
Evolving Boundary Detectors for Natural Images via Genetic Programming

Ilan Kadar, Ohad Ben-Shahar, Moshe Sipper

Department of Computer Science, Ben-Gurion University of the Negev, Israel

{ilankad,ben-shahar,sipper}@cs.bgu.ac.il

Abstract

Boundary detection constitutes a crucial step in

many computer vision tasks. We present a novel learn-

ing approach to automatically construct a boundary

detector for natural images via Genetic Programming

(GP). Our approach aims to use GP as a learning

framework for evolving computer programs that are

evaluated against human-marked boundary maps, in

order to accurately detect and localize boundaries in

natural images. Our GP system is unique in that it

combines filter kernels that were inspired by models of

processing in the early stages of the primate visual sys-

tem, but makes no assumption about what constitutes a

boundary, thus avoiding the need to make ad-hoc intu-

itive definitions. By testing the evolved boundary detec-

tors on a benchmark set of natural images with associ-

ated human-marked boundaries, we show performance

to be quantitatively competitive with existing computer-

vision approaches. Moreover, we show that our evolved

detector provides insights into the mechanisms under-

lying boundary detection in the human visual system.

1. Introduction

Boundary detection in images is a central problem

in computer vision. The performance of many high-

level computer vision tasks, such as segmentation and

object recognition, is highly dependent upon the bound-

ary map of an image. Figure 1 shows an image and

its associated boundary map, as marked by human ob-

servers. Automatically extracting such boundary maps

is a fundamental goal of low-level vision.

A boundary is a contour in the image plane that rep-

resents a change in the pixel’s “ownership” from one

object or surface to another. In general, there are dif-

ferent types of boundaries: for example, those formed

between two regions with an abrupt change in the image

brightness, and those formed between two regions with

a change in the texture. Clearly, boundaries in natural

images are marked by changes in both brightness and

texture. There are some attempts in computer vision to

Figure 1. Example image and human-marked bound-
aries taken from the Berkeley dataset [4]. Bound-
ary map shows boundaries marked by 5 observers.
The pixels are darker where more observers marked a
boundary.

address both brightness and texture cues using complex

and computationally intensive schemes [3] [5] [15]. In

contrast, humans have an outstanding ability to detect

boundaries pre-attentively, and hence very fast. Corre-

spondingly, evidence from behavioral science and neu-

roscience strongly suggest that this process occurs in

early stages of visual processing.

This paper presents a novel approach that aims

to use genetic programming—a form of evolutionary

algorithm—as a learning framework for evolving com-

puter programs; the latter are evaluated against human

marked boundary maps in order to accurately detect and

localize boundaries in grayscale natural images. The

evolving programs use both linear and non-linear op-

erators to combine multiple cues from the early stages

in the visual cortex. Our results show that this ap-

proach is effective at automatically generating bound-

ary detectors. By testing the evolutionary algorithm

on a benchmark set of natural images with associated

human-marked boundaries, we show performance to be

quantitatively human-competitive [8]. Then, by analyz-

ing the evolved detector, insights into the visual mecha-

nism underlying boundary detection are developed.

2. Related Work

There is a wide variety of algorithms for boundary

detection, but none has come close to human profi-

ciency. The most common approach to local boundary

detection is to look for discontinuities in image bright-

ness. The Canny edge detector [2], for example, which



is based only on local gradient and has scale parame-

ters to tune, responds strongly inside textured regions

where high-contrast edges are present, but no bound-

ary exists. In addition, it is unable to detect a bound-

ary between textured regions when there is only sub-

tle change in average image brightness. The significant

problems with simple brightness edge models have led

researchers to develop more complex detectors that look

for changes in texture , e.g., [14]. While these models

work well on pure texture-texture boundaries, they have

problems in the vicinity of simple brightness bound-

aries. Just as a brightness edge model does not detect

texture boundaries, a pure texture model does not de-

tect brightness boundaries effectively. Clearly, bound-

aries can be marked by joint changes in several cues,

including brightness and texture. Evidence from psy-

chophysics [13] suggests that humans make combined

use of multiple cues to improve their detection and lo-

calization of boundaries. Malik et al. [5] associate a

measure of texturedness with each point in the image,

in order to suppress contour processing in textured re-

gions, and vice versa. However, their solution is full of

ad-hoc design decisions and hand chosen parameters. In

another research Malik et al. [3] provide a more princi-

pled approach to cue combination, by framing the task

as a supervised learning problem. They use learning to

perform a cue combination on six carefully designed lo-

cal features (texture gradient and brightness gradient at

three scales each). Learning is found to improve per-

formance over setting the weights by hands. Another

supervised algorithm for boundary detection—boosted

edge learning [11]— which uses a computationally in-

tensive scheme with tens of thousands of low-, mid- and

high- level features achieved the highest score up to date

on the Berkeley benchmark [1].

