Theoretical
Computer Science

oot e
ELSEVIER Theoretical Computer Science 217 (1999) 81-98

Computation in artificially evolved,
non-uniform cellular automata

Moshe Sipper**, Marco Tomassini®

3 Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens,
CH-1015 Lausanne, Switzerland
b Logic Systems Laboratory, Swiss Federal Institute of Technology, and Computer Science Institute,
University of Lausanne, CH-1015 Lausanne, Switzerland

Abstract

Cellular automata are dynamical systems in which space and time are discrete, that operate
according to local interaction rules. Designing such systems to exhibit a specific behavior or
to perform a particular task is highly complicated, thus severely limiting their applications.
We study non-uniform cellular automata, focusing on the evolution of such systems to perform
computational tasks, via a parallel evolutionary algorithm, known as cellular programming. We
present the algorithm and demonstrate that high-performance systems can be evolved to perform
two non-trivial computational tasks, density and random number generation. (© 1999—Elsevier
Science B.V. All rights reserved

1. Introduction

Cellular automata (CA) are dynamical systems in which space and time are discrete.
A cellular automaton consists of an array of cells, each of which can be in one of a
finite number of possible states, updated synchronously in discrete time steps, accord-
ing to a local, identical interaction rule. The state of a cell at the next time step is
determined by the current states of a surrounding neighborhood of cells [31, 35].

CAs exhibit three notable features: massive parallelism, locality of cellular inter-
actions, and simplicity of basic components (cells). They perform computations in a
distributed fashion on a spatially extended grid. As such they differ from the stan-
dard approach to parallel computation in which a problem is split into independent
sub-problems, each solved by a different processor, later to be combined in order to
yield the final solution. CAs suggest a new approach in which complex behavior arises
in a bottom-up manner from non-linear, spatially extended, local interactions [14, 20].
This is often referred to as emergent computation, meaning the appearance of global

* Corresponding author. Tel.: +41-21-693-2658; fax: +41-21-693-3705; e-mail: Moshe.Sipper@di.cpfl.ch.

0304-3975/99/$ - see front matter © 1999—Elsevier Science B.V. All rights reserved
PIl: S0304-3975(98)00151-0

82 M. Sipper, M. Tomassinil Theoretical Computer Science 217 (1999) 81-98

information processing capabilities that are not explicitly represented in the system’s
elementary components or in their local interconnections [5].

A major impediment preventing ubiquitous computing with CAs stems from the dif-
ficulty of utilizing their complex behavior to perform useful computations. Designing
CAs to exhibit a specific behavior or to perform a particular task is highly compli-
cated, thus severely limiting their applications. This results from the local dynamics of
the system, which renders the design of local rules to perform global computational
tasks extremely arduous. Automating the design (programming) process would greatly
enhance the viability of CAs [20]. One of the prime motivations for studying CAs
stems from the observation that they are naturally suited for hardware implementation,
with the potential of exhibiting extremely fast and reliable computation that is robust
to noisy input data and component failure [6, 8, 20, 28].

The model investigated in this paper, called non-uniform cellular automaton [17],
is an extension of the basic uniform CA model. Such automata function in the same
way as uniform ones, the only difference being in the cellular rules that need not
be identical for all cells. Our main focus is on the evolution of non-uniform CAs
to perform computational tasks, employing a parallel evolutionary algorithm, known as
cellular programming. The idea of applying the biological principle of natural evolution
to artificial systems, introduced more than three decades ago, has seen impressive
growth in the past decade. Usually grouped under the term evolutionary algorithms
or evolutionary computation, we find the domains of genetic algorithms, evolution
strategies, evolutionary programming, and genetic programming.

The paper is organized as follows: in Section 2 we formally define the CA model, fol-
lowed by an exposition of genetic algorithms in Section 3. Section 4 presents the cellu-
lar programming algorithm, and its application to two non-trivial problems: density and
random number generation. Finally, we present our concluding remarks in Section 5.

2. Cellular automata

A d-dimensional CA consists of a finite or infinite d-dimensional grid of cells, each
of which can take on a value from a finite, typically small, set of integers. The value
of each cell at time step ¢ is a function of the values of a small local neighborhood of
cells at time ¢ — 1. The cells update their states simultaneously according to a given
local rule. !

Formally, a cellular automaton A4 is a quadruple

4=(5,G,d, [f),

where S is a finite set of states, G is the cellular neighborhood, d € Z* is the dimension
of 4, and f is the local cellular interaction rule, also referred to as the transition
function.

! Asynchronous CAs can also be considered, though they will not be treated in this paper.

M. Sipper, M. Tomassini! Theoretical Computer Science 217 (1999) 81-98 83

Given the position of a cell i, i€Z9, in a regular d-dimensional uniform lattice,
or grid (i.e., i is an integer vector in a d-dimensional space), its neighborhood G is
defined by

Gi:{i,i+r19i+r23'~'5i+rn}5

where 7 is a fixed parameter that determines the neighborhood size, and r; is a fixed
vector in the d-dimensional space.
The local transition rule f

f:8"=5

maps the state s; €S of a given cell i into another state from the set S, as a function
of the states of the cells in the neighborhood G;. In uniform CAs f is identical for
all cells, whereas in non-uniform ones f may differ between different cells, i.e., f
depends on i, f;.

For a finite-size CA of size N (such as those treated herein) a configuration of the
grid at time ¢ is defined as

C(t) = (so(t),51(2),...,sn-1(1)),

where s;(t) €S is the state of cell i at time ¢. The progression of the CA in time is
then given by the iteration of the global mapping F

F:C(t)=C(t+1), t=0,1,...

through the simultaneous application in each cell of the local transition rule f. The
global dynamics of the CA can be described as a directed graph, referred to as the
CA’s phase space [35].

