Co-evolving Cellular Architectures
by Cellular Programming

Moshe Sipper

Logic Systems Laboratory
Swiss Federal Institute of Technology
IN-Ecublens, CH-1015 Lausanne, Switzerland
Moshe.Sipper@di.epfl.ch

Abstract— Recent studies have shown that non-uniform cel-
lular automata (CA), where cellular rules need not necessar-
ily be identical, can be co-evolved to perform computational
tasks. This paper extends these studies by generalizing on a
second aspect of CAs, namely their standard, homogeneous
connectivity. We study non-standard architectures, where
each cell has a small, identical number of connections, yet
not necessarily from its most immediate neighboring cells.
‘We show that such architectures are computationally more
efficient than standard architectures in solving global tasks,
and also provide the reasoning for this. It is shown that one
can successfully evolve non-standard architectures through
a two-level evolutionary process, in which the cellular rules
evolve concomitantly with the cellular connections. Specif-
ically, studying the global density task, we identify the av-
erage cellular distance as a prime architectural parameter
determining cellular automata performance. We carry out
a quantitative analysis of this relationship, our main results
being: (1) Performance is linecarly dependent on the aver-
age cellular distance, with a high correlation coefficient. (2)
High performance architectures can be co-evolved, concomi-
tantly with the rules. The evolutionary algorithm presented
may have important applications to designing economical
connectivity architectures for distributed computing sys-
tems.

I. INTRODUCTION

Cellular automata (CA) are dynamical systems in which
space and time are discrete. They consist of an array of
cells, each of which can be in one of a finite number of pos-
sible states, updated synchronously in discrete time steps
according to a local, identical interaction rule. The state of
a cell is determined by the previous states of a surrounding
neighborhood of cells. CAs exhibit three notable features,
namely massive parallelism, locality of cellular interactions,
and simplicity of basic components (cells). A major imped-
iment preventing ubiquitous computing with CAs stems
from the difficulty of utilizing their complex behavior to
perform useful computations. The difficulty of designing
CAs to have a specific behavior or perform a particular
task has limited their applications; automating the design
process would greatly enhance the viability of CAs [11].

Recent studies have shown that CAs can be evolved to
perform non-trivial computational tasks. One such task,
which we study in detail in this paper, is that of den-
sity classification. In this task the 2-state CA must de-
cide whether or not the initial configuration contains more
than 50% 1s, where the term ‘configuration’ refers to an
assignment of 1 states to several cells, and Os otherwise.
The desired behavior (i.e., the result of the computation)
is for the CA to relax to a fixed-point pattern of all 1s if
the initial density of 1s exceeds 0.5, and all Os otherwise
(Figure 1).

Eytan Ruppin
Department of Computer Science
Tel Aviv University
Tel Aviv 69978, Israel
ruppin@math.tau.ac.il

e I r Y tlme
Fig. 1. The density task: Operation of the GKL rule. CA is one-

dimensional, uniform, 2-state, with a standard architecture of connec-
tivity radius » = 3. Grid size is N = 149. White squares represent cells
in state 0, black squares represent cells in state 1. The pattern of config-
urations is shown through time (which increases down the page). Initial
density of 1s is 0.53. The CA relaxes to a fixed pattern of all 1s, correctly
classifying the initial configuration.

The density task was studied by [12; 11; 6], who demon-
strated that high performance CA rules can be evolved us-
ing genetic algorithms. We have investigated an extension
of the CA model termed non-uniform cellular automata,
in which cellular rules need not be identical [14; 16; 15].
Employing this model we found that high performance can
be attained for the density task by means of co-evolution
[17].

As noted by Mitchell et al., density is a global property
and hence the task comprises a non-trivial computation
for a locally-connected CA. Since the 1s can be distributed
throughout the grid, propagation of information must oc-
cur over large distances (i.e., O(N)). The computation
involved corresponds to recognition of a non-regular lan-
guage, since the minimum amount of memory required for
the task is O(log N) using a serial scan algorithm [12; 11;
10; 4; 6; 5; 13]. Note that the density task cannot be
perfectly solved by a uniform, two-state CA, as recently
proven by [9]; however, no upper bound is currently avail-
able on the best possible imperfect performance, attained
to date by the Gacs-Kurdyumov-Levin (GKL) rule [7; §]
(Figure 1).

Previous studies of the density task were conducted us-

ing locally-connected, one-dimensional grids [11; 17]. The
task can be extended in a straightforward manner to two-
dimensional grids, an investigation of which we have car-
ried out, using the same number of local connections
per cell as in the one-dimensional case. We found that
markedly higher performance is attained for the density
task with two-dimensional grids along with shorter com-
putation times. This finding is intuitively understood by
observing that a two-dimensional, locally connected grid
can be embedded in a one-dimensional grid with local and
distant connections. This can be achieved, for example,
by aligning the rows of the two-dimensional grid so as
to form a one-dimensional array; the resulting embedded
one-dimensional grid has distant connections of order VN,
where N is the grid size. Since the density task is global
it is likely that the observed superior performance of two-
dimensional grids arises from the existence of distant con-
nections that enhance information propagation across the
grid.

