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Abstract

Cellular automata (CAs) have been ubiquitously used over the years to study the issue of self-replication. The L-systems
model, on the other hand, is naturally suited for modeling growth processes, of which replication is a special case. The
goals of this paper are: (1) to show how L-systems can be used to specify self-replicating structures, and (2) to explore the
relationship between L-systems and CAs. We conclude that the bridge between CAs and L-systems seems to offer a promising
approach in the study of self-replication, and, more generally, of growth processes in CAs. Copyright © 1998 Elsevier

Science B.V.
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1. Introduction

The study of artificial self-replicating structures or
“machines” has been taking place for almost half a
century. Much of this work is motivated by the desire
to understand the fundamental information-processing
principles and algorithms involved in self-replication,
independent of their physical realization [12,21]. An
understanding of these principles could prove useful
in a number of ways. It may advance our knowledge
of biological mechanisms of replication by clarifying
the conditions that any self-replicating system must
satisfy and by providing alternative explanations for
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empirically observed phenomena. The fabrication of
artificial self-replicating machines can also have di-
verse applications, ranging from nanotechnology [4]
to space exploration [5].

One of the central models used to study self-
replication is that of cellular automata (CAs). CAs
are dynamical systems in which space and time are
discrete. A cellular automaton (CA) consists of an
array of cells, each of which can be in one of a finite
number of possible states, updated synchronously
in discrete time steps, according to a local, identi-
cal interaction rule. The state of a cell at the next
time step is determined by the current states of a
surrounding neighborhood of cells. This transition is
usually specified in the form of a rule table, delin-
eating the cell’s next state for each possible neigh-
borhood configuration. The cellular array (grid) is
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Fig. 1. Schematic illustration of some self-replicating systems, embedded in two-dimensional cellular spaces. (a) von Neumann’s
universal constructor (UC) is a machine (i.e., CA-embedded structure) capable of constructing, through the use of a “‘constructing
arm”, any configuration whose description can be stored on its input tape. This universal constructor is therefore capable, given
its own description, of constructing a copy of itself, i.e., of self-replicating. (The machine is not drawn to scale.) (b) Langton’s
self-replicating loop, embedded in an 8-state cellular space (states are denoted by decimal values). The loop lacks any computing and
constructing capabilities, its sole functionality being that of self-replication. (c) Tempesti’s loop is a self-replicating automaton, with
an attached executable program that is duplicated and executed in each of the copies. This was demonstrated for a simple program
that writes out (after the loop’s replication) LSL, acronym of the Logic Systems Laboratory. (d) Self-replicating loop with universal
computational capabilities of Perrier et al. The system consists of three parts, loop, program, and data, all of which are replicated,
followed by the program’s execution on the given data. P denotes a state belonging to the set of program states, and D denotes a
state belonging to the set of data states.

n-dimensional, where n = 1, 2, 3 is used in practice configuration whose description can be stored on

[15,20].

Research into self-replication (within a formal
framework) began in the late 1940s with von
Neumann’s seminal work [21]. He showed that a
universal constructor can be embedded within a two-
dimensional, 5-neighbor, 29-state cellular space; such
a “machine” is capable of constructing any CA state

its input tape. The universal constructor is therefore
capable, given its own description, of constructing
a copy of itself, i.e., of self-replicating (Fig. 1(a)).
Note that terms such as “machine” and “tape” refer
to configurations of CA states — indeed the ability
to formally describe such structures served as a ma-
jor motivation for von Neumann’s choice of the CA
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model. Over the years several researchers pursued this
line of research, some of the more notable milestones
being (in chronological order): (1) Codd [3], who
designed a universal constructor in an 8-state cellular
space, simplifying von Neumann’s original design; (2)
Langton [6], who observed that while universal con-
struction is a sufficient condition for self-replication it
is not a necessary one, and went on to design a much
simpler system that exhibits solely self-replication
(Fig. 1(b)); (3) Byl [1] and Reggia et al. [12] who
simplified Langton’s loop; (4) Tempesti {19], who
developed a self-replicating CA, similar to that of
Langton’s, yet with an attached executable program
that is duplicated and executed in each of the copies
(Fig. 1(c)); (5) Perrier et al. [10], who went beyond
Tempesti’s demonstration of finite computation, con-
structing a self-replicating loop that is capable of
implementing any program, written in a simple yet
universal programming language (Fig. 1(d)). For a
recent review of self-replication in CAs the reader is
referred to Reggia et al. [13] (a short survey is pro-
vided in [10]; see also the online self-replication page
at http://Islwww.epfl.ch/~moshes/selfrep/).