In this paper, we focus on one-dimensional CAs with two possible states per cell,
i.e, $={0,1}. In this case f/ is a function f:{0,1}" — {0,1} and the neighborhood
size n is usually taken to be n=2r + 1 such that

Si(t + l)zf(si—r(t)"“ ,Si(t),...,Sj+r(t)),

where r€Z* is a parameter, known as the radius, representing the standard one-
dimensional cellular neighborhood. We shall furthermore limit ourselves to the » — 1|
case, i.e., so-called elementary CAs, for which the neighborhood size is n=23:

£:{0,1¥ = {01}, $i(t+ 1) = f(si-1(2),5:(2), 5i+1(2)).

The domain of f is the set of all 23 3-tuples, which gives rise to 28 =256 distinct
elementary rules. We will use Wolfram’s decimal numbering convention for describing
these rules [35].? For two-state CAs a configuration of a size N grid at time ¢ is a
binary sequence C(z), C(¢)€ {0,1}". For finite-size grids, spatially periodic boundary

2For example, f(111)=1, S(110)=0, f(101)=1, f(100)=1, f(011)=1, f(010)=0, £(001)=0,
f(000) =0, is denoted rule 184.

84 M. Sipper, M. Tomassini! Theoretical Computer Science 217 (1999) 81-98

conditions are frequently assumed, resulting in a circular grid; formally, this implies
that cellular indices are computed modulus N.

3. Genetic algorithms

In the 1950s and the 1960s several researchers independently studied evolutionary
systems with the idea that evolution could be used as an optimization tool for engi-
neering problems. Central to all the different methodologies is the notion of solving
problems by evolving an initially random population of candidate solutions, through
the application of operators inspired by natural genetics and natural selection, such
that in time “fitter” (i.e., better) solutions emerge [2, 11, 13). In this paper, we shall
concentrate on one type of evolutionary algorithms, namely, genetic algorithms.

A genetic algorithm is an iterative procedure that operates by modifying a constant-
size population of individuals, each one represented by a finite string of symbols,
known as the genome, encoding a possible solution in a given problem space. This
space, referred to as the search space, comprises all possible solutions to the problem
at hand. Generally speaking, the genetic algorithm is applied to spaces which are too
large to be exhaustively searched.

The standard genetic algorithm proceeds as follows: an initial population of individ-
uals is generated at random or heuristically. At every evolutionary step, known as a
generation, the individuals in the current population are decoded and evaluated accord-
ing to some predefined quality criterion, referred to as the fitness, or fitness function.
To form a new population (the next generation), individuals are selected according
to their fitness. Many selection procedures are currently in use, one of the simplest
being the so-called fitness-proportionate selection, where individuals are selected with
a probability proportional to their relative fitness [13]. This ensures that the expected
number of times an individual is chosen is approximately proportional to its relative
performance in the population. Thus, high-fitness (“good”) individuals stand a better
chance of “reproducing,” while low-fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals into the population, i.e., it
cannot find new points in the search space; these are generated by genetically inspired
operators, of which the most well known are crossover and mutation. Crossover is per-
formed with probability p. (the “crossover probability” or “crossover rate”) between
two selected individuals, called parents, by exchanging parts of their genomes (i.e., en-
codings) to form two new individuals, called offspring. In its simplest form, substrings
are exchanged after a randomly selected crossover point. This operator, known as one-
point crossover, tends to enable the evolutionary process to move toward “promising”
regions of the search space. The mutation operator is introduced to prevent premature
convergence to local optima by randomly sampling new points in the search space. It
is carried out by flipping bits at random, with some (small) probability p,,. Genetic
algorithms are stochastic iterative processes that are not guaranteed to converge. The
termination condition may be specified as some fixed, maximal number of generations

M. Sipper, M. Tomassinil Theoretical Computer Science 217 (1999) 81-98 85

begin GA
g:=0 { generation counter }
Initialize population P(g)
Evaluate population P(g) { i.e., compute fitness values }
while not done do
g =g+l
Select P(g) from P(g — 1)
Crossover P(g)
Mutate P(g)
Evaluate P(g)
end while
end GA

Fig. 1. Pseudo-code of the standard genetic algorithm.

or as the attainment of an acceptable fitness level. Fig. | presents the standard genetic
algorithm in pseudo-code format.

Genetic algorithms are often used to solve hard optimization problems, and can be
formally cast within a global optimization framework (other formalizations are also
possible, such as, e.g., within a machine-learning setting). Let ¢ be a real cost function
to be minimized (the maximization case can be analogously attained):

c:0—R, min{c(q)|q € O},

where g is a solution subject to the constraint ¢ € Q. Q is called the admissible space
of solutions and ¢ is an admissible solution.

Consider a finite alphabet X, of cardinality |Z|. An individual I of a finite-size genetic
population of size p is a string of symbols of length / from X

I=0...0 g, €2, i=1,...,1.

The space of individuals I' is defined as the set of all possible individuals of size /;
this set is of cardinality |X|’. The alphabet is often binary, {0, 1}, so that an individual
1€{0,1}'. Each individual in the population encodes a solution to the above optimiza-
tion problem and a subset A CI' encodes solutions belonging to the admissible space
Q. We assume the existence of a decoding function w such that

w:A— Q.

Given this mapping from individuals (also known as genotypes) to admissible problem
solutions (also known as phenotypes), the cost function ¢ can be written as u,

u:A—R.

86 M. Sipper, M. Tomassini{ Theoretical Computer Science 217 (1999) 81-98

For technical reasons (see [2]) it is customary to transform the cost function u
through composition with a function g, resulting in k= g(u(l)), VI € A, where

h:A—RT.

The transformed cost function is then used to assign fitness values to individuals in
the population.
The selection operator s,

s AP — AP

can now be applied to individuals in the population, by referring to their fitness values.

