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Abstract. Random numbers are needed in a variety of applications,
yet finding good random number generators is a difficult task. In the
last decade cellular automata (CA) have been used to generate random
numbers. In this paper non-uniform CAs are studied, where each cell may
contain a different rule, in contrast to the original, uniform model. We
present the cellular programming algorithm for co-evolving non-uniform
CAs to perform computations, and apply it to the evolution of ran-
dom number generators. Our results suggest that good generators can
be evolved; these exhibit behavior at least as good as that of previously
described CAs, with notable advantages arising from the existence of a
“tunable” algorithm for obtaining random number generators.
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1 Introduction

Random numbers are needed in a variety of scientific, mathematical, engineering,
and industrial applications, including Monte Carlo simulations, sampling, deci-
sion theory, game theory, and the imitation of stochastic natural processes. To
generate a random sequence on a digital computer, one starts with a fixed length
seed, then iteratively applies some transformation to it, progressively extracting
as long as possible a random sequence. Such numbers are usually referred to as
pseudo-random, as distinguished from true random numbers resulting from some
natural physical process. In order to demonstrate the efficiency of a proposed
generator, it is usually subjected to a battery of empirical and theoretical tests,
among which the most well known are those described by [5].

Good random number generators, or randomizers, are hard to come by; in-
deed, a number of generators which had gained prominence over the years, were
ultimately found to be unsatisfactory, some displaying particularly “bad”, non-
random behavior [11]. In the last decade certain cellular automata (CA) have
been shown to act as good random number generators. CAs are dynamical sys-
tem in which space and time are discrete. They consist of an array of cells, each of
which can be in one of a finite number of possible states, updated synchronously
in discrete time steps according to a local, identical interaction rule. The state
of a cell is determined by the previous states of a surrounding neighborhood of



cells [20]. CAs exhibit three notable features, namely massive parallelism, lo-
cality of cellular interactions, and simplicity of basic components (cells), thus
lending themselves naturally to fast, efficient hardware implementation.

The model investigated by us is an extension of the CA model, termed non-
uniform cellular automata [12]. Such automata function in the same way as
uniform ones, the only difference being in the cellular rules that need not be
identical for all cells. Our main focus is on the evolution of non-uniform CAs to
perform computational tasks, employing a local, co-evolutionary algorithm, an
approach referred to as cellular programming [16].

In this paper we apply the cellular programming algorithm to the evolution
of random number generators. While a more extensive suite of tests should be
conducted, our results suggest that good randomizers can be evolved; these ex-
hibit behavior at least as good as that of previously described CAs, with notable
advantages arising from the existence of a “tunable” algorithm for the generation
of randomizers (see also [18]). In Section 2 we survey previous work on random-
izers and on evolving CAs. The cellular programming algorithm is delineated
in Section 3, and applied to the co-evolution of random number generators in
Section 4. Finally, our conclusions are presented in Section 5.

2 Previous work

The first work examining the application of CAs to random number generation
is that of [21], in which rule 30 is extensively studied for its ability to produce
random, temporal bit sequences®. Such sequences are obtained by sampling the
values that a particular cell attains as a function of time. The cellular space under
question is one-dimensional with £ = 2 and r = 1, where k denotes the number
of possible states per cell and r denotes the radius of a cell, i.e., the number of
neighbors on either side (thus each cell has 2r + 1 neighbors, including itself).
A common method of examining the behavior of one-dimensional CAs is to
display a two-dimensional space-time diagram, where the horizontal axis depicts
the configuration at a certain time ¢t and the vertical axis depicts successive time
steps (e.g., Figure 2). The term ‘configuration’ refers to an assignment of 1 states
to several cells, and Os otherwise.

In [21], the uniform rule 30 CA is initialized with a configuration consisting of
a single cell in state 1, with all other cells being in state O; the initially non-zero
cell is the site at which the random temporal sequence is generated. Wolfram
studied this particular rule extensively, demonstrating its suitability as a high-
performance randomizer which can be efficiently implemented in parallel; indeed,
this CA is one of the standard generators of the massively parallel Connection
Machine CM2. A non-uniform CA randomizer was presented by [3, 4], consisting
of two rules, 90 and 150, arranged in a specific order in the grid. The performance
of this CA in terms of random number generation was found to be at least as good
as that of rule 30, with the added benefit of less costly hardware implementation.

