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In this chapter we focus on the Wisconsin breast cancer dsgn
(WBCD) problem, combining two methodologies—fuzzy sysseamd
evolutionary algorithms—to automatically produce diagiosystems.
We present two hybrid approaches: (1) a fuzzy-genetic dlgar and (2)
Fuzzy CoCo, a hovel cooperative coevolutionary approaéiztny mod-
eling. Both methods produce systems exhibiting high diassion per-
formance, and which are also human-interpretable. Fuz£yoCibtains
higher-performance systems than the standard fuzzy-geapproach
while expending less computational effort.

1 Introduction

A major class of problems in medical science involves thgmlsis of

disease, based upon various tests performed upon thepatiban sev-
eral tests are involved, the ultimate diagnosis may be diffio obtain,

even for a medical expert. This has given rise, over the gastiecades,
to computerized diagnostic tools, intended to aid the mhgsiin making

sense out of the welter of data.

A prime target for such computerized tools is in the domaircaricer
diagnosis. Specifically, where breast cancer is concernted{reating
physician is interested in ascertaining whether the patiader exam-
ination exhibits the symptoms of a benign case, or whethecése is a
malignant one.



2 Chapter 0

A good computerized diagnostic tool should possess twaacheiistics,
which are often in conflict. First, the tool must attain thghest pos-
sible performancei.e., diagnose the presented cases correctly as being
either benignor malignant Second, it would be highly beneficial for
such a diagnostic system to be human-friendly, exhibitmgalledin-
terpretability This means that the physician is not faced with a black box
that simply spouts answers (albeit correct) with no expianarather,

we would like for the system to provide some insight abowvit derives

its outputs.

In this chapter we present the combination of two methodeksg-fuzzy
systems and evolutionary algorithms—to automaticallydpiee systems
for breast cancer diagnosis. The major advantage of fuzsiesys is
that they favor interpretability, however, finding good Zyzsystems can
be quite an arduous task. This is where evolutionary algst step in,
enabling the automatic production of fuzzy systems, basesldatabase
of training cases. There are several recent examples optiecation of
fuzzy systems and evolutionary algorithms in the medicahain [28],
though only a few combine both methodologies in a hybrid wag-we
do in this chapter.

This chapter is organized as follows: In the next section vexide an
overview of fuzzy modeling, evolutionary computation, @awlutionary
fuzzy modeling. In Section 3 we describe the Wisconsin lireascer
diagnosis (WBCD) problem, which is the focus of our interestein.
Section 4 then describes a fuzzy-genetic approach to the BVBGb-
lem. Section 5 presents Fuzzy CoCo, our cooperative cogonary ap-
proach to fuzzy modeling, and its application to the WBCDem.
Finally, we present concluding remarks in Section 6.

1This article provides over one hundred references to wankihé medical domain
using evolutionary computation.
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2 Background

2.1 Fuzzy modeling

Fuzzy logic is a computational paradigm that provides a eratktical
tool for representing and manipulating information in a vilagt resem-
bles human communication and reasoning processes [48]b#sed on
the assumption that, in contrast to Boolean logic, a stat¢oan bepar-
tially true (or false), and composed of imprecise concepts. Fanpba
the expression “I live near Geneva,” where the fuzzy valiesthapplied
to the fuzzy variable “distance,” in addition to being imgis®, is subject
to interpretation. Afuzzy variablgalso called dinguistic variable see
Figure 1) is characterized by its name tag, a setuakzy valuegalso
known aslinguistic valuesor labelg, and the membership functions of
these labels; these latter assign a membership yalyg(u) to a given
real valueu € R, within some predefined range (known as the universe
of discourse). While the traditional definitions of Booleagic opera-
tions do not hold, new ones can be defined. Three basic opeszind,
or, andnot, are defined in fuzzy logic as follows:

ftaands (u) = pa(u) A pp(u) = min{pa(u), pp(u)},

faors(u) = pa(u) V pp(u) = max{pa(w), pp(u)},

finota(u) = —pa(u) =1 — pa(u),

where A and B are fuzzy variables. Using such fuzzy operators one can
combine fuzzy variables to form fuzzy-logic expressiomsaimanner
akin to Boolean logic. For example, in the domain of contwhere
fuzzy logic has been applied extensively, one can find espaes such
as:if room temperaturés Warm, then increase slightly the ventilation-
fan speed.

A fuzzy inference systeim a rule-based system that uses fuzzy logic,
rather than Boolean logic, to reason about data [43]. Itsckstsucture
consists of four main components, as depicted in Figure 2a fuzzi-
fier, which translates crisp (real-valued) inputs into fuxalues; (2) an
inference engine that applies a fuzzy reasoning mecharmmsobtain a
fuzzy output; (3) a defuzzifier, which translates this latiatput into a
crisp value; and (4) a knowledge base, which contains bo#naamble

of fuzzy rules, known as the rule base, and an ensemble of iersmip
functions known as the database.
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Figure 1. Example of a fuzzy variabl@riglyceride levelhas three possible
fuzzy values, labeletlormal, High, andVery High, plotted above as degree
of membership versus input value. The valdgssetting the trapezoid and tri-
angle apices, define the membership functions. In the figurexample input
value 250 mg/dL is assigned the membership valwgs,.;(250) = 0.75,
,UHigh(25O) = 0.25, and ,uVeTyHigh(250) = 0. Note thatunormai(250) +
,U/High(250) + MVeryHigh(25O) =1L

Knowledge base

Database

Crisp ifi Inference Defuzzifier Crisp
Input =—P>|  Fuzzifier oy Engine [~ o+ P Output
Input Output

Figure 2. Basic structure of a fuzzy inference system.

The decision-making process is performed by the inferengae using
the rules contained in the rule base. These fuzzy rules défmeon-
nection between input and output fuzzy variables. A fuz2g has the
form:

if antecedent then consequent,
whereantecedent is a fuzzy-logic expression composed of one or more
simple fuzzy expressions connected by fuzzy operators¢@nequent
is an expression that assigns fuzzy values to the outpuahlas. The
inference engine evaluates all the rules in the rule baseamdines the
weighted consequents of all relevant rules into a singleyset using
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the aggregationoperation. This operation is the analog in fuzzy logic of
the average operator in arithmetic [42] (aggregation isligperformed
with the maxoperator).