New admissible solutions are generated through the operators of crossover (x) and
mutation (m). Crossover is applied with probability p,, generating two new individuals
from the two existing ones:

x: A% — A%

Given two individuals /=¢;...0; and J=1,...1), one-point crossover operates by
selecting a random integer number i from a uniform distribution over [1,7 — 1], after
which the symbols i+ 1,...,7 are exchanged between / and J, creating /' and J':

!
1 =01...0iTiyt... T},
/
J'=1...10,1...0/

Note that other forms of crossover are also used, e.g., multi-point and uniform [2, 13].

Mutation is applied independently to every symbol of an individual string, with
(usually low) probability p,. Mutation is a monadic operator that maps an individual
into another individual:

m:A— A
Given an individual 7, mutation creates /’
! /
I"'=0,...00_10/0i41...0y,

where i was randomly chosen with probability p,, and o/ was randomly chosen from
the set X' (for simplicity we have illustrated above only one mutated symbol). Note
that we have assumed above that the crossover and mutation operators are syntactically
closed, meaning that their range is A; this need not always be the case, i.e., the range
can be I', entailing a “filtering” process to weed out the non-admissible individuals.
For more comprehensive formal accounts of genetic algorithms see [2,30].

Genetic algorithms are ubiquitous nowadays, having been successfully applied to nu-
merous problems from different domains, including optimization, automatic program-
ming, machine learning, economics, operations research, immune systems, ecology,
population genetics, studies of evolution and learning, and social systems. For a recent
review of the current state of the art, refer to [33)].

M. Sipper, M. Tomassini| Theoretical Computer Science 217 (1999) 81-98 87

The implementation of an evolutionary algorithm, an issue which usually remains
in the background, is quite costly in many cases, since populations of solutions are
involved, coupled with computation-intensive fitness evaluations. One possible solution
is to parallelize the process, an idea which has been explored to some extent in recent
years (see reviews [3,33]). While posing no major problems in principle, this may
require judicious modifications of existing algorithms or the introduction of new ones
in order to meet the constraints of a given parallel machine. The cellular programming
algorithm, described in the next section, is inherently parallel and local, lending itself
more readily to implementation.

4. Cellular programming

4.1. The algorithm

We study two-state, one-dimensional, non-uniform CAs, in which each cell may
contain a different rule. A cell’s rule table is encoded as a bit string (the genome),
containing the next-state (output) bits for all possible neighborhood configurations,
listed in lexicographic order (as explained in Section 2). Rather than employ a popu-
lation of evolving, uniform CAs, as with the standard genetic algorithm, our algorithm
involves a single, non-uniform CA of size N, with cell rules initialized at random. Ini-
tial configurations are then generated at random, in accordance with the task at hand,
and for each one the CA is run for M time steps. Each cell’s fitness is accumulated
over C =300 initial configurations, where a single run’s score is 1 if the cell is in the
correct state after M time steps, and 0 otherwise. After every C configurations evo-
lution of rules occurs by applying crossover and mutation. This evolutionary process
is performed in a completely /ocal manner, where genetic operators are applied only
between directly connected cells. It is driven by nfi(c), the number of fitter neigh-
bors of cell i after ¢ configurations. The pseudo-code of our algorithm is delineated
in Fig. 2.

The cellular programming algorithm can be considered as a probabilistic cellular au-
tomaton [32, 34], under the following interpretation: referring to the formal CA defini-
tion (Section 2) as a quadruple 4 = (S, G,d, 1), each cell can be in one of 256 rules (the
number of possible 8-bit genomes). The neighborhood G and the grid dimensionality d
are the same as defined above (=1, d = 1). The only element that calls for a different
interpretation is the local transition rule /. Up to now, we have only considered deter-
ministic rules, however, stochastic ones are also possible, giving rise to probabilistic
cellular automata [28]. In cellular programming, f, f:{0,...,255) —{0,...,255},
maps the state of a given cell to a new state, through deterministic and stochastic
transformations (Fig. 2). Representing f as f =s ox om, where s, x, and m are the
selection, crossover, and mutation operators, respectively (Section 3), then s can be
either deterministic or stochastic, but x and m are always stochastic, thus rendering f
a stochastic function,

88 M. Sipper, M. Tomassini| Theoretical Computer Science 217 (1999) 81--98

for each cell i in CA do in parallel
initialize rule table of cell i
fi=0 { fitness value }
end parallel for
c¢=0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel
if cell is in the correct final state then
fi=fi+l
end if
end parallel for
c=c+1
if ¢ mod C =0 then { evolve every C configurations}
for ecach cell i do in parallel
compute #nf;(c) { number of fitter neighbors }
if nfi(c)=0 then rule 7 is left unchanged
else if nf;(c)=1 then replace rule i with the fitter neighboring rule,
followed by mutation
else if nf;(c) =2 then replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf;(c)>2 then replace rule i/ with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if r > 1)
end if
fi=0
end parallel for
end if
end while

Fig. 2. Pseudo-code of the cellular programming algorithm.

There are two main differences between our algorithm and the standard genetic
algorithm (Section 3): (1) The latter involves a population of evolving, uniform CAs,
with all individuals ranked according to fitness, and crossover occurring between any
two individuals in the population. Thus, while the CA runs in accordance with a local
rule, evolution proceeds in a global/ manner. In contrast, our algorithm proceeds locally
in the sense that each cell has access only to its locale, not only during the run but
also during the evolutionary phase, and no global fitness ranking is performed. (2) The
standard genetic algorithm involves a population of independent problem solutions,
meaning that the individuals in the population are assigned fitness values independent

M. Sipper, M. Tomassini/ Theoretical Computer Science 217 (1999) 81-98 89

of one another, and interact only through the genetic operators in order to produce the
next generation. In contrast, our CA coevolves since each cell’s fitness depends upon
its evolving neighbors.