3 Rule numbers are given in accordance with Wolfram’s convention [20], representing
the decimal equivalent of the binary number encoding the rule table.



It is interesting in that it combines two rules, both of which are simple linear rules
that do not comprise good randomizers, to form an efficient, high-performance
generator.

The application of genetic algorithms to the evolution of uniform cellular
automata was initially studied by [10] and recently undertaken by the EVCA
(evolving CA) group [9, 8, 7, 2, 1]. They carried out experiments involving one-
dimensional CAs with k = 2 and r = 3; spatially periodic boundary conditions
were used, resulting in a circular grid. Mitchell et al. studied two computational
tasks, namely density and synchronization, employing a genetic algorithm to
evolve uniform CAs to perform these tasks. The algorithm uses a randomly
generated initial population of CAs with k = 2, r = 3. Each CA is represented
by a bit string, delineating its rule table, containing the output bits for all
possible neighborhood configurations (i.e., the bit at position 0 is the state to
which neighborhood configuration 0000000 is mapped to and so on until bit 127
corresponding to neighborhood counfiguration 1111111). The bit string, known
as the “genome”, is of size 2271 = 128, resulting in a huge search space of size
2128 Each CA in the population was run for a maximum number of M time
steps, after which its fitness was evaluated, defined as the fraction of cells in the
correct state at the last time step. Using the genetic algorithm highly successful
CA rules were found for both the density and the synchronization tasks.

An evolutionary approach for obtaining random number generators was taken
by Koza [6], who used genetic programming to evolve a symbolic LISP expres-
sion that acts as a rule for a uniform CA (i.e., the expression is inserted into
each CA cell, thereby comprising the function according to which the cell’s next
state is computed). He demonstrated evolved expressions that are equivalent to
Wolfram’s rule 30. The fitness measure used by Koza is the entropy Ej: let k be
the number of possible values per sequence position (in our case CA states) and
h a subsequence length. Ej, (measured in bits) for the set of k* probabilities of
the k" possible subsequences of length A is given by:

kh
En == pn,10g;p,
j=1
where hy, hg, ..., his are all the possible subsequences of length h (by convention,

logy0 = 0 when computing entropy). The entropy attains its maximal value
when the probabilities of all k" possible subsequences of length h are equal to
1/k": in our case k = 2 and the maximal entropy is Ej, = h. Koza evolved LISP
expressions which act as rules for uniform, one-dimensional CAs. The CAs were
run for 4096 time steps and the entropy of the resulting temporal sequence of a
designated cell (usually the central one) was taken as the fitness of the particular
rule (i.e., LISP expression). In his experiments Koza used a subsequence length
of h = 4, obtaining rules with an entropy of 3.996. The best rule of each run was
re-tested over 65536 time steps, some of which exhibited the maximal entropy
value of 4.0.

The model investigated in this paper is that of non-uniform CAs, where cellu-
lar rules need not be identical for all cells. We have previously applied this model



to the study of artificial life issues, presenting multi-cellular “organisms” that
display several interesting behaviors, including reproduction, growth and mobil-
ity [12, 15, 13]. In [14, 17] we demonstrated that universal computation can be
attained in non-uniform, two-dimensional, 2-state, 5-neighbor CAs, which are
not computation-universal in the uniform case. The universal systems we pre-
sented are simpler than previous ones and are quasi-uniform, meaning that the
number of distinct rules is extremely small with respect to rule space size; fur-
thermore, the rules are distributed such that a subset of dominant rules occupies
most of the grid. The co-evolution of non-uniform, one-dimensional CAs to per-
form computations was undertaken in [16, 17], where the cellular programming
algorithm was presented; we showed that high performance, non-uniform CAs
can be co-evolved not only with radius r = 3, as studied by Mitchell et al., but
also for smaller radiuses, most notably r = 1 which is minimal. It was also found
that evolved systems exhibiting high performance are quasi-uniform.

The above account leads us to ask whether good CA randomizers can be
co-evolved using cellular programming; the results reported below suggest that
indeed this is the case.

