
attractive for rapid prototyping. Third, since the analog conductance devices and processing
elements operate in small voltage swings, they dissipate less power and this reduces the
problem of heat transfer. Fourth, some researchers believe that analog circuits provide us
with a better understanding of the true analog nature of biological neural networks. Analog
circuits also have an edge over digital designs in the density of the connections. A recent
review [11] of electronic neural networks in the US and Canada revealed that over 40 different
circuits were built during the last two years. A majority of these, over 30 designs, use analog
computation to some extent.

High order networks, which replace the linear neuron with a general polynomial one, have
been an object of research in the past few years [20, 25, 9,14,7,28]. In the next section we
present a generalized model which we shall use in this paper.

2. Generalized high order networb

The use of general types of neural network models has received little attention. Feldman
[6] defines an abstract, general computational model, in which each element performs some
general function. However, he then treats more conventional models. Recently, Hecht-
Nielsen [12] defined a neural network as a general parallel, distributed information processing
model. He then goes on to express the opinion that there is no satisfactory answer as to why we
do not simply study neural networks as MIMD (Multiple Instruction Multiple Data) parallel
machines. In his opinion there is only the empirical evidence that neural ne~ do produce
powerful and potentially useful information processing structures.

The general framework adopted in this paper is one which we term generalized high order
networks. Such a net consists of neurons computing the following function:

Yi = {Wi+L: P1)(Wij,Xj)+L: p2)(Wijk,Xj,Xk) + ...}

j jk

Oi = F(Yi) ,

where

Yi is the total input to the ith neuron
xi is the input from the jth neuron

Wi, Wii, Wiik... represent Oth,lst,2nd,... order weights
f(t) is the t order function
°i is the output of the neuron
F is some arbitrary nonlinearity.
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In the prevailing model [20, 25, 9, 14, 7, 28] f(t) is a i-way multiplication and the
implementation follows in the lines of Section l,with one addition. The high order network
function includes a multiplication of the inputs"(e.g. XjXk) which is implemented using an
analog voltage multiplier (such a component may be constructed using a differential amplifier
and some additional resistors [22]).

The computational power of high order networks was conjectured to be superior to that
of linearly interconnected nets. However, recently [30] it has been proven that one can
simulate all Turing machines by recurrent nets using only first order (i.e. linear) connections.
Furthermore, this simulation can be done in linear time.

The issue at hand is therefore not one of computational capabilities but of cost performance.
This question usually remains in the background, and becomes even more acute when dealing
with generalized nets. Researchers have used high order networks to attain increased learning
rates [9, 21, 29] and increased storage capacity [25, 3] in relation to first order nets. Also in
many cases it is easier to train a high order network than a multi-layer net since training the
hidden layers is more difficult [21].

It is evident that a method for analyzing generalized high order networks is required. Our
goal in this paper is to present a cost-performance model which enables such an analysis.
Using our model it is possible to evaluate networks and derive exact expressions which en-
able the comparison of their relative strengths. In Section 3 we present a cost measure and
in Section 4 a performance measure. We then combine both and define the cost-performance
measure. In Section 5 we demonstrate the use of our model by analyzing several networks
and finally we conclude in Section 6.

3. The cost measure

In measuring the cost of generalized high order networks we are interested in a simple and
practical model. Following these guidelines we provide a cost measure which is essentially
the number of basic components of the network. This number is very simple to compute.
Since high order networks, as also first order nets, consist of a large number of uniform
elements we need only consider one and then multiply by the size of the net The cost
measure is also practical, since the number of components is directly related to the size (area)
of the chip, the main consideration in VLSI [17].

The basic components, denoted the base set, are:

{R (resistors), C (capacitors), D (diodes), T (transistors), L (inductors)} .

The most basic set of components in analog electronics is that of resistors, capacitors and
inductors [4, 27]. However, as we are interested in a practical framework we add diodes and
transistors. These are of such common, basic use that we include them in the base set The
inductor is included solely for completeness purposes although it is rarely used due to its
high cost in VLSI. We do not include wires, since we are dealing in high order models wich
are essentially synaptic in nature and thus a wire generally includes a resistor or a capacitor.
In cases where this is not true a zero-valued resistor is assumed. A related issue which is
not taken into account in our model is that of wire lengths (e.g. [17] discusses various VLSI
efficiency measures including: wire area - sum of the lengths of the wires and maximum
edge length - length of the longest wire). Our reason for this decision is that measures
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involving wire lengths are much more difficult to compute, especially in a theoretical setting.
In the tradeoff between simplicity and precision we opt for-simplicity for reasons which are
explained below (see also Section 4).