A major problem with such highly local systems as
CAs is the difficulty in designing them to exhibit a
specific behavior or solve a particular problem. This
results from the local dynamics of the system, which
renders the design of local interaction rules to perform
global computational tasks extremely arduous [15].
One recent approach to CA design involves the appli-
cation of artificial evolution techniques. The works of
Mitchell et al. [9] and Sipper [14-17] have shown that
CAs can be successfully evolved to solve a number
of hard problems. Lohn and Reggia [8] applied the
evolutionary approach to the self-replication problem,
demonstrating that a genetic algorithm can be used to
discover self-replicating structures in CAs.

The advantage of evolutionary techniques lies with
the fact that the (CA) designer no longer has to specify
the precise solution, i.e., the CA rule table and state
configuration. Rather, he or she needs to provide the
evolutionary algorithm with a means of assessing the
quality (or fitness) of a given solution. This facilitates
the design task since in general it is easier to assess a
(given) solution than to construct one. If the evolution-

ary setup has been well conceived, evolution may then
(automatically) generate a good solution, in our case,
a self-replicating CA (or, more generally, a CA that
exhibits a prespecified behavior). Evolutionary tech-
niques can be, however, a double-edged sword, the
downside being the non-trivial nature of constructing
the evolutionary scenario, and the non-optimized self-
replication solutions thus obtained.

In this paper we explore a different avenue, studying
the self-replication issue using the L-systems model.
Introduced almost three decades ago as a mathemati-
cal theory of plant development, L-systems capture the
essence of growth processes [7]. Observing that repli-
cation can be considered a special case of growth [18]
motivated us to carry out the investigation described in
this paper. Basically, an L-system is a string-rewriting
grammar that is coupled with a graphical interpreta-
tion — the system can be used to churn out a plethora
of finite strings that give rise (through the graphical in-
terpretation) to two- or three-dimensional images. The
basic idea elaborated herein can be stated as follows:
we employ an L-system to design a self-replicating
structure, with the graphical interpretation being that
of a CA.

Our goals herein are: (1) to show how L-systems
can be used to specify self-replicating structures, and
(2) to explore the relationship between L-systems
and CAs. We begin in Section 2 with an introduction
of L-systems. Section 3 demonstrates how a num-
ber of elemental components used in self-replicating
CAs can be described by L-system rewriting rules.
Section 4 delineates the design of a self-replicating
loop using an L-system, followed by its implementa-
tion as a CA in Section 5. Our paper ends in Section 6
with conclusions and directions for future research.

2. L-systems

Lindenmayer systems — or L-systems for short —
were originally conceived as a mathematical theory
of plant development [7,11]. The central concept of
L-systems is that of rewriting, which is essentially
a technique for defining complex objects by succes-
sively replacing parts of a simple initial object using a
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set of rewriting rules or productions. The most ubig-
uitous rewriting systems operate on character strings.
Though such systems first appeared at the beginning
of this century [11], they have been attracting wide
interest as of the 1950s with Chomsky’s work on for-
mal grammars, who applied the concept of rewriting
to describe the syntactic features of natural languages
[2]. L-systems, introduced by Lindenmayer (7], are
string-rewriting systems, whose essential difference
from Chomsky grammars lies in the method of apply-
ing productions. In Chomsky grammars productions
are applied sequentially, whereas in L-systems they
are applied in parallel and simultaneously replace all
letters in a given word. This difference reflects the
biological motivation of L-systems, with productions
intended to capture cell divisions in multicellular or-
ganisms, where many divisions may occur at the same
time.