3 Cellular programming

We study one-dimensional, 2-state, 7 = 1 non-uniform CAs, in which each cell
may contain a different rule; spatially periodic boundary conditions are used,
resulting in a circular grid. A cell’s rule table is encoded as a bit string, known
as the “genome”, containing the output bits for all possible neighborhood config-
urations (see Section 2). Rather than employ a population of evolving, uniform
CAs, as with genetic algorithm approaches, our algorithm involves a single, non-
uniform CA of size N, with cell rules initialized at random. Initial configurations
are then randomly generated and for each one the CA is run for M = 4096 time
steps.* Each cell’s fitness, f;, is accumulated over C' = 300 initial configura-
tions, where a single run’s score equals the entropy Ej, of the temporal sequence
of cell i. Note that we do not restrict ourselves to one designated cell, but con-
sider all grid cells, thus obtaining N random sequences in parallel, rather than
a single one. After every C configurations evolution of rules occurs by applying
the genetic operators of crossover and mutation in a completely local manner,
driven by nf;(c), the number of fitter neighbors of cell 7 after ¢ configurations.
The pseudo-code of our algorithm is delineated in Figure 1. Crossover between
two rules is performed by selecting at random (with uniform probability) a single
crossover point and creating a new rule by combining the first rule’s bit string
before the crossover point with the second rule’s bit string from this point on-
ward. Mutation is applied to the bit string of a rule with probability 0.001 per
bit.

There are two main differences between our evolutionary algorithm and a
standard genetic algorithm: (a) A standard genetic algorithm involves a popu-

4 A standard, 48-bit, linear congruential algorithm proved sufficient for the generation
of random initial configurations.



for each cell 7 in CA do in parallel
initialize rule table of cell §
fi = 0 { fitness value }
end parallel for
¢ = 0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel
fi = fi+ entropy FEj, of the temporal sequence of cell ¢
end parallel for
c=c+1
if ¢ mod C = 0 then { evolve every C configurations}
for each cell i do in parallel
compute nf;(c) { number of fitter neighbors }
if nfi(c) = 0 then rule 7 is left unchanged
else if nfi(c) = 1 then replace rule i with the fitter neighboring rule,
followed by mutation
else if nfi(c) = 2 then replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation
else if nf;(c) > 2 then replace rule i with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation
(this case can occur if the cellular radius, r, > 1)
end if
fi=0
end parallel for
end if
end while

Fig. 1. Pseudo-code of the cellular programming algorithm.

lation of evolving, uniform CAs; all CAs are ranked according to fitness, with
crossover occurring between any two CA rules. Thus, while the CA runs in accor-
dance with a local rule, evolution proceeds in a global manner. In contrast, our
algorithm proceeds locally in the sense that each cell has access only to its locale,
not only during the run but also during the evolutionary phase, and no global
fitness ranking is performed. (b) The standard genetic algorithm involves a pop-
ulation of independent problem solutions; each CA is run independently, after
which genetic operators are applied to produce a new population. In contrast,
our CA co-evolves since each cell’s fitness depends upon its evolving neighbors.
This latter point comprises a prime difference between our algorithm and parallel
genetic algorithms, which have attracted attention over the past few years [19].
Some of the proposed models resemble our system in that they are massively
parallel and local; however, the co-evolutionary aspect is missing.



4 Results

In this section we describe results of applying the cellular programming algorithm
to the evolution of random number generators. In our simulations we observed
that the average cellular entropy taken over all grid cells is initially low (usually
in the range [0.2,0.5]), ultimately evolving to a maximum of 3.997, when using
a subsequence size of h = 4 (i.e., the entropy is computed by considering the
occurrence probabilities of 16 possible subsequences, using a “sliding window”
of length 4).

We performed several such experiments using h = 4 and h = 7; the evolved,
non-uniform CAs attained average fitness values (entropy) of 3.997 and 6.978,
respectively. We then re-tested our best CAs over M = 65536 times steps (as
in [6]), obtaining entropy values of 3.9998 and 6.999, respectively. Interestingly,
when we performed this test with h = 7 for CAs which were evolved using h = 4,
high entropy was displayed as for CAs which were originally evolved with h = 7.
The entropy results are comparable to those of [6] as well as to the rule 30 CA
of [21] and the non-uniform, rules {90,150} CA of [3, 4]. Note that while our
fitness measure is local, the evolved entropy results reported above represent the
average of all grid cells; thus, we obtain N random sequences rather than a single
one. Figure 2 demonstrates the operation of three CAs discussed above: rule 30,
rules {90,150}, and a co-evolved CA. Note that the co-evolved CA is quasi-
uniform (Section 2), as evident by observing the rules map; this map depicts the
distribution of rules by assigning a unique color to each distinct rule.

