NH,
; PHYSICA

ELSEVIER

Physica D 99 (1997) 428-441

Co-evolving architectures for cellular machines

Moshe Sipper #*, Eytan Ruppin ®!
& Logic Systems Laboratory, Swiss Federal Institute of Technology, IN-Ecublens, CH-1015 Lausanne, Switzerland
b Department of Computer Science, Tel Aviv University, Tel Aviv 69978, Israel

Received 2 November 1995; revised 13 March 1996; accepted 4 June 1996
Communicated by H. Flaschka

Abstract

Recent studies have shown that non-uniform cellular automata (CA), where cellular rules need not necessarily be identical,
can be co-evolved to perform computational tasks. This paper extends these studies by generalizing on a second aspect of CAs,
namely their standard, homogeneous connectivity. We study non-standard architectures, where each cell has a small, identical
number of connections, yet not necessarily from its most immediate neighboring cells. We show that such architectures are
computationally more efficient than standard architectures in solving global tasks, and also provide the reasoning for this. It
is shown that one can successfully evolve non-standard architectures through a two-level evolutionary process, in which the
cellular rules evolve concomitantly with the cellular connections.

Specifically, studying the global densiry task, we identify the average cellular distance as a prime architectural parameter
determining cellular automata performance. We carry out a quantitative analysis of this relationship, our main results being: (1)
performance is /inearly dependent on the average cellular distance, with a high correlation coefficient; (2) high performance
architectures can be co-evolved, concomitantly with the rules, and (3) low connectivity cost can be obtained as well as high
performance.

The evolutionary algorithm presented may have important applications to designing economical connectivity architectures
for distributed computing systems.

1. Introduction

Cellular automata (CA) are dynamical systems in
which space and time are discrete. They consist of an
array of cells, each of which can be in one of a finite
number of possible states, updated synchronously in
discrete time steps according to a local, identical in-
teraction rule. The state of a cell is determined by the
previous states of a surrounding neighborhood of cells
[21,23].

* Corresponding author. E-mail: moshe.sipper@di.epfl.ch.
I E-mail: ruppin@math.tau.ac.il.

CAs exhibit three notable features, namely mas-
sive parallelism, locality of cellular interactions, and
simplicity of basic components (cells). They perform
computations in a distributed fashion on a spatially
extended grid; as such they differ from the standard
approach to parallel computation in which a problem
is split into independent sub-problems, each solved by
a different processor, later to be combined in order to
yield the final solution. CAs suggest a new approach
in which complex behavior arises in a bottom-up
manner from non-linear, spatially extended, local
interactions [14].

0167-2789/97/$17.00 Copyright © 1997 Elsevier Science B.V. All rights reserved

PII S0167-2789(96)00172-8

M. Sipper, E. Ruppin/Physica D 99 (1997) 428—41 429

(a)

(b)

Fig. 1. The density task: operation of the GKL rule. CA is one-dimensional, uniform, two-state, with connectivity radius r = 3.
Grid size is N = 149. White squares represent cells in state 0, black squares represent cells in state 1. The pattern of configurations
is shown through time (which increases down the page). (a) Initial density of 1s is 0.47. (b) Initial density of Is is 0.53. The CA
relaxes in both cases to a fixed pattern of all Os or all 1s, correctly classifying the initial configuration.

A major impediment preventing ubiquitous com-
puting with CAs stems from the difficulty of utilizing
their complex behavior to perform useful computa-
tions. The difficulty of designing CAs to have a spe-
cific behavior or perform a particular task has limited
their applications; automating the design process
would greatly enhance the viability of CAs [14].

Recent studies have shown that CAs can be evolved
to perform non-trivial computational tasks. One such
task, which we study in detail in this paper, is that
of density classification. In this task the two-state CA
must decide whether or not the initial configuration
contains more than 50% Is, where the term “config-
uratton” refers to an assignment of 1 states to several
cells, and Os otherwise. The desired behavior (i.e., the
result of the computation) is for the CA to relax to a
fixed-point pattern of all 1s if the initial density of Is
exceeds 0.5, and all Os otherwise (Fig. 1).

The density task was studied by Mitchell et
al. [14,15] and Das et al. [6], who demonstrated that
high performance CA rules can be evolved using ge-
netic algorithms. We have investigated an extension
of the CA model termed non-uniform cellular au-
tomata, in which cellular rules need not be identical
[17-19]. Employing this model we found that high
performance can be attained for the density task by

means of co-evolution [20] 2 Non-uniform CAs have
also been investigated by Vichniac et al. [22] and
Hartman and Vichniac [10].

As noted by Mitchell et al., density is a global prop-
erty and hence the task comprises a non-trivial compu-
tation for a locally connected CA. Since the Is can be
distributed throughout the grid, propagation of infor-
mation must occur over large distances (i.e., O(N)).
The computation involved corresponds to recognition
of a non-regular language, since the minimum amount
of memory required for the task is O(log V) using a se-
rial scan algorithm [4-6,13-16]. Note that the density
task cannot be perfectly solved by a uniform, two-state
CA, as recently proven by Land and Belew [12]; how-
ever, no upper bound is currently available on the best
possible imperfect performance, attained to date by the
Gacs—Kurdyumov-Levin (GKL) rule [7,9] (Fig. 1).

Previous studies of the density task were con-
ducted using locally connected, one-dimensional grids
[14,20]. The task can be extended in a straightforward
manner to two-dimensional grids, an investigation of
which we have carried out, using the same number of
local connections per cell as in the one-dimensional

2 . .~ el
< A precise definition of the performance measure is given in
Section 4.