Fuzzy modelings the task of identifying the parameters of a fuzzy in-
ference system so that a desired behavior is attained [42F that the
fuzzy-modeling process has to deal with an important traffléetween
the accuracyand theinterpretability of the model. In other words, the
model is expected to provide high numeric precision whilming as
little a loss of linguistic descriptive power as possibletivihedirectap-
proach a fuzzy model is constructed using knowledge fromraaruex-
pert. This task becomes difficult when the available knogéeld incom-
plete or when the problem space is very large, thus motigdtie use of
automaticapproaches to fuzzy modeling. There are several approaches
to fuzzy modeling, based on neural networks [14, 22, 41]|wianary
algorithms [2, 7, 26], and hybrid methods [35, 37]. Selattd relevant
variables and adequate rules is critical for obtaining adgegstem. One
of the major problems in fuzzy modeling is tarse of dimensionality
meaning that the computation requirements grow exporngnvéth the
number of variables.

The parameters of fuzzy inference systems can be classiftedaur
categories (Table 1) [26]: logical, structural, conneet@nd operational.
Generally speaking, this order also represents theirivelaifluence on
performance, from most influential (logical) to least infitial (opera-
tional).

In fuzzy modeling, logical parameters are usually predefibg the
designer based on experience and on problem characteriipical
choices for the reasoning mechanism are Mamdani-type gl&kageno-
Kang (TKS)-type, and singleton-type [42]. Common fuzzyrapars are
min, max, product, probabilistic sum, and bounded sum. Tastmom-
mon membership functions are triangular, trapezoidal, lagldshaped.
As for defuzzification, several methods have been proposét, the
Center of Area (COA) and the Mean of Maxima (MOM) being the thos
popular [19,42].
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Table 1. Parameter classification of fuzzy inference system

Class Parameters
Reasoning mechanism
Logical Fuzzy operators

Membership function types
Defuzzification method
Relevant variables

Structural Number of membership functions
Number of rules
Antecedents of rules

Connective Consequents of rules
Rule weights
Operational Membership-function values

Structural, connective, and operational parameters magither pre-
defined, or obtained by synthesis or search methodologiesef@lly,
the search space, and thus the computational effort, groywenen-
tially with the number of parameters. Therefore, one cahegiinvest
more resources in the chosen search methodology, or infosearpri-
ori, expert knowledge into the system (thereby effectivelyureag the
search space). The aforementioned trade-off betweenamcand inter-
pretability is usually expressed as a set of constraintdherpairameter
values, thus complexifying the search process.

2.2 Evolutionary computation

The domain of evolutionary computation involves the stufithe foun-

dations and the applications of computational techniquesed on the
principles of natural evolution. Evolution in nature ispessible for the
“design” of all living beings on earth, and for the strategibey use to
interact with each other. Evolutionary algorithms emplbis tpowerful

design philosophy to find solutions to hard problems.

Generally speaking, evolutionary techniques can be viewider
as search methods, or as optimization techniques. As wrikg
Michalewicz [21]:

Any abstract task to be accomplished can be thought of aggolv
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a problem, which, in turn, can be perceived as a search thraug
space of potential solutions. Since usually we are aftex bbst’
solution, we can view this task as an optimization process.

The first works on the use of evolution-inspired approachgsrdblem
solving date back to the late 1950s [4, 5, 8,10, 11]. Independnd al-
most simultaneous research conducted by Rechenberg améfetion
evolution strategieg34, 36], by Holland orgenetic algorithm§l 3], and
by Fogel onevolutionary programmingf] triggered the study and the
application of evolutionary techniques.

Three basic mechanisms drive natural evoluti@productionmutation
and selection The first two act on thehromosomesontaining the ge-
netic information of thendividual (the genotypé, rather than on the in-
dividual itself (thephenotypgwhile selection acts on the phenotype. Re-
production is the process whereby new individuals are thioed into
a population During sexual reproductiomgcombinatior(or crossovey
occurs, transmitting to the offspring chromosomes thataarmaelange
of both parents’ genetic information. Mutation introdusesall changes
into the inherited chromosomes; it often results from cagyarrors dur-
ing reproduction. Selection, acting on the phenotype, i®agss guided
by the Darwinian principle of survival of the fittest. The dit individu-
als are those best adapted to their environment, which thwsve and
reproduce.

Evolutionary computation makes use of a metaphor of naawalution,
according to which a problem plays the role of an environmmgrein
lives a population of individuals, each representing a ipdssolution
to the problem. The degree of adaptation of each individual, candi-
date solution) to its environment is expressed by an adggu@asure
known as thefitness functionThe phenotype of each individual, i.e.,
the candidate solution itself, is generally encoded in sameaner into
its genoméggenotype). Evolutionary algorithms potentially prodyce-
gressively better solutions to the problem. This is possibanks to the
constant introduction of new “genetic” material into thepptation, by
applying so-called genetic operators which are the contijouta equiv-
alents of natural evolutionary mechanisms.
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There are several types of evolutionary algorithms, amohnigivthe best
known aregenetic algorithmsgenetic programmingevolution strate-
gies and evolutionary programmingthough different in the specifics
they are all based on the same general principles. The gpadetvolu-
tionary algorithm proceeds as follows: An initial poputatiof individ-
uals, P(0), is generated at random or heuristically. Every evolutigna
stept, known as agenerationthe individuals in the current population,
P(t), are decodedand evaluatecaccording to some predefined quality
criterion, referred to as the fitness, or fitness functiore,ra subset of
individuals, P’(t)—known as thenating poot—is selected to reproduce,
with selection of individuals done according to their fitaeShus, high-
fitness (“good”) individuals stand a better chance of “relucing,” while
low-fitness ones are more likely to disappear.

Selection alone cannot introduce any new individuals iht® popula-
tion, i.e., it cannot find new points in the search space. &msnts
are generated by altering the selected populaf®ft) via the appli-
cation of crossover and mutation, so as to produce a new atpul)
P’(t). Crossover tends to enable the evolutionary process to nmve
ward “promising” regions of the search space. Mutation isiduced to
prevent premature convergence to local optima, by rand@aigpling
new points in the search space. Finally, the new individé¥lg) are
introduced into the next-generation populatiétis + 1); usually P”(t)
simply becomes” (¢ + 1). The termination condition may be specified
as some fixed, maximal number of generations or as the attsinof
an acceptable fitness level. Figure 3 presents the strucfuaegeneric
evolutionary algorithm in pseudo-code format.