As a simple example, consider strings (words) built
of two letters, A and B. Each letter is associated with
a rewriting rule. The rule A — AB means that the
letter A is to be replaced by the string A B, and the rule
B — A means that the letter B is to be replaced by A
[11]. The rewriting process starts from a distinguished
string called the axiom. For example, let the axiom be
the single letter B. In the first derivation step (the first
step of rewriting), axiom B is replaced by A using
production B — A. In the second step, production
A — AB is applied to replace A with AB. In the
next derivation step both letters of the word AB are
replaced simultaneously: A is replaced by AB and B
is replaced by A. This process is shown in Fig. 2 for
four derivation steps.

In the above example the productions are context-
free, i.e., applicable regardless of the context in
which the predecessor appears. However, production
application may also depend on the predecessor’s
context, in which case the system is referred to as
context-sensitive. This allows for interactions be-
tween different parts of the growing string (modeling,
e.g., interactions between plant parts). Several types
of context-sensitive L-systems exist, one of which we
shall concentrate on herein. In addition to context-
free productions (e.g., A — AB), context-sensitive
ones of the form U<A>X — DA are introduced,

ABAAB

Fig. 2. Example of a derivation in a context-free L-system. The
set of productions, or rewriting rules is: {A — AB, B — A}.
The process is shown for four derivation steps.

where the letter A (called the strict predecessor) can
produce word DA if and only if A is preceded by
letter U and followed by X. Thus, letters U and X
form the context of A in this production. When the
strict predecessor has a one-sided context, to the left
or to the right, then only the < or > symbol is used,
respectively (e.g., U<A — DA is a left-context rule
and A>X — DA is a right-context one). Fig. 3
demonstrates a context-sensitive L-system. We note
in passing that, defining a growth function as one
describing the number of symbols in a word in terms
of its derivation length, then this L-system exhibits
square-root growth: after n derivation steps the length
of the string (X symbols excluded) is [ /n] + 2.
Other growth functions can also be attained, including
polynomial, sigmoidal, and exponential [11].

As noted above, L-systems were originally designed
to model plant development. Thus, in addition to a
grammar that produces finite strings over a given al-
phabet (as defined above), such a system is usually
coupled with a graphical interpretation. Several such
interpretations exist, one example of which is the so-
called turtle interpretation, based on a LOGO-style
turtle [11]. Here, the string produced by the L-system
is considered to be a sequence of commands to a
cursor (or “turtle”) moving within a two- or three-
dimensional space. Each symbol represents a simple
command (e.g., move forward, turn left, turn
right) such that interpretation of the string gives rise
to an image.

In summary, there are two important aspects con-
cerning L-systems, which shall serve us herein: (1)
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Pl: U<A>A -> U
P2: U<A>X -> DA
p3: A<A>D -> D
péd: X<A>D -> U
p5: U -> A
p6: D -> A

0:
1:
2:
3:
4:

75
XUAX 5: XADAAX
XADAX 6: XUAAAX
XUAAX 7: XAUAAX
XAUAX 8: XAAUAX
XAADAX 9: XAAADAX

(b)

Fig. 3. A context-sensitive L-system. (a) The production set. (b) A sample derivation. Note that if no rule applies to a given letter

then that letter remains unchanged.

such a system gives rise to a growing, one-dimensional
string of characters, and (2) which can then be inter-
preted as a two- or three-dimensional image.

3. Using L-systems to describe components in
cellular space

The basic idea elaborated herein can now be stated
as follows:

(i) A self-replicating structure is designed in an L-
system. Specifically, the axiom shall be replicated
after a certain number of derivations.

(ii) The coupled graphical interpretation is that of op-
erations in a cellular space, thus transposing the
self-replicating structure onto a CA.

As noted, L-systems are naturally suited to model

growth processes, and in particular replication.