Motivated by this observation concerning the effect of
connection lengths on performance, our primary goal in
this paper is to quantitatively study the relationship be-
tween performance and connectivity on a global task, in
one-dimensional CAs. The main contribution of this paper
is identifying the average cellular distance (see next Sec-
tion) as the prime architectural parameter which linearly
determines CA performance. Furthermore, we find that
high performance architectures can be co-evolved, con-
comitantly with the rules. This work extends our pre-
vious work on the co-evolution of non-uniform CAs [17]
by studying evolving architectures. Our motivation stems
from two primary sources: (a) Finding more efficient CA
architectures via evolution, (b) The co-evolution of archi-
tectures offers a promising approach for solving a general
wiring problem for a set of distributed processors, subject
to given constraints. The efficient solution of the density
task by CAs with evolving architectures may have impor-
tant applications to designing efficient distributed comput-
ing networks.

In the next section we describe the CA architectures
studied in this work. In Section III we present the cellu-
lar programming algorithm used to co-evolve non-uniform
CAs. Section IV discusses CA rule evolution with fixed
architectures. In Section V we extend our evolutionary al-
gorithm such that the architecture evolves as well as the
cellular rules. Our findings and their possible future ap-
plication to designing distributed computer networks are
discussed in Section VI

II. ARCHITECTURE CONSIDERATIONS

We use the term architecture to denote the connectiv-
ity pattern of CA cells. In the standard one-dimensional
model a cell is connected to r local neighbors on either
side as well as to itself, where 7 is referred to as the ra-
dius (thus each cell has 2r 4+ 1 neighbors). The model we
consider is that of non-uniform CAs with non-standard ar-
chitectures, in which cells need not necessarily contain the
same rule nor be locally connected; however, as with the

standard CA model, each cell has a small, identical num-
ber of impinging connections. In what follows the term
neighbor refers to a directly connected cell. We shall em-
ploy the cellular programming algorithm to evolve cellular
rules for non-uniform CAs whose architectures are fixed
(yet non-standard) during the evolutionary run, or evolve
concomitantly with the rules; these are referred to as fixed
or evolving architectures, respectively.

We consider one-dimensional, symmetrical architectures
where each cell has four neighbors, with connection lengths
of a and b, as well as a self-connection. Spatially peri-
odic boundary conditions are used, resulting in a circu-
lar grid (Figure 2). This type of architecture belongs to
the general class of circulant graphs [3]: For a given pos-
itive integer N, let ni,ng,...,n, be a sequence of inte-
gers where 0 < ny < ng < - < ng < (N +1)/2. Then
the circulant graph Cy(ni,ne,...,nk) is the graph on N
nodes vy, vs,...,vy with node v; connected to each node
Vitn; (mod N)- Lhe values n; are referred to as connection
lengths. The distance between two cells on the circulant is
the number of connections one must traverse on the short-
est path connecting them. The architectures studied here
are circulants Cy(a,b).

Fig. 2. A Cs(2, 3) circulant graph. Each node is connected to four neigh-
bors, with connection lengths of 2 and 3.

We surmise that attaining high performance on global
tasks requires rapid information propagation throughout
the CA, and that the rate of information propagation
across the grid inversely depends on the average cellular
distance (acd). The acd landscape, obtained by plotting
the acd of Cy(a,b) architectures as a function of (a,b),
is extremely rugged. This is due to the relationship be-
tween a and b - if ged(a,b) # 1 the acd is markedly
higher than when ged(a,b) = 1 (note that the circu-
lant graph Cn(n1,n2,...,nk) is connected if and only if
ng(n17 ng,. .. 7nk77N) =1 [1])

It is straightforward to show that every Cy/(a,b) archi-
tecture is isomorphic to a Cy(1,d’) architecture, for some
d', referred to as the equivalent d’. Graph Cy(a,b) is iso-
morphic to a graph Cy(1,d’) if and only if every pair of
nodes linked via a connection of length a in Cy(a,b) is
linked via a connection of length 1 in Cy(1,d’), and every
pair linked via a connection of length b in Ci(a, b) is linked
via a connection of length d’ in Cy(1,d’)'. We may there-
fore study the performance of Cn(1,d) architectures, our

IThis is not necessarily a one-to-one mapping; Cn (a,b) may map to
Cn(1,d}) and Cn(1,d5}), however, we select the minimum of d} and dj,
thus obtaining a unique mapping.

conclusions being applicable to the general Cy(a,b) case.
This is important from a practical standpoint since the
Cn(a,b) architecture space is extremely large. However, if
one wishes to minimize connectivity cost, defined as a + b,
as well as to maximize performance, general Cy(a,b) ar-
chitectures must be considered; the equivalent d’ value of
a Cn(a,b) architecture may be large, resulting in a lower
cost of Cn(a, b) as compared with the isomorphic Cn(1,d’)
architecture (for example, the equivalent of Ci91(3,5) is
Cio1(1,32)).