As they combine elements of directed and stochastic seavolfiytion-
ary techniques exhibit a number of advantages over otheclseaeth-
ods. First, they usually need a smaller amount of knowledgefawer
assumptions about the characteristics of the search sfacend, they
can more easily avoid getting stuck in local optima. Finalhey strike
a good balance betweeaxploitationof the best solutions, anexplo-
rationof the search space. The strength of evolutionary algostteties
on their population-based search, and on the use of theigenetha-
nisms described above. The existence of a population ofidatedsolu-
tions entails a parallel search, with the selection meamaiirecting the
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begin EA

t:=0

Initialize populationP(t)

while not donedo
EvaluateP ()
P'(t) := SelectP(t)]
P"(t) := ApplyGeneticOperatorsf'(¢)]
P(t + 1) := IntroducelP”(t),P(t)]
t=t+1

end while

end EA
Figure 3. Pseudo-code of a standard evolutionary algorithm

search to the most promising regions, the crossover opeyatmuraging
the exchange of information between these search-spaiomsegnd the
mutation operator enabling the exploration of new diratdio

The application of an evolutionary algorithm involves a rhgnof im-
portant considerations. The first decision to take whenyapglsuch an
algorithm is how to encode candidate solutions within theogee. The
representation must allow for the encoding of all possiblattsons while
being sufficiently simple to be searched in a reasonable ahajuime.
Next, an appropriate fithess function must be defined foruatalg the
individuals. The (usually scalar) fithess value must refleetcriteria to
be optimized and their relative importance. Representatial fithess are
thus clearly problem-dependent, in contrast to selectiamssover, and
mutation, which seenprima faciemore problem-independent. Practice
has shown, however, that while standard genetic operatordbe used,
one often needs to tailor these to the problem as well.

We noted above that there are several types of evolutiorigoyithms.
The distinction is mainly due to historical reasons and fffergnt types
of evolutionary algorithms are in fact quite similar. Onauttbargue that
there is but a single general evolutionary algorithm, ot {he opposite—
that “there are as many evolutionary algorithms as the rekeses work-
ing in evolutionary computation” [31]. The frontiers amotige widely
accepted classes of evolutionary algorithms have becorzy fover the
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years as each technique has attempted to overcome itstlongaby
imbibing characteristics of the other techniques. To desig evolution-
ary algorithm one must define a number of important paramegidgnich
are precisely those that demarcate the different evolatisonomputation
classes. Some important parameters are: representaénar(e), selec-
tion mechanism, crossover, mutation, size of populatidrendP”, vari-
ability or fixity of population size, and variability or fixitof genome
length.

2.3 Evolutionary Fuzzy Modeling

Evolutionary algorithms are used to search large, and aftanplex,
search spaces. They have proven worthwhile on humeroussdipeob-
lems, able to find near-optimal solutions given an adequati®pnance
(fitness) measure. Fuzzy modeling can be considered as amzgiton

process where part or all of the parameters of a fuzzy systamstic

tute the search space. Works investigating the applicafiemolutionary
techniques in the domain of fuzzy modeling had first appeatsult a
decade ago [15, 16]. These focused mainly on the tuning afyfuder-

ence systems involved in control tasks (e.g., cart-polarzhg, liquid-
level system, and spacecraft rendezvous operation). Eopnary fuzzy
modeling has since been applied to an ever-growing numbsomiins,
branching into areas as diverse as chemistry, medicirezdeimunica-
tions, biology, and geophysics. For a detailed bibliogxap evolution-
ary fuzzy modeling up to 1996, the reader is referred to [1, 6]

Depending on several criteria—including the availablpriori knowl-
edge about the system, the size of the parameter set, andatiteebdity
and completeness of input/output data—artificial evoluttan be ap-
plied in different stages of the fuzzy-parameter searchedlof the four
categories of fuzzy parameters in Table 1 can be used to dafopets for
evolutionary fuzzy modeling: structural parameters, @utive parame-
ters, and operational parameters [26]. As noted in Secti@nl@gical
parameters are usually predefined by the designer basedenence.

Knowledge tuning (operational parameters).The evolutionary algo-
rithm is used to tune the knowledge contained in the fuzzyesysy
finding membership-function values. An initial fuzzy systées defined
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by an expert. Then, the membership-function values aredattin a
genome, and an evolutionary algorithm is used to find systeitis
high performance. Evolution often overcomes the localimaproblem
present in gradient descent-based methods. One of the sfaydcom-
ings of knowledge tuning is its dependency on the initialisgtof the
knowledge base.

Behavior learning (connective parameters)In this approach, one sup-
poses that extant knowledge is sufficient in order to defirenttem-
bership functions; this determines, in fact, the maximunmber of
rules [42]. The genetic algorithm is used to find either thie monse-
guents, or an adequate subset of rules to be included in iinbase.

As the membership functions are fixed and predefined, thisoagh
lacks the flexibility to modify substantially the system betor. Further-
more, as the number of variables and membership functiareases,
the curse of dimensionality becomes more pronounced andhtbe

pretability of the system decreases rapidly.

Structure learning (structural parameters). In many cases, the avail-
able information about the system is composed almost exelysof
input/output data, and specific knowledge about the systamtsre is
scant. In such a case, evolution has to deal with the simediasdesign
of rules, membership functions, and structural paramefrme meth-
ods use a fixed-length genome encoding a fixed number of fudeg r
along with the membership-function values. In this casaltsgner de-
fines structural constraints according to the availableAtadge of the
problem characteristics. Other methods use variablettteggnomes to
allow evolution to discover the optimal size of the rule base

Both behavior and structure learning can be viewed as ragebearning
processes with different levels of complexity. They cansthe assimi-
lated within other methods from machine learning, takingaadage of
experience gained in this latter domain. In the evolutigregorithm
community there are two major approaches for evolving sudh sys-
tems: the Michigan approach and the Pittsburgh approadhA2tore
recent method has been proposed specifically for fuzzy nraglehe it-
erative rule learning approach [12]. These three appraaahe briefly



12 Chapter 0

described below.

The Michigan approach. Each individual representssinglerule. The
fuzzy inference system is represented by #émtire population Since
several rules participate in the inference process, thesrale in con-
stant competition for the best action to be proposed, angarate to
form an efficient fuzzy system. The cooperative-compeditnature of
this approach renders difficult the decision of which rules@timately
responsible for good system behavior. It necessitatesfaatiee credit-
assignment policy to ascribe fitness values to individulgsu

The Pittsburgh approach. Here, the evolutionary algorithm maintains
a population of candidate fuzzy systems, each individyaksenting an
entirefuzzy system. Selection and genetic operators are useatpe
new generations of fuzzy systems. Since evaluation is egpdi the en-
tire system, the credit-assignment problem is eschewed. approach
allows to include additional optimization criteria in thénfss function,
thus affording the implementation of multi-objective apization. The
main shortcoming of this approach is its computational,8te a pop-
ulation of full-fledged fuzzy systems has to be evaluateti gaoeration.

The iterative rule learning approach. As in the Michigan approach,
each individual encodes a single rule. An evolutionary afgm is used
to find a single rule, thus providing a partial solution. Thalation-
ary algorithm is used iteratively for the discovery of nevies) until an
appropriate rule base is built. To prevent the process fradirig redun-
dant rules (i.e., rules with similar antecedents), a peatibn scheme
is applied each time a new rule is added. This approach caslilre
speed of the Michigan approach with the simplicity of fitnegaluation
of the Pittsburgh approach. However, as with other incraaienle-base
construction methods, it can lead to a non-optimal partitig of the an-
tecedent space.