The cost measure, CO, consists of the weighted sum of the number of basic components
and is defined as:

co = aIR + a2C + a3D + 04T+ 05L,

where

R,C,D,T,L denote
at, ..., as are the relative costs of the basic components.

This measure is computed for various networks, providing insight as to their relative cost.
Such an approach has also been taken in digital implementations of neural nets. For example
Lauwereins and Bruck [16] use a cost measure of the number of gates in a circuit, each
multiplied with its number of inputs. Again this is directly related to chip size.

Different values of ai provide for relative component costs. A related issue is that of
differences among components of the same type. For example, the backpropagation model
[26] requires at least an 8-bit weight representation for a large problem of practical interest [8,
10]. Thus, in general, analog networks are more appropriate for models requiring moderate or
low precision. We therefore consider only one type of each component (it is sb'aightforward
to enhance the base set although this is rarely needed since higher resolution components can
be built of lower resolution ones [8)). In this paper we assume ai = 1, i = {1..5}.

There exist various VLSI models which basically measure the area of a circuit and its
operation time (see for example AT2 models, [35)), however, our motivation is different.
Whereas in the general arena of analog VLSI, differences between chips may be subtle, thus
requiring a precise model of comparison, the differences between generalized high order
networks are usually much more evident. Thus our cost measure has been defined with the
intention of capturing the essence of these larger differences and as such, we were able to
retain simplicity.

4. The perfonnance measure

The two most prominent gains cited in connection with high order networks are increased
learning rates and increased storage capacity. Thus, we define two performance measures:

T I The operation time of a network.
STO The storage capacity of a network: The number of patterns it is able to store without

producing spurious output (note that in many cases this is given by empirical findings
and not by rigorous analysis).

The question of time, while theoretically uninteresting in analog computation, is nonethe-
less important in our practical framework. We therefore assume the existence of discrete time
steps and define a basic time unit as the time required for a signal to propagate through a base
set component (we assume that signal propagation time is equal for all components). The
total opera ton time of a network is the number of basic time units that elapse from the first
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input signal until the last output signal. We need not fix on the notion of a time unit to within
closer than a constant factor, because our results about the time required for solution will notbe more precise than that. v

We distinguish between two operational phases of the network: The Learn phase involves
the setting of weights while the Run phase involves computing outputs of novel inputs. (These
two stages are not necessarily separate and a network may operate in a single Run & Learn

I phase in which weights are updated continuously). We thus define two sub-measures of
" time:

: . T IL The number of basic time units required to learn one input vector.
!
: . T I R The number of basic time units required to run one input vector.

Note that we are dealing in averaged units in the sense that time is measured per one vector.
The time measure T I is defined as:

TI = TIL +TIR.

! As in Section 3 here too we have made a reasonable, but potentially unrealistic assumption
about the delays that wires introduce (these assumptions are in accordance with those made
in V1.S1 computational models discussed in [35]). We have assumed that one time unit is
sufficient for signals to propagate down wires, as well as to switch transistors. In reality, as
wires get longer, the time of propagation cannot be regarded as constant. We have adopted
the constant propagation time model for two reasons (see [35]). First, there seem to be few
opportunities, in V1.SI in general, to prove stronger lower bounds on time by making stronger
assumptions on wire delays. Second, in practice, wire delays do not seem to dominate
switching time, except for delays on a few long wires. In those cases, we can often reduce
these wire delays by driving signals down them with low resistance pullu~.

First and high order networks are essentially parallel models, whose parallelism manifests
itself in their layered mode of operation. All elements of a layer are assumed to operate in
parallel, i.e. compute their output in 0(1) time. Thus, feedforward networks operate in 0(1)
time while recurrent nets usually operate in non-constant times (see examples in Section 5).

The performance of a network improves with increases in storage capacity (STO) and
decreases in operation time (T 1). Thus we define the network's performance measure, PER:

,
STO J

,PER=-. 1i TI i
; ..

The total cost-performance measure, COP, of a generalized high order network is defined ;

as:

COP = Ilt; .

...

..