In this section we demonstrate how a number
of basic components, or operations, related to self-
replication can be modeled by L-systems. Fig. 4
shows some simple growing structures along with
their CA interpretations. These can implement, e.g.,
the extension of a constructing arm, as in the loops
of Fig. 1. The ( ) and [ ] symbol pairs represent a
left and right branch, respectively. These are used in
so-called bracketed L-systems with the parentheses
being a form of recursive application [11]: a string is
interpreted from left to right to form the correspond-
ing image. When a left bracket is encountered then
the current position within the image is pushed onto a
pushdown stack, with a right bracket signifying that a
position is to be popped from the stack. Thus, one can
model plants with branches, sub-branches, etc., or,

pl: a -> ia (ilal [i]ifa]
p2: a -> 1(8.) Illa] i?
p3: -> ilal lila] i

Fig. 4. Some simple growing structures along with their CA
interpretations. The ( ) and [ ] symbol pairs represent a left
and right branch, respectively. As the cellular space considered
is a two-dimensional grid, the branching angle is 90°. The
corresponding CA interpretation of a single derivation step is
shown to the right. Note that the resulting operations in CA
space can implement the extension of a constructing arm, similar
to the loops of Fig. 1.

pl: a -> i(a)a EEE
p2: a -> i[ala Iiial
a]
p3: a -> i(a)lal ila [ili
a
a]
pd: a -> i(a)[ala (ilija]
|3 ]

Fig. 5. Some branching structures along with their CA inter-
pretations.

in our case, create such constructs as extending arms
and propagating signals. Fig. 5 shows a number of
more complex branching structures along with their
CA interpretations.
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pl: s<i -> s

p2: 5 -> i ilsfifi] (ildls]d]

Fig. 6. Productions used to obtain signal propagation along with
their CA interpretation. The CA state s is propagated to the
right.

pl: 8<i>(t) -> v A 1]
p2: s -> i t i
p3: t -> i [ifslili] [LIilv]i]
pé: 8<i>[u) -> v |ilsl|ili| [ili]v]i]
p5: s -> i u 4 |
p6: u -> i E (1]
p7: s<i>(t)[u]l -> v %1 L%
p8: s -> i T S TS 3
p9: t -> i lilsfili] [i]1 -
pl0: u -> i Ll :lj
14| i

Fig. 7. Productions used to obtain signal confluence along with
their CA interpretations. These implement the cases of two or
three confluent signals, i.e., CA states (denoted s, ¢, and u) that
intersect to yield a new state (denoted v).

Signal propagation can be achieved by the produc-
tions shown in Fig. 6. Note that these are context-
sensitive whereas the above branching structures are
context-free.

As a final example, consider signal confluence,
which can be modeled by the set of productions given
in Fig. 7.

4. Describing a self-replicating loop using an
L-system

The L-system description of our self-replicating
loop consists of a string of characters (the “genome”)
that is to be replicated. As emphasized by Langton [6],
a distinctive property of such systems is the two dif-
ferent modes in which information is used: (1) as
instructions that are interpreted to direct the develop-
ment of the replica, and (2) as uninterpreted data that
is copied onto the replica. Langton compared this with
self-replication in nature, with the interpreted mode
analogous to the process known as translation, and
the uninterpreted mode analogous to transcription.

The self-replicating loop is a small one, inspired
by Reggia et al. [12], and defined by the axiom

LGG(O0O(00(0)))00. 1t is easy to verify that the
CA interpretation of this axiom corresponds to a loop
(Fig. 10, derivation step 0). The system is defined in
Fig. 8, and the derivation process demonstrating the
axiom’s replication is shown in Fig. 9. The productions
of Fig. 8(b) are based on the components described in
Section 3 and can be divided into five categories: (1)
propagation productions (pl-pl12), (2) growth pro-
ductions (p13 to p16), (3) left-turn productions (pl17—
p19), (4) branching productions (p20-p27), and (5)
loop-closing productions (p28—p31these are operative
in the final stages of replication, closing the “daugh-
ter” loop and severing it from the “mother” structure).
Note: when applying the above productions to derive
a string xjx2x3(x4x5(x6x7(x8)))x9x10 then the con-
text of a letter x; depends upon its position. Thus,
the context letters x;, and x; of x;, <x;>x; are de-
fined as follows: xg<x|>x72, x| <x3>x3, X2<x3> (x4,
x3(<xa>x5, xq4<xs5>(xg, x5(<x6>Xx7, X6<X7>(X8,
x7(<xg>x1, x3<x9>x10, and x9<xj9. For example,
when deriving the string LGG(OO(00(0))00
(Fig. 9, step 0), production p8, O<L>G — O,
is applied to the left-most L, with the understand-
ing that L’s left context is the O in the innermost
parentheses. This production is thus shorthand for
L>G — (— — (= —(0))) — — = O, where the ‘~’
symbol signifies “don’t-care”. Similarly, the above
productions do not explicitly list the entire context
word, with the context definition taken to be that
given herein. This notation was selected for sim-
plification purposes. Formally, L-systems where the
context of a letter can be further down the string are
known as IL-systems or (k, /)-systems, meaning that
the left context is a word of length & and the right
context is a word of length / [11]. Such an enlarged
context is necessary in our case so as to obtain the
loop “behavior”.