As mentioned before, the accuracy-interpretability traffefaced by
fuzzy modelers implies the assumption of constraints gatim the pa-
rameter values, mainly on the membership-function shagiesfollow-

ing semantic criteria represent conditions driving fuzaydaling toward
human-interpretable systems [26, 30]:
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¢ Distinguishability.Each linguistic label should have semantic mean-
ing and the fuzzy set should clearly define a range in the usévef
discourse. In the example of Figure 1, to describe varidiiglyc-
eride levelwe used three meaningful labelormal, High, andVery
High. Their membership functions are defined using parametgrs
b, andP3.

¢ Justifiable number of elemenihe number of membership functions
of a variable should be compatible with the number of congaipt
entities a human being can handle. This number should naeelxc
the limit of 7 + 2 distinct terms. The same criterion is applied to the
number of variables in the rule antecedent.

e CoverageAny element from the universe of discourse should belong
to at least one of the fuzzy sets. That is, its membershipevalust be
different than zero for at least one of the linguistic lab&seferring
to Figure 1, we see that any value along the x-axis belongsléast
one fuzzy set; no value lies outside the range of all sets.

e NormalizationSince all labels have semantic meaning, then, for each
label, at least one element of the universe of discourseldlnave a
membership value equal to one. In Figure 1, we observe théirae
setsNormal, High, andVery High have elements with membership
value equal to 1.

e Orthogonality.For each element of the universe of discourse, the sum
of all its membership values should be equal to one (as inkample
in Figure 1).

3 Fuzzy Systems for Breast Cancer Diagno-
Sis

In this section we present the medical-diagnosis problenchwis the
object of our study, and the fuzzy system we propose to soivih.
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3.1 The WBCD problem

Breast cancer is the most common cancer among women, exglskiin
cancer. The presence of a breast massn alert sign, but it does not
always indicate a malignant cancer. Fine needle aspirgdfdif)3 of
breast masses is a cost-effective, non-traumatic, andymust-invasive
diagnostic test that obtains information needed to evalmatlignancy.

The Wisconsin breast cancer diagnosis (WBCD) databasaq26¢ re-
sult of the efforts made at the University of Wisconsin Hoaldfor accu-
rately diagnosing breast masses based solely on an FNAL&stNine
visually assessed characteristics of an FNA sample comsidelevant
for diagnosis were identified, and assigned an integer Vaéleeen 1
and 10. The measured variables are as follows:

Clump Thicknessi);

Uniformity of Cell Size {,);

Uniformity of Cell Shape;);

Marginal Adhesiony);

Single Epithelial Cell Sizew);

Bare Nuclei {);

Bland Chromatini;);

Normal Nucleoli {s);

© © N o 0 & W Db P

Mitosis ().

The diagnostics in the WBCD database were furnished by alissi
in the field. The database itself consists of 683 cases, vaith entry
representing the classification for a certain ensemble afsmed values:

2Most breast cancers are detected as a lump or mass on thg byeself-examination,
by mammography, or by both [18].

3Fine needle aspiration is an outpatient procedure thatiegousing a small-gauge
needle to extract fluid directly from a breast mass [18].
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case | vy vy V3 --- g | diagnostic
115 1 1 --- 1| benign
215 4 4 .- 1| benign

68314 8 8 --- 1 | malignant

Note that the diagnostics do not provide any informationalioe degree
of benignity or malignancy.

There are several studies based on this database. Bennkleangasar-
ian [3] used linear programming techniques, obtaining &%Hclassi-
fication rate on 487 cases (the reduced database availatile time).

However, their solution exhibits little understandalilite., diagnostic
decisions are essentially black boxes, with no explanatsoio how they
were attained. With increased interpretability in mind @siar objective,

a number of researchers have applied the method of extgaBtiolean
rules from neural networks [38, 39]. Their results are emaging, ex-
hibiting both good performance and a reduced number of anesrele-
vant input variables. Nevertheless, these systems use&oolles and
are not capable of furnishing the user with a measure of cendid for
the decision made. Our own work on the evolution of fuzzy suier

the WBCD problem has shown that it is possible to obtain diagn

systems exhibiting high performance, coupled with intetgioility and a
confidence measure [24-27].

3.2 Fuzzy-system setup

The solution scheme we propose for the WBCD problem is degiict
Figure 4. It consists of a fuzzy system and a threshold umie flizzy
system computes a continuous appraisal value of the maloynaf a
case, based on the input values. The threshold unit themisupenign
or malignantdiagnostic according to the fuzzy system’s output.

Our previous knowledge about the WBCD problem represeritsatée
information to be used for our choice of fuzzy parameterdiddl).
When defining our setup we took into consideration the foitgathree
results concerning the composition of potential high-perfance sys-
tems: (1) small number of rules; (2) small number of variabknd (3)
monotonicity of the input variables [26]. Some fuzzy modelgjo in-



16 Chapter 0

Fuzzy Subsystem Threshold Subsystem

\

é ! |
Input 1W; Appraisal Diagnostic

Figure 4. Proposed diagnosis system. Note that the fuzzgystdm displayed
to the left is in fact the entire fuzzy inference system ofufi?2.

terpretability in the interest of improved performance. &k medical
diagnosis is concerned, interpretability is the major atlage of fuzzy
systems. This motivated us to take into account the five seonaiteria
presented in Section 2.3, defining constraints on the fuzzgrpeters:
(1) distinguishability, (2) justifiable number of elemen{3) coverage,
(4) normalization, and (5) orthogonality.