"

.
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5. Examples

5.1 Comparing a first order network and a second order netWork

Some common problems found in the neural network literature are those of: symmetry
(classifying input vectors as to whether or not they are symmetric about their center), parity
(classifying binary vectors as to whether they contain an odd or an even number of Is) and
contiguity (detecting various contiguous ~tterns in a given input vector). These may be solved
using two types of approaches. The first approach involves the use of first order networks,
where one of the prevailing models is that of backpropagation. This model employs a first
order, three layer neural network, composed of an n neuron input layer, an I neuron hidden
layer, and an m neuron output layer (see [26, 19, 20]). The second approach involves the use
of a second order network. This model employs a second order, two layer network composed
of an n neuron input layer and an m neuron output layer. The nets are fully connected and
feedforward (see Fig. 1). Both models have successfully solved the above problems. Thus,
as noted in Section 2, the issue at hand is not one of computational capabilities, but of cost-

performance.

%1

first order network

Fig. 1. A schema of a first and seoood order network.

The input layer neurons and the transfer functions are ignored, since these are equal in both
networks. The first order network consists of 1 neurons of n resistors plus m neurons of 1
resistors. Thus, the cost of the first order net, denoted COt, is l( n + m).
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The second order network includes m second order output neurons. Each output neuron
consists of n basic components (resistors) of ,~e first order term and n2(1 + COM) basic
components of the second order term, where COM is the cost of the multiplier. Therefore,

CO2, the cost of the second order network, is m(n + n2(1 + COM»). Thus, COl

O(l(n + m») and CO2 = O(mn2).
Using the two cost measures it is possible to compute the number of hidden layer neurons,

for which the second order net is less costly, i.e. CO2 < COl:

~

m( n + n2(1 + COM») < l(n + m)

This result demonstrates a common tradeoff between nets of different orders and layers.
While a second order network is usually composed of fewer layers (indeed this has commonly
been cited as one of their advantages) they are not necessarily less costly. The above result
states the precise break-even point, in terms of cost alone.

After obtaining the cost measure we continue with the cost-performance analysis. Both
networks use one shot learning and are feedforward, hence T II = T h = 0(1), where T II
and T h are the operation times of the networks. The storage capacities of the networks are
usually obtained through simulations. However, it is possible, using our model, to derive an
analytical result which states explicitly the capacity for which the cost-performance of the
second order network is improved.

Denote the network capacities by STO 1 and STOz for the first and second order networks,
respectively. The networks cost-performance measures are:

( STOI )CO PI = 0 i(;;~

(STO2)CO~=O ~ .

Our goal is: CO,PJ> COPt- Thus:

0 (~ ) > 0 ( STOl )mn2 l(n+m)

ST02
)O("S"To;

Since both networks operate in 0(1) time, and the cost of the second order net is higher,
the gain lies in the improved storage capacity. Our model has provided us with an analytical
result which acts as a guideline to measuring the successful implementation of a generalized
high order network.

As an example consider m ~ n ~ I = O(m). In this case:

(~
) > O(m).

0 STO1
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This simplified example demonstrates the use of our model. The result states explicitly the
break-even point at which a second order network becom~cost-efficient.

Note that there is an inherent cost involved in the second order network, which grows as
n2. Thus, efforts to decrease the cost of this net should concentrate on the n2 term. This is no
simple task since it is evident that even if we succeed in reducing the cost of the multiplier,
CO M (see for example [24] for a multiplier of CO M = 3), we still have O( n2) components,
due to the weights. A possible approach is that of using a sparse network, with only O( n)
high order terms in each neuron. Such a high order neuron of cost O( n) is presented in [38]
and a network utilizing such neurons is able to solve certain problems (e.g. XOR) with high
success rates, while retaining the lowered cost. Various strategies to reduce the connectivity
requirements and curb the proliferation of high order terms are discussed in [31, 21]. (See
also [15] for an analysis of sparse Hopfield nets.)

5.2 Augmenting the cost-performance of the Hamming network

The Hamming network calculates the Hamming distance between the input pattern and
each memory pattern, and selects the memory with the smallest distance, which is declared
'the winner'. This network is the most straightforward associative memory. Originally
presented in [33, 32, 34], it has received renewed attention in recent years [18, 2, 19]. The
Hamming network operates on binary vectors of::1:1 and is depicted in Fig. 2.