3. Boundary Detector Performance Evalua-

tion

The most common method for evaluation of bound-

ary detectors for natural images is to use human-marked

boundaries from a large dataset as ground-truth data.

We use the Berkeley Segmentation DataSet and Bench-

mark (BSDB) [1], which contains 300 natural images,

each of which was manually segmented by human sub-

jects [4]. The dataset is divided into two independent

sets of images: A training set of 200 images and a test

set of 100 images. In order to ensure the integrity of

the evaluation, only the images and segmentations from

the training set can be accessed during the learning pro-

cess. A methodology for evaluating the performance of

the boundary detector with this dataset is the precision-

recall framework, a standard evaluation technique in

the information retrieval community [16]. Two quality

measurements are considered: Precision (P ), defined

as the fraction of detections which are true positives,

and Recall (R), given by the fraction of true bound-

aries that are detected. Thus, Precision quantifies the

amount of noise in the output of the detector, while

Recall quantifies the amount of ground-truth detected.

Measuring these descriptors over a set of images for

different thresholds of the detector provides a paramet-

ric Precision-Recall curve. The two quantities are then

combined in a single quality measure, the F-measure,

defined as their harmonic mean:

F (P,R) =
2PR

P + R
(1)

Finally, the maximal F-measure on the curve is used as

a summary statistic for the quality of the detector on the

set of images.

4. Genetic Programming

Genetic Programming (GP) is an automated pro-

cess that uses simulated evolution to generate computer

programs that represent candidate solutions to a given

problem [7]. These computer programs are represented

by individuals in a GP population, where an individual

is composed of LISP sub-expressions encoded using a

tree representation, each sub-expression being a LISP

program constructed from functions and terminals. The

functions are usually arithmetic and logical operators

that receive a number of arguments as input and com-

pute a result as output. The terminals are simply zero-

argument functions. Fitness is assigned to individual x

according to a performance measure f(x) defined by

the user. GP uses standard genetic operators, includ-

ing crossover and mutation, to generate new individuals

in the simulated evolutionary process. When a prede-

fined termination criterion is met the evolutionary pro-

cess stops and GP returns the fittest individual found.

5. Outline of our Approach

We present a visual learning approach to automat-

ically construct a boundary detector via Genetic Pro-

gramming. Each individual in the GP population repre-

sents a candidate boundary detector. Fitness assignment

is the F-measure computed for a set T = {Ii} of n im-

ages taken from the training set of the Berkeley data set.

The Terminal set is image independent, such that the

terminals for image Ii , given in matrix form, are the

convolution of the image Ii with filter kernels tuned to

various orientations and spatial frequencies. These fil-

ter kernels are inspired by models of processing in the

early stages of the primate visual system which model

three types of receptive fields in the visual cortex (see

Figure 2):
1. Circularly symmetric receptive fields, e.g., On-

cells.



2. Odd-symmetric simple cells at various orienta-

tions.
3. Even-symmetric simple cells at various orienta-

tions.

a b c
Figure 2. (a) Circularly symmetric on-cell. (b) Odd-
symmetric cell with preferred orientation of 0

◦. (c)
Even-symmetric cell with preferred orientation of 0

◦.

Several models have been proposed for the point-spread

function of simple cells. We have chosen to use Dif-

ferences of Offset of Gaussians (DOOG) kernel filters,

given their good fit with the physiological measure-

ments and their computational simplicity. As noted in

the past [10], we too believe that this specific choice is

not critical. Table 1 summarizes the terminals:

Table 1. Terminal set for a given image Ii

M = Ii ∗ Kodd Image Ii convolved with

oriented odd symmetric kernel

M = Ii ∗ Keven Image Ii convolved with

oriented even symmetric kernel

M = Ii ∗ KonCell Image Ii convolved with

on-cell kernel

The Terminal set contains oriented odd and even

symmetric kernels at three scales (e.g. odd1 0, odd2 0,

odd3 0) and four orientations (e.g. odd1 0, odd1 45,

odd1 90, odd1 135) and on cell kernels at three scales

(e.g. oncell1, oncell2, oncell3) which gives us 27 ter-

minals for a given image Ii. The Function set contains

both unary and binary functions. All functions, input

and output, are data matrices with the same size as im-

ages in T and all are summarized in Table 2.