Referring to Table 1, and taking into account these five Gateve de-
lineate below the fuzzy-system setup:

e Logical parameters: singleton-type fuzzy systems; mimx-fuazy op-
erators; orthogonal, trapezoidal input membership fumgi(see Fig-
ure 5); weighted-average defuzzification.

e Structural parameters: two input membership functiobew( and
High; see Figure 5); two output singletonisefrignand malignanj;
a user-configurable number of rules. The relevant variadne®ne of
the evolutionary objectives.

e Connective parameters: the antecedents and the conseofutre
rules are searched by the evolutionary algorithm. The #lgoralso
searches for the consequent of the default rule which plagsdle

of anel se condition (note that for the fuzzy-genetic approach pre-

sented in Section 4, the consequents are predefined ingteaolwed,
thus reducing the search space). All rules have unitary hteig

e Operational parameters: the input membership-functidmesare to
be found by the evolutionary algorithm. For the output sétghs we
used the values 2 and 4, foenignandmalignant respectively.
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R/Iembership
Low High

1

> Variable

Figure 5. Input fuzzy variables for the WBCD problem. Eachziy variable
has two possible fuzzy values labeledw andHigh, and orthogonal mem-
bership functions, plotted above as degree of membershiguseénput value.
P andd define the start point and the length of membership functidges,
respectively. The orthogonality condition means that the ©f all member-
ship functions at any point is one. In the figure, an exampleeva is assigned
the membership valugsr,o.,(u) = 0.8 and pign(u) = 0.2 (as can be seen

BLow(w) + prign(u) = 1).
4 A Fuzzy-Genetic Approach

The problem, at this stage, consists of searching for thugeyfsystem
parameters: input membership functions, antecedentdes,rand rele-
vant variables (consequents of rules are predefined; se®$82). We
applied a Pittsburgh-like approach, using a simple gedgiarithm [40]
to search for individuals whose genomes encode these tlaeenp-
ters. The next subsection describes the setup of the geadgbathm,
after which subsection 4.2 presents the results obtainglgiag this ap-
proach.

4.1 The evolutionary setup

The genome encodes three sets of parameters: input menpbknst-
tions, antecedents of rules, and relevant variables. &fiméd as follows:

e Membership-function parameters. There are nine variables vy),
each with two paramete® andd, defining the start point and the
length of the membership-function edges, respectivelguia 5).

¢ Antecedents. Théth rule has the form:



18 Chapter 0

Table 2. Parameter encoding of an individual’'s genome. G@mome length is
54 + 18N,., whereN,. denotes the number of ruled’f is seta priori to a value
between 1-5, and is fixed during the genetic-algorithm run).

Parameter Values Bits Qty  Total bits

P 12...8 3 9 27
d {1,2...8 3 9 27
A {0123 2 9xN, 18xN,

if (v is A%)and ... and(vg is AY) then (output is benign),

where A} represents the membership function applicable to variable
v;. Aj. can take on the values: L@w), 2 (High), or 0 or 3 Othep.

e Relevant variables are searched for implicitly by lettihg algorithm
choose non-existent membership functions as valid anéetedin
such a case the respective variable is considered irrelelran ex-
ample, the rule

if (v i1s High) and (vs is Other) and (v3 is Othen and (v is
Low) and (v5 is Othen and (vg is Other and (v; is Other)
and (vg is Low) and (vg is Othen then (output is benigr,

is interpreted as:

if (v; is High) and (v, is Low) and (vg is Low) then (output is
benign.

Table 2 delineates the parameter encoding, which togetiner & single
individual’'s genome.

To evolve the fuzzy inference system, we used a geneticitdigomwith
a fixed population size of 200 individuals, and fitness-propoate se-
lection (Subsection 2.2). The algorithm terminates whenrttaximum
number of generations;,,,., is reached (we sé&t,,., = 2000 + 500 x
N,., i.e., dependent on the number of rules used in the run), envite
increase in fitness of the best individual over five succesgenerations
falls below a certain threshold (in our experiments we usedshold
values between x 10~7 and4 x 1079).
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Our fitness function combines three criteria: @) classification per-
formance, computed as the percentage of cases correctlyifcdal; (2)
F,: the quadratic difference between the continuous appragae (in
the range 2, 4]) and the correct discrete diagnosis given by the WBCD
database (eithexor 4); and (3)F,: the average number of variables per
active rule. The fitness function is given by= F, — o F, — GF,, where

a = 0.05andg = 0.01 (these latter values were derived empirically)),
the ratio of correctly diagnosed cases, is the most importeasure of
performance.f;,, measures the linguistic integrity (interpretability),-pe
nalizing systems with a large number of variables per rutegweerage).
F, adds selection pressure towards systems with low quadnac

4.2 Results

This section describes the results obtained when applyiagrethod-
ology described in Section 4.1. We first delineate the siscseistics
relating to the evolutionary algorithm. Then, we describéull a three-
rule evolved fuzzy system that exemplifies our approach.

A total of 120 evolutionary runs were performed, all of whifdbund

systems whose classification performance exceeds 94.5p&rlicular,

considering the best individual per run (i.e., the evolwstam with the
highest classification success rate), 78 runs led to a fugtes whose
performance exceeds 96.5%, and of these, 8 runs found systbose
performance exceeds 97.5%; these results are summarigéglire 6.

Table 3 shows the results of the best systems obtained wetlfuttzy-
genetic approach. The number of rules per system was fixée atitset
to be between one and five, i.e., evolution seeks a systemawishpri-
ori given number of rules. A comparison of these systems witleroth
approaches is presented in Section 5.4 (see also [26]).

We next describe our top-performance system, which sewexeém-
plify the solutions found by our evolutionary approach. Hystem, de-
lineated in Figure 7, consists of three rules (note thaethee condition
is not counted as an active rule). Taking into account adldhuariteria of
performance—classification rate, number of rules per systand aver-
age number of variables per rule— this system can be comrsidbe top
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Figure 6. Summary of results of 120 evolutionary runs. Tretdgram depicts
the number of systems exhibiting a given performance levéh@end of the
evolutionary run. The performance considered is that ofttbst individual of
the run, measured as the overall percentage of correctigifiled cases over the

entire database.

Table 3. Results of the best systems evolved by the fuzzgtgeapproach.
Shown below are the classification performance values ofdpesystems ob-
tained by these approaches, along with the average numberiables-per-rule.
Results are divided into five classes, in accordance withtmeber of rules-per-

system, going from one-rule systems to five-rule ones.

Rules-per-system Performance variables-per-rule

1

2
3
4
5

97.07%
97.36%
97.80%
97.80%
97.51%

4
3
4.7
4.8
34

one over all 120 evolutionary runs. It obtains an overalsification rate

(i.e., over the entire database) of 97.8%.

A thorough test of this three-rule system revealed that gooisd rule
(Figure 7) is never actually used; in the fuzzy literatuns th known as
a rule that nevefires i.e., is triggered by none of the input cases. Thus,
it can be eliminated altogether from the rule base, regyitira two-rule
system (also reducing the average number of variablestpefrom 4.7

to 4).
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Database
‘ Vi V2 V3 Vg Vs Vg Uy Vg Vg
P|3 5 2 2 8 1 4 5 4
d|/5 2 1 2 4 7 3 5 2
Rule base
Rule 1 if (vs is Low) and (v; is Low) and (vg is Low) and (v is
Low) then (output is benign
Rule 2 if (v; is Low) and (v, is Low) and (v3 is High) and (vy4
is Low) and (v is High) and (vg is Low) then (output is
benign
Rule 3 if (v; is Low) and (v, is Low) and (vg is Low) and (vg is
Low) then (output is benign
Default else(output is malignany

Figure 7. The best evolved, fuzzy diagnostic system withahules. It exhibits
an overall classification rate of 97.8%, and an average ofdriables per rule.
Thorough testing revealed that Rule 2 can be dropped.