Figure 3 depicts the acd for Cy(1,d) architectures, N =
101. It is evident that the acd varies counsiderably as a
function of d; as d increases from d = 1 the acd declines
and reaches a minimum at d = O(vV/N). This supports the
notion put forward in Section I concerning the advantage
of two-dimensional grids.

N=101

acd(d)

Fig. 3. C101(1,d): Average cellular distance (acd) as a function of d. Each
d value entails a different C191(1, d) architecture, whose acd is represented
as a point in the graph. acd is plotted for d < N/2, as it is symmetric
about d = N/2.

We concentrate on the following issues:
1. How strongly does the acd determine performance on
global tasks?
2. Can high performance architectures be evolved, that is
can “good” d or (a,b) values be discovered through evolu-
tion?

III. THE CELLULAR PROGRAMMING ALGORITHM

We study one-dimensional, non-uniform CAs, in which
each cell may contain a different rule. A cell’s rule table
is encoded as a bit string, known as the “genome”, con-
taining the next-state bits for all possible neighborhood
configurations; e.g., for CAs with r = 2, the genome con-
sists of 32 bits, where the bit at position 0 is the state to
which neighborhood configuration 00000 is mapped to and
so on until bit 31 corresponding to neighborhood configura-
tion 11111. Rather than employ a population of evolving,
uniform CAs, as with genetic algorithm approaches, our al-
gorithm involves a single, non-uniform CA of size N, where
cell rules are initialized at random. Initial configurations
are generated at random, uniformly distributed over den-
sities in the range [0.0,1.0]. For each initial configuration

for each cell 7 in CA do in parallel
initialize rule table of cell ¢
fi =0 { fitness value }
end parallel for
¢ = 0 { initial configurations counter }
while not done do
generate a random initial configuration
run CA on initial configuration for M time steps
for each cell i do in parallel
if cell 4 is in the correct final state then
fi=fi+1
end if
end parallel for
c=c+1
if ¢ mod C = 0 then { evolve every C configurations}
for each cell ¢ do in parallel
compute nf;(c) { number of fitter neighbors }
if nf;(c) = 0 then rule 7 is left unchanged
else if nf;(c) = 1 then replace rule i with the fitter
neighboring rule, followed by mutation
else if nf;(c) = 2 then replace rule ¢ with the
crossover of the two fitter neighboring
rules, followed by mutation
else if nf;(c) > 2 then replace rule 7 with the
crossover of two randomly chosen fitter
neighboring rules, followed by mutation
end if
fi=0
end parallel for
end if
end while

Fig. 4. Cellular programming pseudo-code.

the CA is run for M time steps (in our simulations we used
M = N so that computation time is linear with grid size).
Each cell’s fitness is accumulated over C' = 300 initial con-
figurations, where a single run’s score is 1 if the cell is in
the correct state after M iterations and 0 otherwise. After
every C' configurations evolution of rules occurs by apply-
ing crossover and mutation. This evolutionary process is
performed in a completely local manner, where genetic op-
erators are applied only between directly connected cells.
It is driven by nf;(c), the number of fitter neighbors of cell ¢
after ¢ configurations. The pseudo-code of our algorithm is
delineated in Figure 4. In our simulations, the total num-
ber of initial configurations per evolutionary run was in the
range [50000, 500000]2.

Crossover between two rules is performed by selecting at
random (with uniform probability) a single crossover point
and creating a new rule by combining the first rule’s bit
string before the crossover point with the second rule’s bit
string from this point onward. Mutation is applied to the
bit string of a rule with probability 0.001 per bit.

There are two main differences between our evolution-
ary algorithm and that used by Mitchell et al.: (a) In their
work, a standard genetic algorithm is used, employing a
population of evolving, uniform CAs. All CAs are ranked
according to fitness, with crossover occurring between any
two CA rules. Thus, while the CA runs in accordance with
a local rule, evolution proceeds in a global manner. In con-

2By comparison, Mitchell et al. employed a genetic algorithm with a
population size of 100, which was run for 100 generations; every genera-
tion each CA was run on 100 — 300 initial configurations, resulting in a
total of [10%,3 . 10%] configurations per evolutionary run.

trast, our algorithm proceeds locally in the sense that each
cell has access only to its locale, not only during the run but
also during the evolutionary phase, and no global fitness
ranking is performed. (b) The standard genetic algorithm
involves a population of independent problem solutions;
each CA is run independently, after which genetic opera-
tors are applied to produce a new population. In contrast,
our CA co-evolves since each cell’s fitness depends upon its
evolving neighbors.