430 M. Sipper, E. Ruppin/Physica D 99 (1997) 428441

case. We found that markedly higher performance is
attained for the density task with two-dimensional
grids along with shorter computation times. This
finding is intuitively understood by observing that
a two-dimensional, locally connected grid can be
embedded in a one-dimensional grid with local and
distant connections. This can be achieved, for exam-
ple, by aligning the rows of the two-dimensional grid
so as to form a one-dimensional array; the resulting
embedded one-dimensional grid has distant connec-
tions of order v/N, where N is the grid size. Since
the density task is global it is likely that the observed
superior performance of two-dimensional grids arises
from the existence of distant connections that enhance
information propagation across the grid.

Motivated by this observation concerning the effect
of connection lengths on performance, our primary
goal in this paper is to quantitatively study the rela-
tionship between performance and connectivity on a
global task, in one-dimensional CAs. The main contri-
bution of this paper is identifying the average cellular
distance (see Section 2) as the prime architectural pa-
rameter which linearly determines CA performance.
We find that high performance architectures can be
co-evolved concomitantly with the rules, and that it is
possible to evolve such architectures that exhibit low
connectivity cost as well as high performance. This
work extends our previous work on the co-evolution
of non-uniform CAs [20] by studying evolving ar-
chitectures. Our motivation stems from two primary
sources: (a) finding more efficient CA architectures
via evolution, (b) the co-evolution of architectures of-
fers a promising approach for solving a general wiring
problem for a set of distributed processors, subject to
given constraints. The efficient solution of the density
task by CAs with evolving architectures may have im-
portant applications to designing efficient distributed
computing networks.

In Section 2 we describe the CA architectures
studied in this work. In Section 3 we describe the
cellular programming algorithm used to co-evolve
non-uniform CAs. Section 4 discusses CA rule evolu-
tion with fixed architectures. In Section 5 we extend
our evolutionary algorithm such that the architecture
evolves as well as the cellular rules. In Section 6 we

study the evolution of low cost architectures. Our
findings and their possible future application to de-
signing distributed computer networks are discussed
in Section 7.

2. Architecture considerations

We use the term architecture to denote the con-
nectivity pattern of CA cells. In the standard one-
dimensional model a cell is connected to r local
neighbors on either side as well as to itself, where
r is referred to as the radius (thus each cell has
2r + 1 neighbors). The model we consider is that of
non-uniform CAs with non-standard architectures, in
which cells need not necessarily contain the same
rule nor be locally connected; however, as with the
standard CA model, each cell has a small, identical
number of impinging connections. In what follows
the term neighbor refers to a directly connected cell.
We shall employ the cellular programming algorithm
to evolve cellular rules for non-uniform CAs whose
architectures are fixed (yet non-standard) during the
evolutionary run, or evolve concomitantly with the
rules; these are referred to as fixed or evolving archi-
tectures, respectively.

We consider one-dimensional, symmetrical archi-
tectures where each cell has four neighbors, with
connection lengths of a and b, as well as a self-
connection. Spatially periodic boundary conditions
are used, resulting in a circular grid (Fig. 2). This
type of architecture belongs to the general class of

Fig. 2. A Cg(2, 3) circulant graph. Each node is connected to
four neighbors, with connection lengths of 2 and 3.

M. Sipper, E. Ruppin/Physica D 99 (1997) 428441 431

N=29

Fig. 3. The ruggedness of the acd landscape is illustrated
by plotting it as a function of connection lengths (a, b) for
grids of size N = 29. Each (a,b) pair entails a different
Cay(a, b) architecture whose acd is represented as a point in the
graph.

circulant graphs [3]: For a given positive integer N,
let ny, na, ..., n; be a sequence of integers where

O<ny<ny<---<ng< %(N+1).

Then the circulant graph Cyn(ny, na, ..., ng) is the
graph on N nodes vy, v2, ..., vy with node v; con-
nected to each node v; 4, ;(mod N)- The values n; are re-
ferred to as connection lengths. The distance between
two cells on the circulant is the number of connec-
tions one must traverse on the shortest path connecting
them. The architectures studied here are circulants
Cy(a, b).

We surmise that attaining high performance on
global tasks requires rapid information propagation
throughout the CA, and that the rate of information
propagation across the grid inversely depends on the
average cellular distance (acd). Before proceeding to
study performance, let us examine how the acd of a
Cn{a, b) architecture varies as a function of (a, b).
As shown in Fig. 3, the acd landscape is extremely
rugged (the algorithm used to calculate the acd is
described in Appendix A). This is due to the relation-
ship between a and b — if ged(a, b) # 1 the acd is
markedly higher than when gcd(a, b) = 1 (note that
the circulant graph Cn(ny, na, ..., ng) is connected
if and only if ged(ny, na2, ..., ng, N) = 1[1]).

N=101
T T

acd(d)

-

PR S s " L PR PN S S "
0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51
d

Fig. 4. C101(1, d): average cellular distance (acd) as a function
of d. acd is plotted for d < %N, as it is symmetric about

_]
d—jN.

It is straightforward to show that every Cy(a, b)
architecture is isomorphic to a Cy(l,d’) architec-
ture, for some d’, referred to as the equivalent d’ (see
Appendix A). Graph Cy (a, b) is isomorphic to a graph
Cy(1,d’) if and only if every pair of nodes linked
via a connection of length @ in Cy(a, b) is linked
via a connection of length 1 in Cy (1, d’), and every
pair linked via a connection of length b in Cy(a, b)
is linked via a connection of length ' in Cy(1,d")3.
We may therefore study the performance of Cy (1, d)
architectures, our conclusions being applicable to the
general Cy (a, b) case; this is important from a prac-
tical standpoint since the Cy (a, b) architecture space
is extremely large. However, if one wishes to mini-
mize connectivity cost, defined as a + b, as well as
to maximize performance, general Cy (a, b) architec-
tures must be considered; the equivalent d’ value of
a Cy(a, b) architecture may be large, resulting in a
lower cost of Cy(a, b) as compared with the isomor-
phic Cy (1, d") architecture (for example, the equiva-
lent of Cy01(3, 5) is Cip1(1, 32)).