It is composed of two subnets. The lower subnet, denoted as the similarity subnet calculates "

the Hamming distance between the input vector and each memory pattern. It consists of
two layers: An n-neuron input layer representing n-bit input patterns, and an m-neuron
memory layer where each neuron represents one memory. Memory storage is achieved via
the connection weights entering the neuron. The upper subnet, denoted as the winner-lake-all
(WTA), computes the memory which is at the minimum Hamming distance from the input.
It consists of a fully connected m-neuron topology. The similarity subnet is feedforward
whereas the WTA subnet is iterative.

The cost and performance of the Hamming network are primarily due to the WTA subnet
To see this, note that the number of memory patterns (i.e. memory layer neurons) thay may be
stored is practically unlimited [5], and when the input patterns are distorted memory patterns,
m is exponential in n. Also the operation time of the net is due to the iterative WTA subnet.
The cost and storage measures of the net are: COwta = 0(m2), STOHam = O(m). We
denote the operation time of the WTA subnet (also the total operation time of the net) by and

TIHam.
In aiming to increase cost-performance we wish to improve the implementation of the WTA

network. A straightforward algorithm for finding the maximum value uses only O( m log m)
basic components. We use a binary tree of analog voltage comparators [22, 27], i.e. m i F
comparators in the first layer, m/2 in the second layer etc. This algorithm has been applied . . I

to Hamming nets in [5] and is of cost O( m log m) (the comparators are essentially modified c; W7A

operational amplifiers. Note also that there are exactly i wires (3ero-valued resistors) between J I

layer i and layer i + 1). Thus the cost of the reduced WTA subnet is COr = O( m log m). bart
The storage capacities of both networks is m. The operation time of the reduced cost WTA O(

subnetis TIT = O(log m) (the learn phase time is 0(1) for both nets). Our goal is to improve I

the cost-performance of the network, i.e. COPr > COPHam.

~.-

M. Sipper and Y. Ye.hurun



1:1

1 1
>

lorm mTIHAm

lorm
TIHAm >.

m

and

. log2 m
For all practIcal purposes < 1 and thus we conclude that the proposed reduced

m
~ subnet does indeed improve the cost-performance of the Hamming network.

It is possible to improve the above result even further adapting (in terms of the necessary

hardware) the algorithm presented in [36]. We obtain T Ir = 0 (log(log m)) and COr
1 .

O(m). Thus we have COPT = 1 (1 ) and COPT > COPHam results m:
og ogm

1 1
>

log(logm) mTIHGm
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and

TIHmm> log(logm)m .

5.3 Comparing the Hopfteld network and the Hamming network

Our final example involves the original Hamming network (Section 5.2) and the Hopfield
network [13] whose evaluation yields:

COHop = O(n2)

STOHop = O(~)

TIHop = 0 (log(logn»)

COPHop = O(nlog(n)~g(logn») .

(See [3, 1] for the storage capacity of a Hopfield network and [15] for the time.)
The Hamming network evaluation is:

COHam = O(mn + m2)

STOHam = O(m)

COPHam = O(TI (m 2») .
Ham mn+m

For comparison pUlJX>Se5 we equate n = m and obtain:

In this paper we introduced a model for evaluating the cost-performance of analog neu-
ral networks in the extended framework of generalized high order networks. Our cost-
performance model combines a cost measure and a performance measure to derive a total
cost-performance (COP) measure. We defined a basic component set, and then used the total
weighted component count as the cost of a net. The performance evaluation combines two
basic sub-measures, namely the operation time of the net and its storage capacity.

Our model was demonstrated on some well-known networks. We compared a multi-layer
first order net and a second order net, two models which are applied to problems such as
symmetry, parity and contiguity. Our analysis provided an expression which states explicitly
the break-even point. We then analyzed an augmented Hamming network, utilizing a more
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efficient M'A subnet, to conclude that its cost-performance was improv
example demonstrated the equivalence of the Hamming net and the Hopfie

cost-performance.
Although we concentrated in this paper on one type of analog implementa

type), others (such as storing each weight as a charge package on a capac
yield themselves to the same methodology of analysis. Another issue,
ignored in neural network research, is the high fan-in and fan-out of a bio
opposed to electronic components [10]. The incorporation of fan-in and fa
is straightforward in our model.

In conclusion, we have presented in this paper a model which enable
generalized high order networks by providing explicit expressions of their c
This model provides a common framework for theoretically evaluating ana]
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