5 AFuzzy Coevolutionary Approach: Fuzzy
CoCo

The fuzzy-genetic approach, even though it obtained goadndistic
systems, plateaued at a certain performance level. In dutdosn we
present Fuzzy CoCo, a cooperative coevolutionary approadhzzy
modeling, capable of obtaining higher-performance systerile re-
quiring less computation than the fuzzy-genetic appro@bke.next sub-
section briefly explains cooperative coevolution; afteichiSection 5.2
presents Fuzzy CoCo; Section 5.3 then describes the setjozzly
CoCo when applied to the WBCD probem, and, finally, Sectioh 5.
presents the results obtained.

5.1 Cooperative coevolution

Coevolutiorrefers to the simultaneous evolution of two or more species
with coupled fitness. Such coupled evolution favors the alisty of
complex solutions whenever complex solutions are reqU2&§l Sim-
plistically speaking, one can say that coevolving specesaither com-
pete (e.g., to obtain exclusivity on a limited resource) aosperate (e.g.,
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to gain access to some hard-to-attain resource). Coopefalso called
symbiotic) coevolutionary algorithms involve a numberrmdépendently
evolving species which together form complex structures|-guited to
solve a problem. The fitness of an individual depends on itigyato
collaborate with individuals from other species. In thisywthe evolu-
tionary pressure stemming from the difficulty of the problé&avors the
development of cooperative strategies and individualggI8tpopulation
evolutionary algorithms often perform poorly—manifesgtistagnation,
convergence to local optima, and computational costliregsen con-
fronted with problems presenting one or more of the follayvieatures:
(1) the sought-after solution is complex, (2) the problenit®isolution
is clearly decomposable, (3) the genome encodes diffeypastof val-
ues, (4) strong interdependencies among the componerits ebtution,
(5) component-ordering drastically affects fithess. Coapee coevolu-
tion effectively addresses these issues, consequentnivid the range
of applications of evolutionary computation. Potter [32] 8eveloped
a model in which a number of populations explore differentatepo-
sitions of the problem. Below we detail this framework asoitnfis the
basis of our own approach.

In Potter’'s system, each species represents a subcompdrgmbtential
solution. Complete solutions are obtained by assembépgesentative
members of each of the species (populations). The fithesaadf m-

dividual depends on the quality of (some of) the completeitgmts it

participated in, thus measuring how well it cooperates teesthe prob-
lem. The evolution of each species is controlled by a sepanadepen-
dent evolutionary algorithm. Figure 8 shows the generahigecture of
Potter's cooperative coevolutionary framework, and theg wach evo-
lutionary algorithm computes the fitness of its individuayscombining

them with selected representatives from the other spekigseedy strat-
egy for the choice of representatives of a species is to us®@omore of
the fittest individuals from the last generation.

5.2 The coevolutionary algorithm

Fuzzy CoCo is a cooperative coevolutionary approach toyfumadel-
ing wherein two coevolving species are defined: databasenfreeship
functions) and rule base [27]. This approach is based piiynan the
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Species 1 Species 2
ﬁ Individual
EA tobe Species 3
evaluated
Species 4

Population

represe

DT

representatives

Population

representatives

fitness
evaluation

fitness

Figure 8. Potter’'s cooperative coevolutionary system. fidhee shows the evo-
lutionary process from the perspective of Species 1. Thwithaal being eval-
uated is combined with one or morepresentativesf the other species so as
to construct several solutions which are tested on the probThe individual's
fithess depends on the quality of these solutions.

framework defined by Potter [32, 33].

A fuzzy modeling process has usually to deal with the sinmatas
search for operational and connective parameters (TabléhBse pa-
rameters provide an almost complete definition of the liaticiknowl-

edge describing the behavior of a system, and the valuesintagps

symbolic description into a real-valued world (a completémition also
requires logical and structural parameters whose defmiidest suited
for human skills). Thus, fuzzy modeling can be thought ofves sepa-
rate but intertwined search processes: (1) the searchdéangmbership
functions (i.e., operational parameters) that define tlzeyfwariables,
and (2) the search for the rules (i.e., connective parasietsed to per-
form the inference.

Fuzzy modeling presents several features discussed reatlieh jus-
tify the application of a cooperative-coevolutionary aggeh: (1) The
required solutions can be very complex, since fuzzy sysisitisa few
dozen variables may call for hundreds of parameters to baatkfi(2)
The proposed solution—a fuzzy inference system—can bendeosed
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into two distinct components: rules and membership fumsti¢3) Mem-

bership functions are continuous and real-valued, whiksrare discrete
and symbolic. (4) These two components are interdepen@ealise the
membership functions defined by the first group of valuesratexed by

the second group (rules).

Consequently, in Fuzzy CoCo, the fuzzy modeling problenoigexl by
two coevolving, cooperating species. Individuals of thstfapecies en-
code values which define completely all the membership fanstfor
all the variables of the system. For example, with respetiidosariable
Triglyceridelevel shown in Figure 1, this problem is equivalent to find-
ing the values of;, P,, andFPs.

Individuals of the second species define a set of rules ofaime:f

if (vyisAy)and... and(v, is A,) then (output is ),

where the termy,, indicates which of the linguistic labels of fuzzy vari-
ablev is used by the rule. For example, a valid rule could contae th
expression:

if ... and (T'riglyceridelevel is High) and ... then ...

which includes the membership functiéghigh whose defining parame-
ters are contained in the first species (population).

The two evolutionary algorithms used to control the evantof the

two populations are instances of a simple genetic algorighdh Fig-

ure 9 presents the Fuzzy CoCo algorithm in pseudo-code forfine

genetic algorithms apply fitness-proportionate selectmmrhoose the
mating pool, and apply an elitist strategy with an elitiste&r to allow

some of the best individuals to survive into the next gemamaStandard
crossover and mutation operators are applied with proivigsilP. and

P,,, respectively.