Fig. 4 depicts the acd for Cy(1, d) architectures,
N = 101. It is evident that the acd varies considerably
as a function of d; as d increases from ¢ = 1 the acd

3 This is not necessarily a one-to-one mapping; Cy (a, b) may
map to Cy (1, d;) and Cy(1, dé), however, we select the min-
imum of di and dj, thus obtaining a unique mapping.

432 M. Sipper, E. Ruppin/Physica D 99 (1997) 428—441

declines and reaches a minimum at d = O(\/ﬁ). This

supports the notion put forward in Section 1 concern-

ing the advantage of two-dimensional grids.
We concentrate on the following issues:

(1) How strongly does the acd determine performance
on global tasks?

(2) Can high performance architectures be evolved,
that is can “good” d or (a, b) values be discovered
through evolution?

(3) Can high performance architectures be co-
evolved, that exhibit low connectivity cost as
well?

3. The cellular programming algorithm

We study two-state, one-dimensional, non-uniform
CAs, in which each cell may contain a different rule.
A cell’s rule table is encoded as a bit string, known
as the “genome”, containing the next-state bits for all
possible neighborhood configurations; e.g., for CAs
with » = 2, the genome consists of 32 bits, where
the bit at position O is the state to which neighbor-
hood configuration 00000 is mapped to and so on un-
til bit 31 corresponding to neighborhood configuration
11111. Rather than employ a population of evolving,
uniform CAs, as with genetic algorithm approaches,
our algorithm involves a single, non-uniform CA of
size N, where cell rules are initialized at random. Ini-
tial configurations are generated at random, uniformly
distributed over densities in the range [0.0, 1.0]. For
each initial configuration the CA is run for M time
steps (in our simulations we used M = N so that
computation time is linear with grid size). Each cell’s
fitness is accumulated over C = 300 initial config-
urations, where a single run’s score is 1 if the cell
is in the correct state after M iterations and O other-
wise. After every C configurations evolution of rules
occurs by applying crossover and mutation. This evo-
lutionary process is performed in a completely local
manner, where genetic operators are applied only be-
tween directly connected cells. It is driven by nf;(c),
the number of fitter neighbors of cell i after ¢ config-
urations. The pseudo-code of our algorithm is delin-
eated in Fig. 5. In our simulations, the total number of

initial configurations per evolutionary run was in the
range [50 000, 500 000] 4.

Crossover between two rules is performed by se-
lecting at random (with uniform probability) a single
crossover point and creating a new rule by combin-
ing the first rule’s bit string before the crossover point
with the second rule’s bit string from this point on-
ward. Mutation is applied to the bit string of a rule
with probability 0.001 per bit.

There are two main differences between our evolu-
tionary algorithm and that used by Mitchell et al.: (a)
In their work, a standard genetic algorithm is used,
employing a population of evolving, uniform CAs. All
CAs are ranked according to fitness, with crossover
occurring between any two CA rules. Thus, while the
CA runs in accordance with a local rule, evolution pro-
ceeds in a global manner. In contrast, our algorithm
proceeds locally in the sense that each cell has access
only to its locale, not only during the run but also
during the evolutionary phase, and no global fitness
ranking is performed. (b) The standard genetic algo-
rithm involves a population of independent problem
solutions; each CA is run independently, after which
genetic operators are applied to produce a new popu-
lation. In contrast, our CA co-evolves since each cell’s
fitness depends upon its evolving neighbors.

4. Fixed architectures

In this section we study the effects of different ar-
chitectures on performance, by applying the cellular
programming algorithm to the evolution of cellular
rules using fixed, non-standard architectures. We per-
formed numerous evolutionary runs using Cy(l, d)
architectures with different values of d, recording the
maximal performance attained during the run; perfor-
mance is defined as the average fitness of all grid cells
over the last C configurations, normalized to the range
[0.0, 1.0]. Before proceeding, we point out that this is

4 By comparison, Mitchell et al. employed a genetic algorithm
with a population size of 100, which was run for 100 gener-
ations; every generation each CA was run on 100-300 initial
configurations, resulting in a total of (10%,3 x 10°] configura-
tions per evolutionary run.

M. Sipper, E. Ruppin/Physica D 99 (1997) 428-441 433

for each cell { in CA do in parallel

initialize rule table of cell i
fi =0 { fitness value }
end parallel for

¢ = 0 { initial configurations counter }

while not done do

generate a random initial configuration

run CA on initial configuration for M time steps

for each cell i do in parallel

if cell i is in the correct final state then

fi=fi+1
end if
end parallel for
c=c+1

if ¢ mod C = O then { evolve every C configurations}

for each cell / do in parallel

compute nf;(c) { number of fitter neighbors }

if nf;(¢) = 0 then rule / is left unchanged

else if nf; (¢) = 1 then replace rule / with the fitter neighboring rule,
followed by mutation

else if nf; (¢) = 2 then replace rule i with the crossover of the two fitter
neighboring rules, followed by mutation

else if nf;(c) > 2 then replace rule i with the crossover of two randomly
chosen fitter neighboring rules, followed by mutation

end if
fi=0
end parallel for
end if
end while

Fig. 5. Pseudo-code of the cellular programming algorithm.