The cellular programming approach has been applied to several problems, employed
to construct evolving hardware, and extended to include other generalizations of the
classical CA model (the first generalization being non-uniformity of rules), such as
non-standard connectivity architectures and non-deterministic state updating
[8,19-26,28,29]. A thorough examination of cellular programming is provided in the
recent book by Sipper [20]; for reviews the reader is referred to Sipper [21,22]. In
what follows, we concentrate on two specific, non-trivial problems, namely, density
and random number generation.

4.2. The density problem

In the density problem, the one-dimensional, two-state CA is presented with an
arbitrary initial configuration, and should converge in time to a state of all 1’s if the
initial configuration contains a density of 1’s >0.5, and to all 0’s if this density <0.5;
for an initial density of 0.5, the CA’s behavior is undefined. Spatially periodic boundary
conditions are used, resulting in a circular grid. Formally, let C(#) = (so(¢), ... ,Snv—1(1))
be the grid configuration at time step ¢ (Section 2), and let D(si(t),...,Siwk—1(t)) be
the density of 1s at time 7 over a block of & cells at positions i,...,i + & — 1 (with
cellular indices computed modulo N, due to the grid’s circularity), then the CA’s final
density (output) is:

1 if D(C(0))>0.5,
D(C(M)=< 0 if D(C(0))<0.5,
undefined if D(C(0))=0.5,

where M is a given number of time steps to convergence.

It has been noted by Mitchell et al. [14] that the density task comprises a non-
trivial computation for a small-radius CA (r < N, where N is the grid size). Density
is a global property of a configuration, whereas a small-radius CA relies solely on
local interactions. Since the Is can be distributed throughout the grid, propagation
of information must occur over large distances (i.e., O(N)). The minimum amount
of memory required for the task is O(log N) using a serial-scan algorithm, thus the
computation involved corresponds to recognition of a non-regular language. It has been
shown that for a uniform one-dimensional grid of fixed size N, and for a fixed radius
r=1, there exists no two-state CA rule which correctly classifies all possible initial
configurations [12]. This says nothing, however, about how well an imperfect CA might
perform, one possible approach for obtaining successful CAs being artificial evolution.

The application of a standard genetic algorithm (Section 3) to the evolution of
uniform, one-dimensional, »r =3 CAs that solve this task was studied in [14, 15]. More
recently, Andre et al. [1] used genetic programming [11], an evolutionary computation

90 M. Sipper, M. Tomassini| Theoretical Computer Science 217 (1999) 81-98

time

!

(a) (b)

Fig. 3. The density task: operation of the GKL rule. CA is one-dimensional, uniform, 2-state, with connec-
tivity radius r=3. Grid size is N =149. White squares represent cells in state 0, black squares represent
cells in state 1. The pattern of configurations is shown through time (which increases down the page).
Initial configurations were generated at random. (a) Initial density of 1’s is 0.47. (b) Initial density of 1’s
is 0.53. The CA relaxes in both cases to a fixed pattern of all 0’s or all 1’s, correctly classifying the initial
configuration,

paradigm in which an individual in the population is represented by a LISP expression,
to evolve uniform CAs to perform the density task. It was shown that high-performance
CAs can indeed be evolved.? One of the best known uniform, » =3 CAs for this task
is in fact a human-designed one, known as GKL, defined as follows [7]:

majority[s;(£),s;-1(¢),5;-3(1)] if si(£)=0,
st +1)=
majority[s;(¢), si+1(2),5:43(t)] if s;(£)=1.
Its operation is demonstrated in Fig. 3.

We have studied the density task, as defined above, using non-uniform, one-
dimensional, minimal radius »=1 CAs of size N =149. The search space involved
is extremely large; since each cell contains one of 2® possible rules this space is of
size (28)'% =2"""2, In contrast, the size of uniform, r=1 CA rule space is small,
consisting of only 28 =256 rules. This enabled us to test each and every one of these
rules on the density task, a feat not possible for larger values of r. One of our major
results is that evolved, non-uniform, » =1 CAs outperform any possible uniform, » = 1
CA [19,20].*

For the cellular programming algorithm we used randomly generated initial config-
urations, uniformly distributed over densities in the range [0,1], with the CA being
run for M =150 time steps (thus, the CA’s computation time is linear with grid size).
We found that non-uniform CAs had coevolved that exhibit high performance on this

3 For the precise performance measures used refer to the aforementioned references.
4 For details on the performance comparison see [19, 20].

M. Sipper, M. Tomassinil Theoretical Computer Science 217 (1999) 81-98 91

| |
(a) (b)
Fig. 4. One-dimensional density task: operation of a coevolved, non-uniform, r =1 CA. Grid size is N = 149.

Top figures depict space~time diagrams, bottom figures depict rule maps. (a) Initial density of 1’s is 0.40,
final density is 0. (b) Initial density of 1°s is 0.60, final density is 1.

task. Furthermore, these consist of a grid in which one rule dominates, a situation
referred to as quasi-uniformity [18,20]. Fig. 4 demonstrates the operation of one such
coevolved CA along with a rules map, depicting the distribution of rules by assigning
a unique gray level to each distinct rule. In this example the grid consists of 146 cells
containing rule 226, 2 cells containing rule 224, and 1 cell containing rule 234.

Most investigations of the density problem to date concentrated on the above state-
ment of the problem, which specifies convergence to one of two fixed-point config-
urations, that are considered as the output of the computation. Recently, Capcarrere
et al. [4] showed that a perfect CA density classifier exists, upon defining a different
output specification. Consider the uniform, two-state, » =1 rule-184 CA, defined as
follows:

sici(e) if s;()=0,

s{t+1)= {
sipr(t) if si(1)=1.