5. Implementing the loop as a CA

In Section 4 we delineated the design of a self-
replicating structure in an L-system. As noted, L-
systems seem to offer a natural medium to study
issues of growth and self-replication. In this section
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O:

G:

L:

T:

B:

C:

e:
pl: G<0 -> G
P2: G(<O -> G
p3: L<G>G -> L
pd: L<G>(G¢ -> L
p5: L<G>0O -> L
p6: L<G>(0 -> L
P7: L(<G>G -> L
p8: O<L>G -> 0
p9: O(<L>G -> 0
plOo: O<L>(G -> O
pll: O<L>0 -> 0
pl2: O(<L>0 -> 0
pl3: G<G>e -> GO
pld: L<G>e -> LO
pl5: L(<G>e -> LO
plé: L<O -> L

(a)

(b)

77

building component
growth signal

left turn signal
turning component
first branch signal
second branch signal
empty component

pPl7: G<L ~> T
pl8: G>T ~> L
pl9: T ~> G(0)
p20: B<L ~> B
p21l: B(<L -> 0
p22: B<le -> 0
p23: C<B ~-> C
p24: C<O -> C
p25: C>B -> 0
P26: Cc>0 -> 0
pP27: Cre -> 00
p28: L<G>(L) -> B
p29: O>B -> e
p30: B<G -> L
p3l: e<B -> C

Fig. 8. An L-system implementing a self-replicating loop: (a) Symbols (letters) used; (b) Productions.

[} LGG{OG{00(0Q}))00

1: OLG(GO(00{0)))a0

23  OOL(GG(00(0)}})aa

3: 000(LB{(Q0(0)))LaC

4: 000(0L(GG(0)))OLG

5: 000(00({LG(G)))ooLO

6: ©OO(00(OL(G)))o0o0L

7: GA0(00(00(L)))000L

8: 1LGG(00{00(0))})000L

9: OLG(GO(00(0)))Go0L
10: OOL(G3(00(0}})GeoL
11: 000(LG{B0(0)})LGGL
12: 000(OL(GG{0)))OLGT
13: 000(00(LG(G)))OOLG(Q)
14: GOO(00(OL{(G)))OOQOL(G)
15: GGO(00(00(L)))0000 (LO)
16: LOG(00(00(0)))0000(0L)
17: OLG(8O(00(0)))GO00(OL)
18: OOL{GG(00(0)))GGO0(OL)
19: 000(LG{GO(0)))LGGO(OL)
20: 000 (OL(GG(0)))OLEG(OL)
21: 000{00{LG(G)))}OOLG(GL)
22: QOO (00 (OL(G)))GOOL(GT)

23:
24:
25:
26:
271
28:
29:
30:
31:
32:
33
34:
35:
36:
37:
38:
39:
40:
412

GGO {00 (00(L)) }OO0Q{LG(0}}

LGG (00{00(0) } Y0000 (0L({G))

OLG (GO (00(0) ) ) GOOO (00 (LO) }

©0O0L (GG (00{0) ) ) GEOO0 (00 (OL) )

000 (LG (GO (0) ) ) LGEO (00 (OL) )