somewhat different than the work of Mitchell et al.,
who defined three measures: (1) performance — the
number of correct classifications on a sample of ini-
tial configurations, randomly chosen from a binomial
distribution over initial densities, (2) performance fit-
ness — the number of correct classifications on a sam-
ple of C initial configurations chosen from a uniform
distribution over densities in the range [0.0, 1.0] (no
partial credit is given for partially correct final config-
urations), and (3) proportional fitness — the fraction of
cell states correct at the last iteration, averaged over C
initial configurations, uniformly distributed over den-
sities in the range [0.0, 1.0] (partial credit is given).
Our performance measure is analogous to the latter
measure, however, there is an important difference: as
our evolutionary algorithm is local, fitness values are
computed for each individual cell; global fitness of the
CA can then be observed by averaging these values
over the entire grid. As for the choice of initial con-
figurations, Mitchell et al. remarked that the binomial

distribution is more difficult than the uniform-over-
densities one since the former results in configurations
with a density in the proximity of 0.5, thereby entail-
ing harder correct classification. This distinction did
not prove essential in our studies since our focus is
on the relationship between performance and connec-
tivity on a global task, toward which end we selected
the uniform-over-densities distribution as a benchmark
measure by which to evolve CAs and compare their
performance. We shall, nonetheless, demonstrate that
our CAs attain high performance even when applying
the binomial distribution.

Fig. 6 depicts the results of our evolutionary runs,
along with the acd graph. Markedly higher perfor-
mance is attained for values of d corresponding to low
acd values and vice versa. While performance behaves
in a rugged, non-monotonic manner as a function of
d, it is linearly correlated with acd (with a correla-
tion coefficient of 0.99, and a negligible p value) as
depicted in Fig. 7.

434 M. Sipper, E. Ruppin/Physica D 99 (1997) 428-441

maximal performance

088 RSP S S S SO S

I H H
0 3 6 9 12 15 18 2t 24 27 30 33 36 9 42 45 48 51
]

Fig. 6. C1p1 (1. d): maximal evolved performance on the density
and short-lines tasks as a function of d. The graph represents
the average results of 420 evolutionary runs; 21 d values were
tested for the density task and seven for the short-lines task.
For each such d value, 15 evolutionary runs were performed
with 50000 initial configurations per run. Each graph point
represents the average value of the respective 15 runs; standard
deviations of these averages are in the range 0.003-0.011. i.e.,
3-11% of the performance range in question (deviations were
computed excluding the two extremal values).

N=101

097 | %8“8
ON O

0.96 o
0.95
094 - P RN

AN
093 NS

082 - ~

maximal performance

091 F N
0.90 - ~

088 + o

0.88 L 2 s s 2 " —_ L 2
4 5 6 7 8 g 10 " 12 13 14

average celiular distance

Fig. 7. Cip1(l, d): maximal performance on the density task
as a function of average cellular distance. The linear regression
shown has a correlation coefficient of 0.99, with a p value that
is practically zero.

How does the architecture influence performance
when the CA is evolved to solve a local task? To test
this we introduced the short-lines task: given an initial
configuration consisting of five non-filled intervals of

Fig. 8. The short-lines task: operation of a co-evolved,
non-uniform CA of size N = 149 with a standard architecture
of connectivity radius r = 2 (Cyq9(1, 2)).

random length between 1-7, the CA must reach a fi-
nal configuration in which the intervals form contin-
uous lines (Fig. 8). In this final configuration all cells
within the confines of an interval should be in state
1, and all other cells should be in state O (in our sim-
ulations, cells within an interval in the initial config-
uration were set to state 1 with probability 0.3; cells
outside an interval were set to 0). Fig. 6 demonstrates
that performance for this local task is maximal for
minimal d, and decreases as d increases.

These results demonstrate that performance is
strongly dependent upon the architecture, with higher
performance attainable by using different architec-
tures than that of the standard CA model. We also
observe that the global and local tasks studied have
different efficient architectures.

As each Cy(a, b) architecture is isomorphic to a
Cy(1,d) one, and since performance is correlated
with acd in the Cy(l,d) case, it follows that the
performance of general Cy(a, b) architectures is also
correlated with acd. It is interesting to note the rugged-
ness of the equivalent d’ landscape, depicted in Fig. 9,
representing the equivalent d’ value for each (a, b)
pair. Table 1 presents the performance results of four
Cn (a, b) architectures on the density task: Co1(3.5),
C102(3,5), C101(3,6) and Cy92(3. 6), demonstrating

M. Sipper, E. Ruppin/Physica D 99 (1997) 428-441 435

N=29

Fig. 9. The ruggedness of the equivalent d' landscape is illus-
trated by plotting it as a function of (a, b), for Cyg(a, b).

Table 1
Maximal evolved performance for Cy (a, b) on the density task

(a,b) N acd Equivalent Mean maximal
d’ performance
(3.5) 101 5.98 32 0.96 (0.006)
(3.5 102 6.02 21 0.96 (0.005)
(3,6) 101 13 2 0.88 (0.01)
(3.6) 102 Not connected None 0.75 (0.07)

For each architecture, 15 evolutionary runs were performed
with 50 000 initial configurations per run. The average maximal
performance attained on these runs is shown along with standard
deviations in parentheses (deviations were computed excluding
the two extremal values).

the dependence on the acd. Since gcd(3,5) = 1
whereas gcd(3,6) # 1 (resulting in a lower acd
for architectures with the former connectivity), we
find, as expected, that Cy (3, 5) exhibits significantly
higher performance than Cy (3, 6). Furthermore, since
C102(3, 6) is not a connected graph (see Section 2),
this architecture displays even lower performance.
The operation of a co-evolved, Cy49(3.5) CA on the
density task is demonstrated in Fig. 10.

5. Evolving architectures

In Section 4 we employed the cellular program-
ming algorithm to evolve non-uniform CAs with fixed
Cy(a,b) or Cy(l,d) architectures. We concluded
that judicious selection of (a, b) or d can notably in-
crease performance, which is highly correlated with

the average cellular distance. The question we now
pose is whether a priori specification of the connectiv-
ity parameters is indeed necessary or can an efficient
architecture co-evolve along with the cellular rules.
Moreover, can heterogeneous architectures, where
each cell may have different d; or (a;,b;) connection
lengths, achieve high performance? Below we denote
by Cn(1,d;) and Cn(a;, b;) heterogeneous architec-
tures with one or two evolving connection lengths
per cell, respectively. Note that these are the cell’s
input connections, on which information is received;
as connectivity is heterogencous, input and output
connections may be different, the latter specified im-
plicitly by the input connections of the neighboring
cells.