We introduced elitism to avoid the divergent behavior of HuZoCo,
observed in preliminary trial runs. Non-elitist versionsFuzzy CoCo
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begin Fuzzy CoCo
g:=0
for each species S
Initialize populationsPs(0)
Evaluate populatio®s(0)
end for
while not donedo
for each species S
g:=g+1
Es(g) = elite-selectPs(g — 1)
Pl(g) = selectPs(g — 1)
P{(g) = crossoverP{(g)
PY(g) = mutateP(g)
Ps(g) = P"(9) + Es(9)
Evaluate populatio®s(g)
end for
end while
end Fuzzy CoCo
Figure 9. Pseudo-code of Fuzzy CoCo. Two species coevolrairy CoCo:
membership functions and rules. The elitism strategy etdtids individuals to
be reinserted into the population after evolutionary ofmsshave been applied
(i.e., selection, crossover, and mutation). Selectionltesn a reduced popu-

lation P{(g) (usually, the size ofP{(g) is || P¢|| = ||Ps|| — || Esl]). The line
“Evaluate populatiorPs(g)” is elaborated in Figure 10.

tended to lose the genetic information of good individualsnd during
evolution, consequently producing populations with medgdandividu-
als scattered throughout the search space. This is prodablip the rela-
tively small size of the population which renders difficlletpreservation
of good solutions while exploring the search space. Th@dhiction of
simple elitism produces an undesirable effect on Fuzzy Gogerfor-
mance: populations converge prematurely even with redwe&des of
the elitism rateF,.. To offset this effect without losing the advantages of
elitism, it was necessary to increase the mutation proitalil,, by an
order of magnitude so as to improve the exploration capaslof the al-
gorithm. (Increased mutation rates were also reported IiteP[32, 33]
in his coevolutionary experiments.)
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Generation Species 1 Species 2

g-1

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(@)

Species 1 Evaluation Species 2
Environment

Fitness

Selected cooperators

********

Selected cooperators

Fitness

(b)

Figure 10. Fitness evaluation in Fuzzy CoCo. (a) Severabiddals from gen-
erationg — 1 of each species are selected according to their fithess thebe t
representatives of their species during generagipthese representatives are
called “cooperators.” (b) During the evaluation stage afigyationg (after se-
lection, crossover, and mutation—see Figure 9), indivislaae combined with
the selected cooperators of the other species to constrzzy ystems. These
systems are then evaluated on the problem domain and seavbasss for as-
signing the final fitness to the individual being evaluated.

A more detailed view of the fitness evaluation process isaegiin Fig-
ure 10. An individual undergoing fitness evaluation estdit@s coopera-
tions with one or more representatives of the other speiceesit is com-
bined with individuals from the other species to construatziy systems.
The fitness value assigned to the individual depends on ttierpeance
of the fuzzy systems it participated in (specifically, erttiee average or
the maximal value).

Representatives, called hemoperators are selected both fitness-
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proportionally and randomly from the previous generatiamnce they
have already been assigned a fitness value (see Figure @izig EoCo,
N, cooperators are selected according to their fitness, ystialfittest
individuals, thus favoring the exploitation of known goamgions. The
other N.. cooperators are selected randomly from the populationge re
resent the diversity of the species, maintaining in this egyloration of
the search space.

5.3 The evolutionary setup

Fuzzy CoCo was set to search for four parameters: input mieshipe

function values, relevant input variables, and antecedantl conse-
guents of rules. These search goals are more ambitious hioge de-
fined for the fuzzy-genetic approach (Section 4) as the apresgs of
rules are added to the search space. The genomes of the teiesspee
constructed as follows:

e Species 1: Membership functions. There are nine variables (),
each with two parameter® andd, defining the start point and the
length of the membership-function edges, respectivelguia 5).

e Species 2: Rules. Theth rule has the form:
if (v is AY) and ... and(vg is A}) then (output is C*?),

A’ can take on the values: 1Lqw), 2 (High), or 0 or 3 Othe). C*

bit can take on the values: B¢nigr) or 1 (Malignani). Relevant vari-
ables are searched for implicitly by letting the algorithhoose non-
existent membership function@ ¢r 3) as valid antecedents; in such a
case the respective variable is considered irrelevant.

Table 4 delineates the parameter encoding for both spege&asmes,
which together describe an entire fuzzy system. Note th#terfuzzy-
genetic approach (Section 4) both membership functionsualed were
encoded in the same genome, i.e., there was only one species.

To evolve the fuzzy inference system, we applied Fuzzy Co@lo the
same evolutionary parameters for both species. Valuesaanyes of val-
ues used for these parameters were defined according tmpraty tests
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Table 4. Genome encoding of parameters for both speciesar@etength for
membership functions is 54 bits. Genome length for ruld9is N, + 1, where
N, denotes the number of rules.

Species 1: Membership functions

Parameter Values Bits  Qty Total bits

P {1,2,....8 3 9 27
d {1,2,....4 3 9 27
Total 54

Species 2: Rules

Parameter Values Bits  Qty Total bits
A {0,1,2,3 2 9xN, 18 x N,
C {1,2} 1 N,+1 N, +1

Total 19 x N, +1
Table 5. Fuzzy CoCo set-up for the WBCD problem.
Parameter Values
Population sizé{ Ps|| [30-90]
Maximum generation&,,,,. 1000 + 100V,
Crossover probability?, 1
Mutation probabilityP,, [0.02-0.3]
Elitism rateE, [0.1-0.6]
“Fit” cooperatorsV, 1
Random cooperators.., {1,2,3,4

performed on benchmark problems (mostly function-optatian prob-
lems found in Potter [32]); Table 5 delineates these vallies algorithm
terminates when the maximum number of generatiéhs,., is reached
(we setd, ., = 1000+ 100 x N,, i.e., dependent on the number of rules
used in the run), or when the increase in fitness of the bestidual
over five successive generations falls below a certain tiotds(10~* in
our experiments).

Our fitness function combines two criteria: L)}—classification perfor-
mance, computed as the percentage of cases correctlyfildsand 2)
F,—the maximum number of variables in the longest rule. Theefitn
function is given byF’ = F,. — oF,, wherea = 0.0015. F, the per-
centage of correctly diagnosed cases, is the most impariaasure of
performance F,, measures the linguistic integrity (interpretability),-pe
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nalizing systems with a large number of variables in thdasuThe value

« was calculated to allow;, to occasion a fitness difference only among
systems exhibiting similar classification performancee (@il not apply
F, as it proved of little use.)

We stated earlier that cooperative coevolution reducesdhgutational
cost of the search process. In order to measure this cost \welatad
the number of fuzzy-system evaluations performed by a singh of
Fuzzy CoCo. Each generation, th€s|| individuals of each population
are evaluated\V, times (whereN. = N.s + N..). The total number of
fuzzy-system evaluations per run is thus G,,.. X ||Ps|| x N.. This
value ranged from.28 x 10° evaluations for a one-rule system search, up
t0 8.16 x 10° evaluations for a seven-rule system (using typical paramet
values:||Ps|| = 80, N, = 1, and N, = 2). The number of fuzzy-
system evaluations required by our single-population @ggin was, on
the average; x 10° for a one-rule system and x 10° for a seven-rule
system [26].