Upon presentation of an arbitrary initial configuration, the grid relaxes to a limit
cycle, within [N/2] time steps, that provides a classification of the initial configuration’s
density of 1’s: if this density >0.5 (respectively <0.5), then the final configuration
consists of one or more blocks of at least two consecutive 1°s (0’s), interspersed by an
alternation of 0’s and 1’s; for an initial density of exactly 0.5, the final configuration
consists of an alternation of Os and 1s. The computation’s output is given by the state
of the consecutive block (or blocks) of same-state cells (Fig. 5). Capcarrere et al. [4]
proved the following theorem: for a finite-size CA of size N, let C(¢) be the grid

92 M. Sipper, M. Tomassini| Theoretical Computer Science 217 (1999) 81-98

(a) (b)

Fig. 5. Density classification: demonstration of the uniform rule-184 CA on two random initial configurations.
The pattern of configurations is shown for the first 200 time steps. Grid size is N = 149. (a) Initial density
is 0.497, i.e., 75 cells are in state 0, and 74 are in state 1. The final configuration consists of an alternation
of 0’s and 1°s with a single block of two cells in state 0. (b) Initial density is 0.537. The final configuration
consists of an alternation of 0’s and 1’s with several blocks of two or more cells in state 1. In both cases
the CA correctly classifies the initial configuration.

configuration at time step ¢, let D(s;(¢),...,5.14—1(¢)) be the density of 1’s at time ¢
over a block of k cells at positions ,...,i+k—1 (as defined above), and let 7 = [N/2].
Then

(i) If D(C(0))>0.5, then (a) there exists a pair of adjacent cells 7,i + 1, such that

s{(T)=1 and ;4 ((T)=1; (b) for all i, s;(T)=0=s5.1(T)=1.

(ii) If D(C(0))<0.5, then (a) there exists a pair of adjacent cells i,i + 1, such that

5i(T)=0 and s5;11(T)=0; (b) for all i, s{(T)=1=s;.1(T)=0.
(iii) If D(C(0))=0.5, then for all i, s;(T) # si41(T).
Thus, rule 184 performs perfect density classification (including the density = 0.5 case).
We note in passing that the reflection-symmetric rule 226 holds the same properties of
rule 184.

As noted above, the computational complexity of the input is that of a non-regular
language, whereas the fixed-point output of the original problem involves a simple
regular language (all 0’s or all 1’s); we note that the novel output specification also
involves a regular language (a block of two state-0 or state-1 cells). Capcarrere et al.
[4] thus concluded that their newly proposed density classifier is as viable as the
original one with respect to computational complexity, while surpassing the latter in
terms of performance. As a final remark we mention our recent experiments in which
we set out to find whether our local, coevolutionary cellular programming algorithm
can discover this optimal CA [27]. We found that starting from a random non-uniform
CA, and using an appropriate fitness function, a large percentage of the evolutionary

M. Sipper, M. Tomassini/ Theoretical Computer Science 217 (1999) 81-98 93

runs ended with the uniform, rule-184 CA - the provenly optimal solution. Thus, a
global optimum can be found through a purely local evolutionary process.

4.3. Random number generation

Random numbers are needed in a variety of applications, yet finding good ran-
dom number generators, or randomizers, is a difficult task [16]. To generate a random
sequence on a digital computer, one starts with a fixed-length seed, then iteratively ap-
plies some transformation to it, progressively extracting as long as possible a random
sequence. Such numbers are usually referred to as pseudo-random, as distinguished
from true random numbers, resulting from some natural physical process. In order to
demonstrate the efficacy of a proposed generator, it is usually subject to a battery of
empirical and theoretical tests, such as those described by Knuth [10].

In the last decade, CAs have been used to generate “good” random numbers. The
first work examining the application of CAs to random number generation is that
of Wolfram [35], in which the uniform, 2-state, r =1 rule-30 CA was extensively
studied, demonstrating its ability to produce highly random, temporal bit sequences.
Such sequences are obtained by sampling the values that a particular cell (usually the
central one) attains as a function of time. In Wolfram’s work, the uniform rule-30 CA
is initialized with a configuration consisting of a single cell in state 1, with all other
cells being in state 0 [35]. The initially non-zero cell is the site at which the random
temporal sequence is generated.

A non-uniform CA randomizer was presented by Hortensius et al. [9], consisting of
two rules, 90 and 150, arranged in a specific order in the grid. The performance of
this CA in terms of random number generation was found to be at least as good as
that of rule 30, with the added benefit of less costly hardware implementation. It is
interesting in that it combines two rules, both of which are simple linear rules, that do
not comprise good randomizers, to form an efficient, high-performance generator.

An evolutionary approach for obtaining random number generators was taken by
Koza, using genetic programming [11]. He demonstrated evolved expressions that are
equivalent to Wolfram’s rule 30. The fitness measure used by Koza is the entropy Ej:
let k& be the number of possible values per sequence position (in our case CA states)
and # a subsequence length. £, (measured in bits) for the set of 4" probabilities Dh;
of the k" possible subsequences of length 4 is given by

kh
Ey= —Z} Pa, logy pr,,
i=

where Ay, hy,... by are all the possible subsequences of length % (by convention,
log, 0=0 when computing entropy). The entropy attains its maximal value when the
probabilities of all " possible subsequences of length / are equal to 1/&"; in our case
k=2 and the maximal entropy is E; =#4. Formally, for a given CA, we can define a
temporal sequence S; as the sequence of states s;(¢) that cell i/ assumes through time:

Si={si(}i=01.., i=0,1,....,N —1.

94 M. Sipper, M. Tomassini! Theoretical Computer Science 217 (1999 81-98

Then a necessary (though not sufficient) condition for a sequence of bits to be random
is that their entropy be maximal [35].