000 (OL (GG {0) ) ) OLGG (0O (OL) )

000({00(LG(G) ) ) 00LG (GO (OL))

GO0 {00 (OL(G) ) ) OO0L(GG(OL))

GGO (00 (00(L) ) } 0000 (LG(GL) )

LGG (00(00(0) } ) 0000 {OL(GT) }

OLG{G0(00(0) ) ) G000 (00(LGE(0}))

OOL{GG(00(0) ) }GGOO(OO{OL({G}} )

000({LG{G0(0) ) ) LGGO (00(00(L)}))

000 (OL{GG(0) ) ) OBGG (00 (00(0)) )

000 (00 (LG (G) ) ) eBLG (GO (0Q(0} ) )

GO0 (CO(OL(G) ) ) aCBL(GG(00(0)})

GGO (00 (00(L)) ) e0CB(LG(GO(0))}

LGG(00 (00 (0)) ) 800C (OL(GG(0) ))0
OLG (GO (00(0) ) ) @000 (00(LG(G) ) }C

42: OOL(GG(00(0)))eGO0{00(0L(G)))00

4312

000 (LG({GO(0}))eGEO{00(0Q (L)) )00
44: 000(OL(GG(0))) o RASSRERIICIPRINS

Fig. 9. Applying the productions of Fig. 8(b) to the axiom
LGG(OO(O0(ON)OO results in its replication after 44
derivation steps.

we implement the loop in a spatial model, namely, the
CA, by transforming our structure from the L-systems
language to the CA language.

Our intended cellular space is two-dimensional,
5-neighbor. We first note that the simple CA in-

terpretation of the loop (Fig. 10) cannot in fact be
implemented in such a cellular space. For example,
the transition between time steps 2 and 3 cannot be
carried out (since two blank cells have a state of G as
their left neighbor and only one must change to state
0). Thus, our graphical interpretation has so far been
just that — a graphical representation of the system in
question. However, it is not necessarily a viable CA,
i.e., one that can be implemented as a CA rule in a
two-dimensional, 5-neighbor cellular space.

In order to carry out the transformation into an ac-
tual CA one can either transform the original (non-
implementable) L-system into an implementable one,
or, alternatively, transform the (non-implementable)
graphical interpretation into a viable CA. Herein we
have opted for the former. The L-system of Fig. 8
is orientationally “neutral” in the sense that the sym-
bols signify “turn” and “grow.” The novel system, de-
picted in Fig. 11, contains components which allow
the implementation of a CA with weak rotational sym-
metry [12]. Comparing the modified set of symbols
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000
o o
LGGOO
0
000 006G 0GG GGL
o G [o < o L o
OLGGO OOLGG OO0 LGO QO000LG
1 2 3 4
GLO LOO 000 co00
L O o 0
00000LO GOOOOOL GGOOOOL LGGOOOL
5 6 7 B8
Qo0 006G 0GG GGL
o G o L o ©
OLGGOOL OO0OLGGOL O0OOLGGL OOOOLGT
9 10 11 12
GLO LOoO 000 (] 000 L
G O o] G O ] L O L o 0 o
0Q000LG GO0O0O0O0L GGO00000 LGGO00O
13 14 i5 16
o000 L 006G L 0GG L GGL L
G o o G o c L
OLGGOOO QO0LGGOO OO0OOLGGO QO00O0OLGG
17 18 19 20
GLO L LOO T 000 oG o0Co GL
o G G o O o
O0000LG GOOOOOL GGOO000O LGGOOO0O
21 22 23 24
000 OLO 00G LOO 0GG LOO GGL LOO
G L o O
OLGGOOO O0LGGOO O00OLGGO OO0OOOLGG
25 26 27 28
GLO LOO LOO LOG 000 LGG 000 TGL
o G o] (o] o o]
00000LG GOOOOOL GGOO000O0 LGGOOOO
29 30 31 32
000 GLO Q00G LOO 0GG 00O GGL Q00
0O G O O G O L L O o 0 ]
OLGGOOO QOLGGOO OO0OOLGGO O0O0OBGG
33 34 3s 36
GLO 000 LOO 006G 000 OGG 000 GGL
G 0O 0 G G O 0 G L O O L c 0 0 O
000 BLG GOO CBL GGO OCB LGG 00CO
37 38 33 40
000 GLO 00G LOO 0GG 000 GGL 000
0O G G © 0O G G O o L L O 0O 0O O O
OLG 000C OOL GO0000O|(|000 GGOOO]||000 LGGOO
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Fig. 10. The CA interpretation of the L-system of Fig. 8, with
each time step corresponding to the respective derivation step
of Fig. 9.