5.4 Results

A total of 495 evolutionary runs were performed, all of whifdund
systems whose classification performance exceeds 96.7p&rlicular,
considering the best individual per run (i.e., the evolwstam with the
highest classification success rate), 241 runs led to a feygtem whose
performance exceeds 98.0%, and of these, 81 runs foundsysthose
performance exceeds 98.5%.

Table 6 compares our best systems with the top systems elthinthe
fuzzy-genetic approach (Section 4) [26] and with the systefrtained
by Setiono’s NeuroRule approach [38]. The evolved fuzzyesys de-
scribed in this paper can be seen to surpass those obtainetthdryap-
proaches in terms of performance, while still containingie, inter-
pretable rules. As shown in Table 6, we obtained highergperance
systems for all rule-base sizes but one, i.e., from two-gylstems to
seven-rule ones, while all our one-rule systems perform el as the
best system reported by Setiono.

We next describe two of our top-performance systems, whaohesto ex-
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Table 6. Comparison of the best systems evolved by Fuzzy @atbahe top

systems obtained using single-population evolution [2@]a&ith those obtained
by Setiono’s NeuroRule approach [38]. Shown below are thesification per-
formance values of the top systems obtained by these agpszaalong with the
number of variables of the longest rule in parentheses. IReste divided into
seven classes, in accordance with the number of rules ptamsygoing from

one-rule systems to seven-rule ones.

Rules Neuro- Single Fuzzy CoCo
per Rule [38] population
system GA [26]

best best average best
1 97.36% (4) 97.07% (4) 97.36% (4) 97.36% (4)
2 - 97.36% (4) 97.73% (3.9) 98.54% (5)
3 98.10% (4) 97.80% (6) 97.91% (4.4) 98.54% (4)
4 - 97.80% (-) 98.12% (4.2) 98.68% (5)
5 98.24% (5) 97.51% (-) 98.18% (4.6) 98.83% (5)
6 - - 98.18% (4.3) 98.83% (5)
7 - - 98.25% (4.7) 98.98% (5)

emplify the solutions found by Fuzzy CoCo. The first systeatingated
in Figure 11, presents the highest classification perfonaagvolved
to date. It consists of seven rules (note that éhese condition is not
counted as an active rule) with the longest rule including@ables. This
system obtains an overall classification rate (i.e., oveettire database)
of 98.98%.

In addition to the above seven-rule system, evolution faaysiems with
between 2 and 6 rules exhibiting excellent classificatioriopmance,
i.e., higher than 98.5% (Table 6). Among these systems, wsider as
the most interesting the system with the smallest numbepbfiitcions
(i.e., total number of variables in the rules). Figure 12sprds one such
two-rule system, containing a total of 8 conditions, andalitobtains an
overall classification rate of 98.54%; its longest rule hasables.

The improvement attained by Fuzzy CoCo, while seeminghslf0.5-
1%) is in fact quite significant. A 1% improvement implies Hécbnal
cases which are classified correctly. At the performancesrat ques-
tion (above 98%) every additional case is hard-won. Indégdas we
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Database
‘U1 Vg VU3 U4 Us Vg

U7
Pl2 1 1 1 6 1 3 5 2
d |7 8 4 8 1 4 8
Rule base
Rule 1 if (v; is Low) and (v3 is Low) then (output is benign
Low) then (output is benigr
Low) and (vg is Low) then (output is benign

Low) and (vg is High) then (output is benign

High) then (output is malignan)

Low) and (v; is High) then (output is malignan)
Default else(output is malignany

Rule 2 if (v4 is Low) and (vg is Low) and (vg is Low) and (v is
Rule 3 if (v; is Low) and (v3 is High) and (vs is High) and (vs is
Rule 4 if (v, is Low) and (v, is High) and (v, is Low) and (vs is

Rule 5 if (v, is High) and (v, is High) then (output is malignany
Rule 6 if (v; is High) and (v3 is High) and (vg is High) and (v; is

Rule 7 if (v, is High) and (vs is High) and (v, is Low) and (vs is

Figure 11. The best evolved, fuzzy diagnostic system witleseules. It ex-

hibits an overall classification rate of 98.98%, and its lestgrule includes 5

variables.

did with the fuzzy-genetic approach—tuning parameters tarehking
the setup—we arrived at a performance impasse. Fuzzy CadeVer,

readily churned out better-performance systems, whicleable to clas-
sify a significant number of additional cases; moreovers¢hgystems

were evolved in less time.

6 Concluding remarks

We presented our recent work which combines the search paegolu-
tionary algorithms with the expressive power of fuzzy sysdo design
high-performance, human-interpretable medical diagoaststems. In
particular, we described two approaches for automatickgigning sys-
tems for breast-cancer diagnosis: (1) a fuzzy-geneticagmbr and (2)
Fuzzy CoCo, our novel cooperative coevolutionary appraacfuzzy

modeling.
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Database
‘Ul Vg V3 Vg4 VUs Vg Vy Vg Vg
P |3 1 3 4 5 7 2
d |8 3 1 2 2 4 1
Rule base
Rule 1 if (v; isLow) and (vs is Low) and (v is Low) then (output

is benign

Rule 2 if (v; is Low) and (v4 is Low) and (vg is Low) and (vg is
Low) and (vg is Low) then (output is benigr)

Default else(output is malignany

Figure 12. The best evolved, fuzzy diagnostic system withriwles. It exhibits
an overall classification rate of 98.54%, and a maximum of ftatées in the
longest rule.

We applied the two aforementioned algorithms to the Wistohseast
cancer diagnosis problem. Our evolved systems exhibit bo#nacter-
istics outlined in Section 1: first, they attain high classifion perfor-

mance(the best shown to date); second, the resulting systemb/aao
few simple rules, and are therefargerpretable

We are currently investigating the expansion of Fuzzy Codith two
short-term goals in mind: 1) Study the tuning of the genatgnrithm
parameters according to each species characteristics @ngoding
schemes, elitism rates, or mutation probabilities). 2)I&sgothe applica-
tion of different evolutionary algorithms for each spedjesy., evolution
strategies for the evolution of membership functions).he kong term
we plan to test some novel ideas that could improve Fuzzy C4afo
Coevolution of N, + 1 species, one species for each of fthierules in
addition to the membership-function species. 2) Coexcaef several
Fuzzy CoCo instances (each one set to evolve systems witlfieaedi
number of rules), permitting migration of individuals angothem so as
to increase the exploration and the diversity of the searobgss. 3) Ap-
ply the strategy of rising and death of species proposed hieiPand
DeJong [33] in order to evolve systems with variable numloénsiles
and membership functions.
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