The above account led us to ask whether good CA randomizers can be coevolved
using cellular programming, our results suggesting that this is indeed the case [25, 26].
The algorithm presented in Section 4.1 is slightly modified, such that the cell’s fitness
score for a single configuration is defined as the entropy Ej of the temporal sequence,
after the CA has been run for M time steps. Cell ’s fitness value, f;, is then updated
as follows (refer to Fig. 2):

for cach cell i do in parallel
fi= fi+ entropy E; of the temporal sequence of cell i
end parallel for

Initial configurations are randomly generated and for each one the CA is run for
M = 4096 time steps.® Note that we do not restrict ourselves to one designated cell,
but consider all grid cells, thus obtaining N random sequences in parallel, rather than
a single one.

In our simulations (using grids of sizes N =50 and N =150), we observed that the
average cellular entropy taken over all grid cells is initially low (usually in the range
[0.2,0.5]), ultimately evolving to a maximum of 3.997, when using a subsequence
size of h=4 (i.e., entropy is computed by considering the occurrence probabilities
of 16 possible subsequences, using a “sliding window” of length 4). We performed
several such experiments using 2 =4 and #=7. The evolved, non-uniform CAs attained
average fitness values (entropy) of 3.997 and 6.978, respectively. We then re-tested
our best CAs over M =65536 times steps (as in [11]), obtaining entropy values of
3.9998 and 6.999, respectively. Interestingly, when we performed this test with A=7
for CAs which were evolved using 42 =4, high entropy was displayed, as for CAs which
were originally evolved with #=7. These results are comparable to the entropy values
obtained by Koza [11], as well as to those of the rule-30 CA of Wolfram [35] and the
non-uniform, rules {90,150} CA of Hortensius et al. [9]. Note that while our fitness
measure is local, the evolved entropy results reported above represent the average of
all grid cells. Thus, we obtain N random sequences in parallel rather than a single
one. Fig. 6 demonstrates the operation of three CAs discussed above: rule 30, rules
{90,150}, and a coevolved CA.

We next subjected our evolved CAs to a number of additional tests, including chi-
square (y*), serial correlation coefficient, and a Monte Carlo simulation for calculating
the value of m; these are well-known tests described in detail by Knuth [{10]. In order
to apply the tests we generated sequences of 100000 random bytes using two different
procedures: (a) The CA of size N =50 is run for 500 time steps, thus generating 50
random temporal bit sequences of length 500. These are concatenated to form one long

5 A standard, 48-bit, lincar congruential algorithm proved sufficient for the generation of random initial
configurations.

M. Sipper, M. Tomassini! Theoretical Computer Science 217 (1999) 81-98 95

Fig. 6. One-dimensional random number generators: operation of three CAs. Grid size is N = 50, radius is
r=1. Initial configurations were generated by randomly setting the state of each grid cell to 0 or 1 with
uniform probability. Top figures depict space-time diagrams, bottom figures depict rule maps. (a) Rule-30
CA. (b) Rules {90,150} CA. (c) A coevolved, non-uniform CA, consisting of three rules: rule 165 (22
cells), rule 90 (22 cells), and rule 150 (6 cells).

sequence of length 25000 bits. This process is then repeated 32 times, thus obtaining
a sequence of 800000 bits, which are grouped into 100000 bytes. (b) The CA of size
N =50 is run for 400 time steps. Every 8 time steps, 50 8-bit sequences (bytes) are
produced, which are concatenated, resulting in 2500 bytes after 400 time steps. This
process is then repeated 40 times, thus obtaining the 100000 byte sequence.

Table 1 shows the test results of four random number generators: two coevolved
CAs, rule-30 CA, and the rules {90,150} CA. We note that the two coevolved CAs
attain good results on all tests, most notably chi-square which is one of the most
significant ones [10]. Our results are somewhat better than the rules {90,150} CA, and
markedly improved in comparison to the rule-30 CA, which attains lower scores on
the chi-square test (procedure (a)), and on the serial correlation test (procedure (b)). It
is noteworthy that our CAs attain good results on a number of tests, while the fitness
measure used during evolution is entropy alone. The relatively low results obtained
by the rule-30 CA may be due to the fact that we considered N random sequences

96 M. Sipper, M. Tomassinil Theoretical Computer Science 217 (1999) 81-98

Table 1

Results of tests. Each entry represents the test result for a sequence of 100,000 bytes, generated by the
corresponding randomizer. 20 sequences were generated by each randomizer, 10 by procedure (a) and 10
by procedure (b) (see text). The table lists the chi-square test results for all 10 sequences and the first
5 results for the other tests. CA Grid size is N = 50. Coevolved CA (1) consists of three rules: rule 165
(22 cells), rule 90 (22 cells), and rule 150 (6 cells). Coevolved CA (2) consists of two rules: rule 165
(45 cells) and rule 225 (5 cells). Interpretation of the listed values is as follows (for a full explanation
see Knuth [10]): (i) Chi-square test: “good” results are between 10%—9%0%, with extremities on both sides
(i.e., <10% and >90%) representing non-satisfactory random sequences. The total percentage of sequences
passing the chi-square test is listed below the 10 individual test results. Knuth suggested that at least three
sequences from a generator be subject to the chi-square test and if a majority pass then the generator is
considered to have passed (with respect to chi-square). (ii) Serial correlation coefficient: this value should
be close to zero. (iii) Entropy test: this value should be close to 8. (iv) Monte Carlo n: the random number
sequence is used in a Monte Carlo computation of the value of 7, and the error percentage from the actual
value is shown

Coevolved CA (1) Coevolved CA (2) Rule 30 CA Rules {90,150} CA
Test (a) (b) (a) (b) (2) (b) (a) (b)