(Fig. 11(a)) with the original one (Fig. 8(a)), we note
that the non-oriented growth symbol G has been trans-
formed into four oriented symbols E, N, W, and §;
furthermore, the original 7 symbol has been elimi-
nated. The resulting self-replicating loop is shown in
Fig. 12. The production set of Fig. 11(b) can be trans-
formed into the CA rule table depicted in Fig. 13.

6. Concluding remarks and future work

L-systems are naturally suited to model growth pro-
cesses, and in particular replication, though CAs have
been the model of choice for studying the latter is-
sue. In this paper we tried to create a bridge between

0: building component

E: east moving growth signal
N: north moving growth signal
W: west moving growth signal
8: south moving growth sigmal
Lt left turn signal

B: first branch sigmal

C: second branch signal

e: empty component

(a)

pl-2: E<O>{e) -> E N<O>{e) -> N W<o>(a} -> W 8<0>(e®) -> 8
X<0>{0)e -> B R<0>(0) -> W W<O>{0} -> 8 8<0>(0) -> E
E<0>{0)0 -> E E<O -> N

p3-7: e<E>{L) -> L (L) ->L wi({L} -> L s»(L) -> L
L<E>{e) ~> L L<N ->» L L<W => L L<S => L
L<E>(N) =-> L

p8-10: L>(0)E -> © L>{O}M -> O L>{O})W -> O L>{0}8 -> O
O<L>N -> 0 O<L>W -» O D<L>E -> 0 O<L>E -> 0
O<L>E -> 0

pl1-12: O<L>0 -> 0 O<L>0 -> 0 0<L>0 -> 0

pl3: E<E>e -> RO N>{E}e -> HO W>{N}e -> WO B>(W)e -> 80

pl4-15: L<K>e -> LO  L<N>a -> LO Lo -> LO

pis: L<O>e -> L L<O>a -> L L<O>e > L

pi7: E<L -> N H<L -> W W<L -> 8

P20 B<L -> B

p31: B<L -> 0

Pa2: Bee -> 0

p23: C<B -> C

P24: C<0 -> C

Pa5: C>B -> 0

p26: <>0 -> 0

p27: C>e -> 00

p28: L<E>{L) -> B

pa9: 0>B ~> a

p30: B<E -> L

p3l: e<B -> C

Fig. 11. Modifying the L-system of Section 4 so as to enable
implementation as a viable CA: (a) Symbols (letters) used;
(b) Productions. The four columns contain the expressions for
the east, north, west, and south directions, respectively, thus
transforming the orientationally neutral system of Fig. 8§ to
one which can be implemented in a CA with weak rotational
symmetry. The total number of productions is 56.

these two models, specifically with respect to self-
replication. Basically, one defines the self-replicating
structure as an L-system, with the graphical interpre-
tation being that of a CA. This may not directly give
rise to a viable CA, so that either the L-system or its
graphical (CA) interpretation may have to be amended.

Apart from their natural amenability to modeling
growth processes, another advantage of L-systems is
their linearity, meaning that one can concentrate on the
“primary structure”, i.e., the one-dimensional genome,
rather than on the “tertiary structure”, i.e., the ac-
tual two- or three-dimensional implementation.! To
date, this separation is not complete, as evident by
our context definition that takes into account certain
physical considerations (Fig. 8), thus calling for fur-
ther research into the matter. As the system’s physical

! These terms are “borrowed” from molecular biology, where
the primary structure of a protein is the linear amino acid
sequence, while the tertiary structure is the protein’s three-
dimensional organization.
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Fig. 12. The CA interpretation of the L-system of Fig. 11.
This system is a viable, two-dimensional, 5-neighbor, 9-state
self-replicating CA.