In order to evolve the architecture as well as the
rules the algorithm presented in Section 3 is modi-
fied; each cell maintains a “genome” consisting of two
“chromosomes”. The first, encoding the rule table, is
identical to that delineated in Section 3. The second
chromosome encodes the cell’s connections as Gray
code bit strings [11]° . In what follows we use grids
of size N = 129; thus, the architecture chromosome
contains six bits for evolving C29(1, d;) architectures
and 12 bits for Cjy9(a;, b;) architectures. As an ex-
ample of the latter, if cell i’s architecture chromosome
equals, say, 000110000100 then it is connected to cells
i +4 and i £ 7 (mod N), since 000110 and 000100
are the Gray encodings of the decimal values 4 and 7,
respectively.

The algorithm now proceeds as in Section 3; ini-
tial configurations are presented and fitness scores of
each cell are accumulated over C configurations, af-
ter which evolution occurs. As with the original al-
gorithm, a cell has access only to its neighbors and
applies genetic operators to the genomes of the fitter
ones. Each cell has four connections (in addition to
a self-connection), but these need not be identical for
all cells, thereby entailing heterogeneous connectivity.
We have found that performance can be increased by
using slower evolutionary rates for connections than

SA prime characteristic of the Gray code is the adjacency
property, i.e., adjacent integers differ by a single bit. This is
desirable where genetic operators are concerned [8].

436 M. Sipper, E. Ruppin/Physica D 99 (1997) 428—441

(a)

(b)

Fig. 10. The density task: operation of a co-evolved, non-uniform, Cj49(3, 5) CA. (a) Initial density of Is is 0.48. (b) Initial density
of 1s is 0.51. Note that computation time, i.c., the number of time steps until convergence to the correct final pattern, is shorter than
that of the GKL rule. Furthermore, it can be qualitatively observed that the computational “behavior” is different than GKL, as is

to be expected due to the different connectivity architecture.

for rules. Thus, while rules evolve every C = 300
configurations, connections evolve every C’ = 1500
configurations. The two-level dynamics engendered
by the concomitant evolution of rules and connections
markedly increases the size of the space searched by
evolution. Our results demonstrate that high perfor-
mance can be attained, nonetheless.

We performed several evolutionary runs using
Cn (1, d;) architectures, two typical results of which
are depicted in Fig. 11. We find it quite remarkable
that the architectures evolved succeed in “selecting”
connection lengths d; that coincide in most cases
with minima points of the acd graph, reflecting the
strong correlation between performance and acd. This,
along with the high levels of performance attained,
demonstrates that evolution has succeeded in finding
non-uniform CAs with efficient architectures, as well
as rules. In fact, the performance attained is higher
than that of the fixed-architecture CAs of Section 4.
Fig. 12 demonstrates the operation of a co-evolved,
C129(1. d;) CA on the density task.

As noted in Section 4, Mitchell et al. discussed
two possible choices of initial configurations, ei-
ther uniformly distributed over densities in the range

[0.0, 1.0], or binomially distributed over initial den-
sities. As explained therein, this distinction did not
prove essential in our studies and we concentrated
on the former distribution; nonetheless, we find that
our evolved CAs attain high performance even when
applying the binomial distribution. Observing the re-
sults presented in Table 2, we note that performance
exceeds that of previously evolved CAs, coupled with
markedly shorter computation times (as demonstrated,
e.g., by Fig. 12). It is important to note that this is
achieved using only five connections per cell, as com-
pared to seven used by the fixed, standard-architecture
CAs. It is most likely that our CAs could attain even
better results using a higher number of connections
per cell, since this entails a notable reduction in acd.

6. Co-evolving low cost architectures

In Section 5 we showed that high performance
architectures can be co-evolved using the cellular pro-
gramming algorithm, thus obviating the need to spec-
ify in advance the precise connectivity scheme. The
mean d; value of evolved, Ci9(l, d;) architectures

M. Sipper, E. Ruppin/Physica D 99 (1997) 428—441 437

N=129
— —
a0 b
k-2 g 4
o
g st
| W_/\,—/\Aj\\/\
st T f\
© 4 B 12 18 N 24 22 L B 0 M 48 R 8 0 &
(a)
N=129
— -
g
5
g
g
NIRRT NVE IV R 11

{ RS N A B
0‘&!2158)24@%2|36w44465256&64

(b)

Fig. 11. Evolving architectures. Results of two typical evolu-
tionary runs using C29(1, d;). Each figure depicts a histogram
of the number of occurrences of evolved d; values for all grid
cells, overlaid on the acd graph. Performance in both cases is
0.98. Mean d; value is 31.5 for run (a), 30.8 for run (b).

was in the range [30, 40] (e.g., Fig. 11). It is natural
to ask whether high performance architectures can be
evolved, which are also of low connectivity cost per
cell, defined as d; for the Cn (1, d;) case and a; + b;
for Cy(a;, b;).

In order to evolve low cost architectures we employ
the cellular programming algorithm of Section 5 with
a modified cellular fitness value, f;, incorporating the
performance of cell i as well as its connectivity cost:

fi=fi —at@ +b)/N
for Cy(a;, b;) architectures and

fi=fi —adi/N

for Cy (1, d;) ones, where f; denotes the original fit-
ness value of cell i as defined in Section 3, and « is
a coefficient in the range [0.02, 0.04]. The algorithm
now proceeds as in Section 5, with an added evolu-
tionary “pressure” toward low cost architectures.