50.00% 75.00% 50.00% 50.00% 90.00% 90.00% 50.00% 25.00%
50.00% 50.00% 75.00% 50.00% 10.00% 50.00% 5.00% 50.00%
90.00% 50.00% 95.00% 5.00% 97.50% 0.50% 10.00% 50.00%
25.00% 75.00% 50.00% 50.00% 0.01% 50.00% 75.00% 25.00%
(i) 50.00% 25.00% 75.00% 50.00% 95.00% 75.00% 97.50% 25.00%
25.00% 10.00% 75.00% 25.00% 97.50% 50.00% 25.00% 50.00%
75.00% 50.00% 75.00% 75.00% 50.00% 50.00% 25.00% 50.00%
10.00% 50.00% 25.00% 50.00% 5.00% 50.00% 25.00% 50.00%
50.00% 25.00% 50.00% 75.00% 25.00% 50.00% 95.00% 75.00%
90.00% 75.00% 90.00% 10.00% 25.00% 50.00% 75.00% 75.00%

100% 100% 90% 90% 50% 90% 70% 100%

0.00185 —0.00085 —0.00390 0.01952 0.00052 —0.24685 0.00646 0.00036
—0.00386 —0.00228 0.00228 0.02144 —-0.00175 —0.24838 —0.00071 —0.00194

(ii) 0.00192 -0.00297 0.00048 0.01970 0.00156 —0.24291 0.00205 —0.00322
—0.00011 —0.00248 —0.00237 0.02192 0.00478 —0.23735 0.00177 0.00094
—0.00060 —0.00762 0.00194 0.01937 0.00214 —0.24149 —0.00075 0.00378

7.99819 7.99828 7.99807 7.99827 7.99841 7.99842 7.99821 7.99797
7.99821 7.99817 7.99835 7.99810 7.99789 7.99820 7.99788 7.99807
(iii) 7.99838 7.99810 7.99845 7.99786 7.99849 7.99770 7.99793 7.99809
7.99800 7.99831 7.99806 7.99808 7.99733 7.99807 7.99832 7.99804
7.99808 7.99801 7.99829 7.99808 7.99844 7.99835 7.99851 7.99800

0.54% 0.19% 0.42% 0.16% 0.21% 0.90% 0.52% 0.20%
0.03% 0.12% 0.33% 0.35% 0.21% 0.13% 0.05% 0.07%
(iv) 0.18% 0.68% 0.62% 0.65% 0.32% 0.13% 0.27% 0.07%
0.45% 0.73% 0.48% 0.33% 0.37% 0.38% 0.07% 0.17%
0.16% 0.09% 0.12% 0.13% 0.40% 0.08% 0.78% 0.01%

generated in parallel, rather than the single one considered by Wolfram. We note in
passing that the rules {90,150} CA results may probably be somewhat improved (as
perhaps our own results) by using “site spacing” and “time spacing” [9].

M. Sipper, M. Tomassini! Theoretical Computer Science 217 (1999) 81-98 97
5. Concluding remarks

A major impediment preventing ubiquitous computing with CAs stems from the diffi-
culty of utilizing their complex behavior to perform useful computations. We presented
the cellular programming algorithm for coevolving computation in non-uniform CAs,
demonstrating that high-performance systems can be evolved for non-trivial computa-
tional tasks.

We applied the algorithm to the density problem, showing that non-uniform CAs
can be evolved to solve it. Restating the problem, we discussed a uniform CA that can
perfectly perform the task, and remarked that our algorithm can be used to evolve the
optimal solution.

We showed that the cellular programming algorithm can be applied to the difficult
problem of generating random number generators. While a more extensive suite of
tests is in order, it seems safe to say at this point that our coevolved generators are
at least as good as the best available CA randomizers. Furthermore, there is a notable
advantage arising from the existence of a “tunable” algorithm for the generation of
randomizers. As some rules lend themselves more easily to hardware implementation,
our algorithm may be used to find good randomizers which can also be efficiently
implemented. A possible extension is the addition of restrictions to the evolutionary
process, e.g., by prespecifying rules for some cells, in order to accommodate hardware
constraints. Another possible modification of the evolutionary process is the incorpora-
tion of statistical measures of randomness into the fitness function (and not just as an
aftermath benchmark). These possible extensions could lead to the automatic generation
of high-performance, random number generators, meeting specific user demands.

Evolving non-uniform CAs present many interesting questions for future research,
involving global computation in locally interconnected systems, as well as how to attain
them by means of artificial evolution. We hope this work has shed some light on these
issues.

References

[1] D. Andre, F.H. Bennett III, J.R. Koza, Discovery by genetic programming of a cellular automata rule
that is better than any known rule for the majority classification problem, in: J.R. Koza, D.E. Goldberg,
D.B. Fogel, R.L. Riolo (Eds.), Genetic Programming 1996: Proc. Ist Ann. Conf, The MIT Press,
Cambridge, MA, 1996, pp. 3-11.

[2] T. Back, Evolutionary Algorithms in Theory and Practice: Evolution Strategies, Evolutionary
Programming, Genetic Algorithms, Oxford University Press, New York, 1996.

[3] E. Canti-Paz, A summary of research on parallel genetic algorithms, Tech. Rep. 95007, Illinois Genetic
Algorithms Laboratory, University of Illinois at Urbana-Champaign, Urbana, IL, July 1995.

[4] M.S. Capcarrere, M. Sipper, M. Tomassini, Two-state, » = | cellular automaton that classifies density,
Phys. Rev. Lett. 77 (24) (1996) 4969-4971.

[5]1 S. Forrest (Ed.), Emergent Computation: Self-organizing, Collective, and Cooperative Phenomena in
Natural and Artificial Computing Networks, The MIT Press, Cambridge, MA, 1991.

[6] P. Gacs, Nonergodic one-dimensional media and reliable computation, Contemp. Math. 41 (1985) 125.

[7] P. Gacs, G.L. Kurdyumov, L.A. Levin, One-dimensional uniform arrays that wash out finite islands,
Problemy Peredachi Informatsii 14 (1978) 92-98.