aspect is usually of prime import, this necessitates
an inherently spatial model — the CA, in our case.
Thus, after designing the self-replicating L-system, it
is transformed into a viable CA. These two phases
were demonstrated in this paper, culminating in the
self-replicating loop of Fig. 12. Some of the interest-
ing related questions for further investigation are those
concerning genotype—phenotype mappings, e.g., the
stability of the phenotype (the self-replicating struc-
ture) when the genotype (L-string) is mutated, and,
more generally, how do genotypic changes affect the
phenotype; conversely, given a phenotype, can one de-
rive the respective genotype that gives rise to it?

As noted, our aim has been to create a bridge
between the L-systems and CA models within the
framework of self-replication. Currently, this can be

C E N W 8 Ce C E N W s C+
e -~ - E - (o] E - - B - L
e -~ - - N [} N - - L -~ L
e W - -~ - [} N - - - L L
e - 8 - - o w - - - L L
e - - B - o} W L - - = L
e - ~ C -~ o] 8 L - - - L
0 - e E - E s - L - - L
C e 0 E - N L E O ~ - (o}
0 0 0 B - E L - N O - [}
0O - - e N N L - - W o o}
0o - - 0N w L 0 - - 8 o]
o - - - E N L N - O - [o]
O W - -~ e w L - W - O o]
O w - - o s L 0 - 8 - o]
0O e 8§ - - s L -~ 0 - E o
o o 8 - - E L E - O - o
O e - L e L L 0 - 0o - o]
O e e - L L L - 0 - o©o [o]
O L e e - L L - - E - N
o - - ¢ - [ L - - - N w
O B - - - e L W - =~ = 8
E - L e -~ L L - - B - B
E - e L - L L -~ - - B (o]
E - N L - L B - - C =~ Cc
E e - L - L B - - e - C
E E L L - B C « = = = o)

Fig. 13. Rule table of the CA of Fig. 12. The cellular space is
two-dimensional, 5-neighbor, 9-state. Each entry lists the state
of the cell at the next time step (C+) as a function of its cur-
rent five neighboring states. Only non-identity transformations
are shown (i.e., ones that change the central cell’s state). The

)

total number of rules is 52, with the *-" symbol signifying
“don’t-care”.

considered but a footbridge, with several avenues still
open for future research. One major issue involves the
automatization of some of the steps carried out herein.
The L-system we presented was designed by hand,
as were the subsequent transformations (it should be
noted that virtually all self-replicating systems to date
have been hand-designed, except, to some extent, that
of Lohn and Reggia [8]). A step forward would in-
volve the simplification of the design process, toward
which end at least two questions need be addressed:
(1) can the transformation to a viable CA, carried out
in Section 5, be automated (fully or partially)? and
(2) are there L-systems that lend themselves more
naturally to viable, self-replicating CAs, i.e., ones
that obviate the transformation step of Section 5 al-
together? As for the first issue, an L-system can be
trivially transformed to a CA by considering each
production as an entry in the rule table. However, this
usually entails a large neighborhood size and a large
number of states (depending upon the L-system’s
context size and number of variables). The question
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becomes non-trivial when one’s aim is to minimize
these CA parameters (neighborhood size and number
of states). Taking this idea yet further one can imag-
ine a “replication design toolkit” that would simplify
the construction of such systems, automatically per-
forming much of the underlying drudgery. Such a
system could well be based on the bridge between
L-systems and CAs. As noted in Section 1, replication
can be considered a special case of growth. Another
extension of our work, which we are currently inves-
tigating, is to examine this latter process within the
framework of CAs, by adopting the L-systems point of
view. Preliminary results indicate that where growth
in general is concerned, the combined L-systems/CA
approach is quite a promising one.

The study of artificial self-replicating systems is in-
teresting both from a theoretical standpoint as well
as from a practical one. This work has shed light on
the possible use of L-systems as an exploratory tool
within the realm of self-replication.
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