Fig. 13 depicts the results of two typical evolution-
ary runs using Cn (1, d;) architectures. Comparing this
figure with Fig. 11, we note that low cost architec-
tures are indeed evolved, exhibiting markedly lower
connectivity cost, with only a slight degradation in
performance.

In Section 2 we observed that every Cy(a,b)
architecture is isomorphic to a Cy(1,d’) architec-
ture, for some equivalent d’. We noted that general
Cy(a, b) architectures come into play when one
wishes to minimize connectivity cost, as well as to
maximize performance; the equivalent d’ value of a
Cy(a, b) architecture may be large, resulting in a
lower cost of Cy(a, b) as compared with the iso-
morphic Cy(1,d’) architecture. These observations
motivated the evolution of general Cy(a;, b;) archi-
tectures, a typical result of which is demonstrated in
Fig. 14; co-evolved, Cy(a;, b;) architectures surpass
Cn (1, d;) ones in that better performance is attainable
with considerably lower connectivity cost.

7. Discussion

In this paper we have studied the relationship be-
tween performance and connectivity in evolving, non-
uniform CAs. Our main findings are:

(1) The performance of fixed-architecture CAs solv-
ing global tasks depends strongly and linearly on
their average cellular distance. Compared with
the standard Cy (1, 2) architecture, considerably
higher performance can be attained at very low
connectivity values, by selecting a Cy(l,d) or
Cy (a, b) architecture with a low acd value, such
thatd,a, b < N.

(2) High performance architectures can be co-evolved
using the cellular programming algorithm, thus
obviating the need to specify in advance the
precise connectivity scheme. Furthermore, it
is possible to evolve such architectures that

438 M. Sipper, E. Ruppin/Physica D 99 (1997) 428441

RO TR ST A

(a)

(b)

Fig. 12. The density task: operation of a co-evolved, non-uniform, Cj29(1, d;) CA. (a) Initial density of 1s is 0.496. (b) Initial density
of 1s is 0.504. Note that computation time is shorter than that of the fixed-architecture CA and markedly shorter than the GKL rule.

Table 2

A comparison of performance and computation times of the best CAs

Designation Rule(s) Architecture Connections per cell 79|29_104 T]29,104
Co-evolved CA (1) Evolved, non-uniform Evolved, non-standard 5 0.791 17
Co-evolved CA (2) Evolved, non-uniform Evolved, non-standard S 0.788 27
Co-evolved CA (3) Evolved, non-uniform Evolved, non-standard 5 0.781 12
é100 Evolved, uniform Fixed, standard 7 0.775 72
d11102 Evolved, uniform Fixed, standard 7 0.751 80
®17083 Evolved, uniform Fixed, standard 7 0.743 107
GKL Designed, uniform Fixed, standard 7 0.825 74

P 4 is a measure introduced by Mitchell et al., representing the fraction of correct classifications performed by the CA of
129,10 Y P g p

size N = 129 over 10* initial configurations randomly chosen from a binomial distribution over initial densities. 7129 104 denotes

the average computation time over the 10% initial configurations, i.e., the average number of time steps until convergence to the final
pattern. The rules designated by ¢; are those reported by Mitchell et al. Co-evolved CA (1) is fully specified in Table 3 of Appendix B.

exhibit low connectivity cost as well as high
performance.

We observed that the average cellular distance
landscape is rugged and showed that the performance
landscape is qualitatively similar. This suggests an
added benefit of evolving, heterogeneous architec-
tures over homogeneous, fixed ones: While the latter
may get stuck in a low performance local mini-
mum, the evolving architectures, where each cell
“selects” its own connectivity, result in a melange
of local minima, yielding in many cases higher
performance.

We have provided empirical evidence as to the
added efficiency of Cy(1,+/N) architectures in
solving global tasks, suggesting that the density
problem has a good embedding in two dimensions.
A theoretical result by [2] states that the minimal
diameter of Cy(a, b) circulants is achieved with
Cn (O(\/N), O(\/N)). This suggests that the perfor-
mance landscape has a global maximum at a,b =
O(+/N) (but with a # b).

We note in passing that as it is physically possi-
ble to construct systems of (up to) three dimensions,
one can gain the equivalent of long-range connections

M. Sipper, E. Ruppin/Physica D 99 (1997) 428441 439

N=129
T

8cd . no. occurrences

acd, no. occurmences
3

SIS TN P U S S S S S GRS S
0 “ B 12 18 20 24 2 3d2' 3 40 M 48 52 58 60 64
(b)

Fig. 13. Evolving low cost architectures. Results of two typi-
cal evolutionary runs using C29(1, d;). Each figure depicts a
histogram of the number of occurrences of evolved d; values
for all grid cells, overlaid on the acd graph. (a) Performance is
0.97, mean d; value is 13.6. (b) Performance is 0.96, mean d;
value is 9.

N=129
—

1o, occurmences
8

‘:- ‘Ln I

Dlllz‘ﬂnl4ﬂ;ﬂb|“40““525luﬁ
ai, bl

Fig. 14. Evolving low cost architectures. Result of a typical evo-
lutionary run using C29(a;, b;). The figure depicts a histogram
of the number of occurrences of evolved a; and b; values for
all grid cells. Performance is 0.97, mean g; + b; value is 6.1,

gratuitously; by this we mean that a physical realiza-
tion of a locally connected, three-dimensional system
implicitly “contains” a remotely connected system of
lower dimensionality®. An interesting extension of
our work would be the evolution of architectures us-
ing such higher-dimensionality grids, which may re-
sult in yet better performance coupled with reduced
connectivity cost.