6. Implementation Details

The implementation of the previously described ap-

proach was programmed in Java with the genetic pro-

gramming package ECJ [9] along with matlab-based

code [1] for computing the F-measure of the fitness

function. All experiments were performed on a PC

with an Intel Pentium 4 processor and 512MB of RAM

running Linux OS. We used a population size of 100

individuals, initialized with the ramped half-and-half

method [7] with a depth limit of 5. The evolved indi-

vidual trees were limited to a maximum depth 13. The

crossover probability was set to pc = 0.85 and muta-

tion probability was set to pm = 0.05. We used tour-

nament selection [7] with a tournament size of 7. Due

Table 2. Function Set
M = Add(M1,M2) Matrix addition

M = Sub(M1,M2) Matrix subtraction

M = Max(M1,M2) Largest elements taken from M1 or M2

M = Min(M1,M2) Smallest elements taken from M1 or M2

M = Pow2(M1) Elements are 2 raised to the power M1

M = Sqrt(M1) Square root of each element of M1

M = 2 * M1 Multiply the elements by the scalar 2

M = 3 * M1 Multiply the elements by the scalar 3

M = M1 * Kodd M1 convolved with

oriented odd symmetric kernel

to the limited available computational resources, the F-

measure was computed for a set T of 4 different images

chosen randomly from the training set in each one of

the 50 generations.

7. Experimental Results

The output of each individual for a given image Ii

is a soft boundary map, which provides the probability
of a boundary at each image location. We present the
fittest individual generated with our approach:

(sub (2* (2* (2* (sqrt (add (pow2 (add (pow2 even1_0)

(pow2 odd1_0)))(pow2 (add (pow2 odd1_90)(pow2 even1_90)

)))))))(max (max (max (max (max (odd1_90 (add (add

(pow2 oncell2)(pow2 oncell1))(pow2 oncell3)))(odd1_45

(add(add (pow2 oncell2)(pow2oncell1))(pow2 oncell3))))

(odd1_135 (add (add (pow2 oncell2)(pow2 oncell1))(pow2

oncell3)))))(odd1_0 (add (add (pow2 oncell2)(pow2

oncell1))(pow2 oncell3))))(odd1_45 (add (add (pow2

oncell2) (pow2 oncell1)) (pow2 oncell3)))))

Studying this individual reveals the interesting evolved

strategy. The two major parts of this computer program

are the Sub arguments. The first argument has a struc-

ture similar to the oriented energy operator, also known

as the “quadrature energy” [6]. This operator was sug-

gested by [12] as a well-suited model to detect real im-

age edges that are not step functions but more typically

a combination of steps, peak, and roof profiles. The sec-

ond argument seems highly responsive inside textured

regions, hence lowering the probability for a boundary.

The presented individual was tested on the Berke-

ley test set of 100 images [4], and the overall perfor-

mance was computed using the Berkeley benchmark al-

gorithm [1], which computes a score based on the F-

measure. Table 3 shows the obtained score of our ap-

proach compared with other existing approaches (Note

that like us, most of these approaches use training). One

of the obtained soft boundary map is shown in Figure 3.

While still a bit short of the best reported algorithm,

we believe our results are highly promising. Indeed, so

far we have only lightly touched upon the vast repertoire

of visual system operators available, using but the most

basic and elementary ones. In the future, we will in-

clude many more biologically plausible operators and

incorporate additional insights already available from

the primate visual system.



Table 3. Performance Summary Table [1]
Method Performance

Boosted edge learning 0.64

Brightness and texture gradient 0.63

Learning of the brightness distribution 0.60

(brightness Gradient)

Our Approach 0.59

Texture gradient 0.58

Multiscale gradient magnitude 0.58

Second moment matrix 0.57

Gradient magnitude 0.56

Segmentation induced by 0.48

scale invariance

a b

Figure 3. (a) Sample test image. (b) Extracted
boundary map, using our evolved detector, with F =

0.77, which is the highest score up to date for this im-
age.