We next subjected our evolved CAs to a number of additional tests, including
chi-square (x?), serial correlation coefficient and a Monte Carlo simulation for
calculating the value of 7; these are well known tests described in detail in [5].
In order to apply the tests we generated sequences of 100,000 random bytes
in the following manner: the CA of size N = 50 is run for 500 time steps,
thus generating 50 random temporal bit sequences of length 500. These are
concatenated to form one long sequence of length 25,000 bits; this procedure is
then repeated 32 times, thus obtaining a sequence of length 800, 000 bits, which
are grouped into 100,000 bytes.

Table 1 shows the test results of four random number generators®: two co-
evolved CAs (one of which is that demonstrated in Figure 2c), rule 30 CA, and
the rules {90, 150} CA. We note that for all generators the entropy, serial correla-
tion coefficient and simulated 7 values are satisfactory. However, the chi-square
test, which is one of the most significant ones [5], reveals a different picture.
Knuth suggests that at least three sequences from a generator be subjected to
the chi-square test and if a majority (i.e., at least two out of three) pass then
the generator is considered to have passed (with respect to chi-square). We note
that the two co-evolved CAs attain good results for the chi-square test, with
the other two CAs trailing behind. It is noteworthy that our co-evolved CAs
attain good results on a number of tests, while the fitness measure used during

5 The tests were conducted using a public domain software written by J. Walker,
available at http://www.fourmilab.ch/random/.
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Fig. 2. One-dimensional random number generators: Operation of three CAs. Grid
size is N = 50, radius is r = 1. White squares represent cells in state 0, black squares
represent cells in state 1. The pattern of configurations is shown through time (which
increases down the page); the initial configurations were generated by randomly set-
ting the state of each grid cell to 0 or 1 with uniform probability. Top figures depict
space-time diagrams, bottom figures depict rule maps. (a) Rule 30 CA. (b) Rules
{90,150} CA. Rules map: light gray represents rule 90, black represents rule 150. (c)
A co-evolved, non-uniform CA, consisting of three rules: rule 165 (22 cells), rule 90 (22
cells), rule 150 (6 cells). Rules map: black represents rule 165, dark gray represents rule
90, light gray represents rule 150.



evolution is entropy alone. The relatively low result obtained by the rule 30 CA
may be due to the fact that we considered N random sequences generated in
parallel, rather than the single one considered by Wolfram (see Section 2). The
rules {90,150} CA results may probably be somewhat improved (as perhaps our
own results) by using “site spacing” and “time spacing” [3, 4].

5 Conclusions

We presented the cellular programming algorithm for co-evolving non-uniform
CAs, and applied it to the problem of generating random number generators.
While a more extensive suite of tests should be conducted, it seems safe to say
at this point that our co-evolved generators are at least as good as the best
available CA randomizers (see also [18]).

The evolved CAs are quasi-uniform, involving only 2 — 3 rules; while rules
90 and 150 have been observed (e.g., Figure 2c), other rules have also emerged®.
This can be advantageous from a hardware point of view since some rules lend
themselves more easily to implementation using basic logic gates [3, 4]. It might
also be possible to add restrictions to the evolutionary process, e.g., by pre-
specifying rules for some cells, in order to further facilitate hardware implemen-
tation. Another possible modification of the evolutionary process is the incorpo-
ration of statistical measures of randomness into the fitness function (and not
just as an aftermath benchmark). These possible extensions could lead to the
automatic generation of high-performance, random number generators meeting
specific user demands.

Evolving, non-uniform CAs hold potential for studying phenomena of interest
in areas such as complex systems, artificial life and parallel computation. This
work has shed light on the possibility of using such CAs as random number
generators, and demonstrated the feasibility of their evolution.
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