Using our algorithm to solve the density task offers a
promising approach for solving a general wiring prob-
lem for a set of distributed processors: In this problem
one is given a set of processors that should be con-
nected to each other in a way that minimizes average
processor distance (i.e., the number of processors a
message must traverse on its path between two given
processors). Problem constraints may include minimal
and maximal connection lengths, pre-specified neigh-
bors for some or all cells, and the (possibly distinct)
number of impinging connections per processor. Us-
ing our algorithm to solve the density task, where each
processor is identified with a cell and connectivity
constraints are applied by holding the corresponding
connections fixed, will enable the evolution of an ef-
ficient wiring scheme for a given distributed comput-
ing network, by maximizing the efficiency of global
information propagation.

Our simulations have shown that the cellular pro-
gramming algorithm may degenerate connections. For
example, some runs of the short-lines task with evolv-
ing Cy(1, d;) architectures ended up with most cells
having d; = 0. This motivates the use of an algorithm
starting with a large number of connections per cell,
that are reduced by evolution, thus yielding increased
performance and lower connectivity cost. Ultimately,
we wish to attain a system that can adapt to the prob-
lem’s inherent “landscape”.

Evolving, non-uniform CAs hold potential for
studying phenomena of interest in areas such as com-
plex systems, artificial life and parallel computation.

6 As noted, a two-dimensional, locally connected system cf
size N can be embedded in a one-dimensional system with con-
nections of length +/N. Similarly, a three-dimensional system
can be embedded in a two-dimensional system with connec-
tions of length N!/3, and in a one-dimensional system with
connections of length N%/3 and N1/3.

440 M. Sipper, E. Ruppin/Physica D 99 (1997) 428441

Table 3
Cell Rule d; Cell Rule d; Cell Rule d; Cell Rule d;
0 135107FF 59 33 035117F7 56 66 135107F7 44 99 135107F7 59
| 135107FF 44 34 115107F7 56 67 135107F7 44 100 035117F7 40
2 135107F7 63 35 115107F7 8 68 135107F7 44 101 135117F7 8
3 035107FF 40 36 135107FF 8 69 135107F7 8 102 035117F7 40
4 035107FF 40 37 135107FF 56 70 035107F7 8 103 035107F7 40
5 035107F7 15 38 035107FF 56 71 035117FF 52 104 035107F7 56
6 035117F7 40 39 035107F7 48 72 035107FF 11 105 135107F7 56
7 035107F7 56 40 035107F7 8 73 035107FF 59 106 035105FF 56
8 135117F7 56 4] 035107FF 44 74 035107FF 59 107 035117F7 56
9 035107F7 63 42 135107FF 59 75 035107F7 55 108 135117F7 56
10 035107F7 63 43 135107FF 43 76 035117FF 56 109 135117F7 56
11 035107F7 52 44 135107F7 63 77 035107FF 40 110 135107F7 56
12 035127FF 11 45 035107FF 59 78 035107F7 44 111 035107FF 56
13 035127FF 59 46 035117F7 43 79 135117F7 15 112 135107F7 56
14 135117F7 8 47 035107FF 43 80 035107F7 15 113 135107F7 56
15 035107F7 11 48 035107FF 40 81 035107F7 59 114 135107FF 52
16 135117F7 11 49 035117F7 56 82 135107F7 40 115 035107F7 43
17 035117F7 43 50 035105FF 56 83 035107F7 63 116 035107FF 43
18 135107FF 4 51 035107F7 56 84 035107F7 4 117 035107F7 43
19 035117FF 4 52 035107FF 63 85 035127FF 56 118 035107FF 56
20 035117F7 4 53 135107FF 52 86 135107F7 56 119 135107F7 56
21 035117F7 59 54 035105FF 4 87 135107F7 8 120 035107F7 40
22 135107F7 12 55 135107FF 56 88 035157F7 7 121 135107FF 8
23 135107F7 40 56 135107FF 56 89 035117F7 63 122 03510FFF 8
24 135107F7 59 57 035107F7 4 90 035107F7 40 123 035107FF 56
25 035107F7 55 58 035107FF 4 91 035107F7 56 124 135107F7 56
26 135107F7 40 59 135107FF 11 92 035107F7 56 125 035107F7 56
27 035107F7 56 60 135107F7 11 93 035107FF 4 126 035107FF 56
28 035107FF 56 61 035107F7 59 94 035117F7 56 127 035107F7 11
29 035107FF 56 62 035107FF 56 95 135107F7 12 128 135107FF 59
30 035107FF 39 63 135117F7 56 96 035107FF 56
3] 035107F7 56 64 135117F7 48 97 035117FF 63
32 035117F7 48 65 035117F7 48 98 035107F7 59

This work has shed light on the importance of select-
ing efficient CA architectures, and demonstrated the
feasibility of their evolution.

Acknowledgements

We are grateful to Melanie Mitchell for her careful
reading of this manuscript and her many helpful sug-
gestions. We thank Yossi Azar, Jason Lohn, and Hezy
Yeshurun for helpful discussions.

Appendix A. Computing acd and equivalent d’'

Determining the diameter and average cellular dis-
tance of a general circulant is a difficult problem [3].

The minimum diameter has been determined for all
circulants on N nodes and two connection lengths
[2]. Our interest is in the special case of Cy(a, b).
We observe that by symmetry we need only consider
the paths from node 0 to each other node j, j =
l,..., N — 1 (provided such a path exists). Thus, we
express j asax+by mod N,x,y € [—N, N][1]. The
graphs depicted in Section 2 were computed by con-
sidering all possible (a, b) pairs. For each such pair,
minimum cellular distances from node O to all other
nodes were computed by considering all possible x, y
pairs. The average of these distances was then taken.