98 M. Sipper, M. Tomassini| Theoretical Computer Science 217 (1999) 81-98

[8] M. Goeke, M. Sipper, D. Mange, A. Stauffer, E. Sanchez, M. Tomassini, Online autonomous evolware,
in: T. Higuchi, M. Iwata, W. Liu (Eds.), Proc. 1st Internat. Conf. on Evolvable Systems: From Biology
to Hardware (ICES96), Lecture Notes in Computer Science, vol. 1259, Springer, Heidelberg, 1997,
pp. 96-106.

[9] P.D. Hortensius, R.D. McLeod, H.C. Card, Parallel random number generation for VLSI systems using
cellular automata, IEEE Trans. Comput. 38 (10) (1989) 1466-1473.

{10] D.E. Knuth, The Art of Computer Programming: Vol. 2, Seminumerical Algorithms, 2nd ed., Addison-
Wesley, Reading, MA, 1981.

[11] J.R. Koza, Genetic Programming, The MIT Press, Cambridge, MA, 1992.

[12] M. Land, R.K. Belew, No perfect two-state cellular automata for density classification exists, Phys. Rev.
Lett. 74(25) (1995) 5148-5150.

[13] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolution Programs, 3rd ed., Springer,
Heidelberg, 1996.

[14] M. Mitchell, J.P. Crutchfield, P.T. Hraber, Evolving cellular automata to perform computations:
Mechanisms and impediments, Physica D 75 (1994) 361-391.

[15] N.H. Packard, Adaptation toward the edge of chaos, in: J.A.S. Kelso, A.J. Mandell, M.F. Shlesinger
(Eds.), Dynamic Patterns in Complex Systems, World Scientific, Singapore, 1988, pp. 293-301.

[16] S.K. Park, K.W. Miller, Random number generators: good ones are hard to find, Comm. ACM 31(10)
(1988) 1192-1201.

[17] M. Sipper, Non-uniform cellular automata: evolution in rule space and formation of complex structures,
in: R.A. Brooks, P. Maes (Eds.), Artificial Life IV, The MIT Press, Cambridge, MA, 1994, pp. 394-399.

{18] M. Sipper, Quasi-uniform computation-universal cellular automata, in: F. Moran, A. Moreno, J.J. Merelo,
P. Chacdn (Eds.), ECAL’95: 3rd European Conf. on Artificial Life, Lecture Notes in Computer Science,
vol. 929, Springer, Heidelberg, 1995, pp. 544-554.

[19] M. Sipper, Co-evolving non-uniform cellular automata to perform computations, Physica D 92 (1996)
193-208.

[20] M. Sipper, Evolution of Parallel Cellular Machines: The Cellular Programming Approach, Springer,
Heidelberg, 1997.

[21] M. Sipper, The evolution of parallel cellular machines: toward evolware, BioSystems 42 (1997) 29-43.

[22] M. Sipper, Evolving uniform and non-uniform cellular automata networks, in: D. Stauffer (Ed.), Annual
Reviews of Computational Physics, vol. V, World Scientific, Singapore, 1997, pp. 243-285.

[23] M. Sipper, E. Ruppin, Co-evolving cellular architectures by cellular programming, in: Proc. [EEE 3rd
Internat. Conf. on Evolutionary Computation (ICEC’96), 1996, pp. 306-311.

[24] M. Sipper, E. Ruppin, Co-evolving architectures for cellular machines, Physica D 99 (1997) 428—-441.

[25] M. Sipper, M. Tomassini, Co-evolving parallel random number generators, in: H.-M. Voigt, W. Ebeling,
I. Rechenberg, H.-P. Schwefel (Eds.), Parallel Problem Solving from Nature — PPSN 1V, Lecture Notes
in Computer Science, vol. 1141, Springer, Heidelberg, 1996, pp. 950-959.

[26] M. Sipper, M. Tomassini, Generating parallel random number generators by cellular programming,
Internat. J. Modern Phys. C 7(2) (1996) 181-190.

[27] M. Sipper, M. Tomassini, Convergence to uniformity in a cellular automaton via local coevolution,
Internat. J. Modern Phys. C 8(5) (1997) 1013-1024.

[28] M. Sipper, M. Tomassini, O. Beuret, Studying probabilistic faults in evolved non-uniform cellular
automata, Internat. J. Modern Phys. C 7(6) (1996) 923-939.

[29] M. Sipper, M. Tomassini, M.S. Capcarrere, Designing cellular automata using a parallel evolutionary
algorithm, Nucl. Instr. Meth. A 389(1-2) (1997) 278-283.

[30] A. Tettamanzi, Algoritmi Evolutivi per L’ottimizzazione, Ph.D. Thesis, Computer Science Department,
University of Milano, 1995.

[31] T. Toffoli, N. Margolus, Cellular Automata Machines, The MIT Press, Cambridge, MA, 1987,

{32] M. Tomassini, The parallel genetic cellular automata: application to global function optimization, in:
R.F. Albrecht, C.R. Reeves, N.C. Steele (Eds.), Proc. Internat. Conf. on Artificial Neural Networks
and Genetic Algorithms, Springer, Berlin, 1993, pp. 385-391.

[33] M. Tomassini, Evolutionary algorithms, in: E. Sanchez, M. Tomassini (Eds.), Towards Evolvable
Hardware, Lecture Notes in Computer Science, vol. 1062, Springer, Heidelberg, 1996, pp. 19-47.

[34] D. Whitely, Cellular genetic algorithms, in: S. Forrest (Ed.), Proc. 5th Internat. Conf. on Genetic
Algorithms, Morgan Kaufmann Publishers, San Mateo, CA, 1993, p. 658.

[35] S. Wolfram, Cellular Automata and Complexity, Addison-Wesley, Reading, MA, 1994,