8. Conclusion and Future Work

We have presented a learning framework, based on

genetic programming, for evolving boundary detectors.

Our GP implementation uses filter kernels, which were

inspired by models of processing in the early stages of

the primate visual system, but makes no assumptions

about what constitutes a boundary, thus avoiding the

need to make ad-hoc intuitive definitions. We note that

although the terminal and function sets are inspired by

our present understanding of the primary visual cortex

and the visual mechanism underlying boundary detec-

tion, we do not claim that both sets are necessary nor

sufficient and further analysis of the best evolved indi-

viduals will try to determine optimal sets for the prob-

lem. Experiments showed that the proposed approach

generates boundary detectors that automatically extract

boundaries with no parameter tuning and with a per-

formance level competitive with existing computer vi-

sion approaches on a very challenging benchmark. By

studying the top individual, we discovered that the evo-

lutionary process has generated a computer program

composed of oriented energy filters, and an operator

that responds strongly inside textured regions.

Obviously, analyzing the top individuals can pro-

vide additional insights which can improve the selec-

tion of function and terminal sets. Similarly, adding

mid- and high-level cues that have been shown [11] to

improve overall performance on the Berkeley bench-

mark [1] could also contribute to the evolutionary pro-

cess. These, and the informed use of additional compu-

tational resources to improve performance, all consti-

tute our short-term future work.

9. Acknowledgments
We thank the generous support of Frankel Fund and

Paul Ivanier Robotics Center at Ben-Gurion University.

References

[1] The berkeley segmentation dataset and benchmark

http://www.cs.berkeley.edu/projects/vision/grouping/segbench/.
[2] J. F. Canny. A computational approach to edge detec-

tion. PAMI, 1986.
[3] C. F. D. Martin and J. Malik. Learning to detect natu-

ral image boundaries using local brightness, color and

texture cues. PAMI04, 2004.
[4] D. T. D. Matin, C. Fowlkes and J. Malik. A database of

human segmented natural images and its applications

to evaluating segmentations algorithms and measuring

ecological statistics. In Proc. of international Confer-

ence on Computer Vision, 2001.
[5] T. L. J. Malik, S. Belongie and J. Shi. Contour and tex-

ture analysis for image segmentation. Intl J. Computer

Vision, vol. 43, no. 1,pp. 7-27, 2001.
[6] H. Knutsson and G. Granlund. Texture analysis us-

ing two-dimensional quadrature filters. In Workshop on

Computer Architecture for Pattern Analysis and Image

Database Management, pages 206–213, 1983.
[7] J. R. Koza. Genetic Programming: On the Program-

ming of Computers by Means of Natural Selection. MIT

Press, Cambridge, MA, USA, 1992.
[8] J. R. Koza, M. A. Keane, M. J. Streeter, W. Mydlowec,

J. Yu, and G. Lanza. Genetic Programming IV: Rou-

tine Human-Competitive Machine Intelligence. Kluwer

Academic Publishers, 2003.
[9] S. Luke. ECJ: A Java-based Evolutionary Computa-

tion and Genetic Programming Research System, 2000.

http://www.cs.umd.edu/projects/plus/ec/ecj/.
[10] J. Malik and P. Perona. Preattentive texture discrimina-

tion with early vision mechanism. J. Optical Society of

America 923-32, 1990.
[11] Z. T. P. Dollar and S. Belongie. Supervised learning of

edges and object boundaries. IEEE Computer Society

Conference on Computer Vision and Pattern Recogni-

tion, 2006.
[12] P. Perona and J. Malik. Detecting and localizing edges

composed of steps, peaks and roofs. In Proc. 3rd Int.

Conf. Computer Vision, pages 52–57, Osaka , Japan,

1990.
[13] J. Rivest and P. Cavanagh. Localizing contours defined

by more than one attribute. Vision Research, vol. 36, no.

1, pp.53-66, 1996.
[14] J. B. S. Will, L. Hermes and J. Puzicha. On learning tex-

ture edge detectors. Proc. Intl Conf, Image Processing,

pp.887-880, 2000.
[15] J. Shi and J. Malik. Normalized cuts and image seg-

mentation. IEEE Transactions on Pattern Analysis and

machine Intelligence pp. 888-905, 2000.
[16] C. van Rijsbergen. Information Retrieval, 2nd ed. Dept.

of Comp. Sci., UNIV. of Glasgow, 1979.