To find the isomorphic Cy (1, d') architecture for a
given Cy (a, b) we proceed as follows: Consider the
list of nodes in the Cy(a, b) graph: 0, 1,..., N — 1.
Now rearrange this list such that nodes originally a

M. Sipper, E. Ruppin/Physica D 99 (1997) 428441 441

units apart are now adjacent (unless ged(a, N) > 1,
in which case b is taken). The equivalent d’ is then the
minimal number of unit connections to node & from
the head of the list (or a, if gcd(a, N) > 1). For ex-
ample, C7(2, 3) nodes are rearranged in the following
order: 0,2, 4,6, 1,3, 5, and the equivalent 4’ value is
therefore d’ = 2 (minimal number of unit connections
from node O to node 3).

Appendix B. Specification of co-evolved CA (1)

Co-evolved CA (1), whose performance measures
are given in Table 2, is fully specified in Table 3.
As the architecture in question is non-uniform,
Ci9(1,d;), this involves 129 rules and d; values.
The 32-bit rule string is shown as eight hexadecimal
digits, with neighborhood configurations given in
lexicographic order; the first (left-most) bit specifies
the state to which neighborhood 00000 is mapped to
and so on until the last (right-most) bit specifying the
state to which neighborhood 11111 is mapped to. The
five neighborhood bits represent the values of cells
i —di,i —1,i,i + 1,i + d; (mod N), respectively.
Cell 0 is the left-most grid cell.

References

[11 ET. Boesch and R. Tindell, Circulants and their
connectivities, J. Graph Theory 8 (1984) 487—499.

[2] ET. Boesch and J.-F. Wang, Reliable circulant networks
with minimum transmission delay, IEEE Trans. Circuits
and Systems CAS-32 (12) (1985) 1286-1291.

[3] E. Buckley and F. Harary, Distance in Graphs (Addison-
Wesley, Redwood City, CA, 1990).

[4] J.P. Crutchfield and M. Mitchell, The evolution of emergent
computation, Proceedings of the National Academy of
Sciences USA, 92 (23), 1995.

{5] R. Das, J.P. Crutchfield, M. Mitchell and J.E. Hanson,
Evolving globally synchronized cellular automata, in: Proc.
6th Int. Conf. on Genetic Algorithms, ed. L.J. Eshelman
(Morgan Kaufmann, San Francisco, CA, 1995) pp. 336-
343,

[6] R. Das, M. Mitchell and J.P. Crutchfield, A genetic
algorithm discovers particle-based computation in cellular
automata, in: Parallel Problem Solving from Nature- PPSN
I1I, Vol. 866 of Lecture Notes in Computer Science, eds.

Y. Davidor, H.-P. Schwefel and R. Minner (Springer,
Berlin, 1994) pp. 344-353.

[71 P. Gacs, G.L. Kurdyumov and L.A. Levin, One-
dimensional uniform arrays that wash out finite islands,
Problemy Peredachi Informatsii 14 (1978) 92-98.

[8] D.E. Goldberg, Genetic Algorithms in Search, Optimiza-
tion and Machine Learning (Addison-Wesley, Reading,
MA, 1989).

[9] P. Gonzaga de Sa and C. Maes, The Gacs—Kurdyumov-
Levin automaton revisited, J. Stat. Phys. 67 (3/4) (1992)
507-522.

[10] H. Hartman and G.Y. Vichniac, Inhomogeneous cellular
automata, in: Disordered Systems and Biological
Organization, eds. E. Bienenstock, F. Fogelman and
G. Weisbuch (Springer, Berlin, 1986) pp. 53-57.

[11] S. Haykin, Digital Communications (Wiley, New York,
1988).

[12]) M. Land and R.K. Belew, No perfect two-state cellular
automata for density classification exists, Phys. Rev. Lett.
74 (25) (1995) 5148-5150.

[13] M. Mitchell, J.P. Crutchfield and P.T. Hraber, Dynamics,
computation, and the “edge of chaos”: A re-examination.
in: Complexity: Metaphors, Models and Reality, eds.
G. Cowan, D. Pines and D. Melzner (Addison-Wesley,
Reading, MA, 1994) pp. 491-513.

[14] M. Mitchell, J.P. Crutchfield and P.T. Hraber, Evolving
cellular automata to perform computations: Mechanisms
and impediments, Physica D 75 (1994) 361-391.

[15] M. Mitchell, PT. Hraber and J.P. Crutchfield, Revisiting
the edge of chaos: Evolving cellular automata to perform
computations, Complex Systems 7 (1993) 89-130.

[16] N.H. Packard, Adaptation toward the edge of chaos,
in: Dynamic Patterns in Complex Systems, eds. J.A.S.
Kelso, A.J. Mandell and M.F. Shlesinger (World Scientific,
Singapore, 1988) pp. 293-301.

[17] M. Sipper, Non-uniform cellular automata: Evolution
in rule space and formation of complex structures, in:
Artificial Life IV, eds. R.A. Brooks and P. Maes (MIT
Press, Cambridge, MA, 1994) pp. 394-399.

[18] M. Sipper, Quasi-uniform computation-universal cellular
automata, in: ECAL’95: 3rd European Conf. on Artificial
Life, eds. F. Moran, A. Moreno, J.J. Merelo and P. Chacén,
Lecture Notes in Computer Science, Vol. 929 (Springer,
Berlin, 1995) pp. 544-554.

[19] M. Sipper, Studying artificial life using a simple, general
cellular model, Artificial Life J. 2 (1) (1995) 1-35.

[20] M. Sipper, Co-evolving non-uniform cellular automata to
perform computations, Physica D 92 (1996) 193-208.
[21] T. Toffoli and N. Margolus, Cellular Automata Machines

(MIT Press, Cambridge, MA, 1987).

[22] G.Y. Vichniac, P. Tamayo and H. Hartman, Annealed and
quenched inhomogeneous cellular automata, J. Stat. Phys.
45 (1986) 875-883.

{23] S. Wolfram, Universality and complexity in cellular auto-
mata, Physica D 10 (1984) 1-35.