IV. FIXED ARCHITECTURES

In this section we study the effects of different architec-
tures on performance, by applying the cellular program-
ming algorithm to the evolution of cellular rules using fixed,
non-standard architectures. We performed numerous evo-
lutionary runs using Cn(1,d) architectures with different
values of d, recording the maximal performance attained
during the run; performance is defined as the average fit-
ness of all grid cells over the last C configurations, normal-
ized to the range [0.0,1.0]. Figure 5 depicts the results of
our evolutionary runs, along with the acd graph. Markedly
higher performance is attained for values of d correspond-
ing to low acd values and vice versa. While performance
behaves in a rugged, non-monotonic manner as a function
of d, we have found that it is linearly correlated with acd
(with a correlation coefficient of 0.99, and a negligible p
value).

N=101
0.98

wlo kY%
0.95 :‘ y ¥ \ \

ol | -

Density| <— \

maximal performance

Short-lines: —+-
acd:-----

0.88

Fig. 5. Ci01(1,d): Maximal evolved performance on the density and
short-lines tasks as a function of d. The graph represents the average re-
sults of 420 evolutionary runs; 21 d values were tested for the density task
and 7 for the short-lines task. For each such d value, 15 evolutionary runs
were performed with 50,000 initial configurations per run. Each graph
point represents the average value of the respective 15 runs; standard de-
viations of these averages are in the range 0.003 —0.011. i.e., 3% — 11% of
the performance range in question (deviations were computed excluding
the two extremal values).

How does the architecture influence performance when
the CA is evolved to solve a local task? To test this we
introduced the short-lines task: given an initial configura-
tion consisting of five non-filled intervals of random length
between 1 — 7, the CA must reach a final configuration in
which the intervals form continuous lines. In this final con-
figuration all cells within the confines of an interval should

be in state 1, and all other cells should be in state 0 (in our
simulations, cells within an interval in the initial configu-
ration were set to state 1 with probability 0.3; cells outside
an interval were set to 0). Figure 5 demonstrates that per-
formance for this local task is maximal for minimal d, and
decreases as d increases.

These results demonstrate that performance is strongly
dependent upon the architecture, with higher performance
attainable by using different architectures than that of the
standard CA model. We also observe that the global and
local tasks studied have different efficient architectures.
As each Cy(a,b) architecture is isomorphic to a C(1,d)
one, and since performance is correlated with acd in the
Cn(1,d) case, it follows that the performance of general
Cn(a,b) architectures is also correlated with acd. As an
example of such an architecture, the operation of a co-
evolved, C149(3,5) CA on the density task is demonstrated
in Figure 6.

T

EEHLT 1T

Fig. 6. The density task: Operation of a co-evolved, non-uniform,
C149(3,5) CA. Initial density of 1s is 0.48. Note that computation time,
i.e., the number of time steps until convergence to the correct final pat-
tern, is shorter than that of the standard-architecture CA depicted in
Figure 1. Furthermore, it can be qualitatively observed that the compu-
tational “behavior” is different, as is to be expected due to the different
connectivity architectures.

V. EVOLVING ARCHITECTURES

In the previous section we employed the cellular pro-
gramming algorithm to evolve non-uniform CAs with fixed
Cn(a,b) or Cn(1,d) architectures. We concluded that ju-
dicious selection of (a,b) or d can notably increase perfor-
mance, which is highly correlated with the average cellular
distance. The question we now pose is whether a-priori
specification of the connectivity parameters is indeed nec-
essary or can an efficient architecture co-evolve along with
the cellular rules. Moreover, can heterogeneous architec-
tures, where each cell may have different d; or (a;,b;) con-
nection lengths, achieve high performance? Below we de-
note by Cn(1,d;) and Cx(a4,b;) heterogeneous architec-
tures with one or two evolving connection lengths per cell,

respectively. Note that these are the cell’s input connec-
tions, on which information is received; as connectivity is
heterogeneous, input and output connections may be differ-
ent, the latter specified implicitly by the input connections
of the neighboring cells.

In order to evolve the architecture as well as the rules the
cellular programming algorithm of Section III is modified,
such that each cellular “genome” consists of two “chro-
mosomes”. The first, encoding the rule table, is identical
to that delineated in Section III, while the second chro-
mosome encodes the cell’s connections. The two-level dy-
namics engendered by the concomitant evolution of rules
and connections markedly increases the size of the space
searched by evolution. Our results demonstrate that high
performance can be attained, nonetheless.

We performed several evolutionary runs using Cn(1,d;)
architectures, a typical result of which is depicted in Fig-
ure 7. We find it quite remarkable that the architectures
evolved succeed in “selecting” connection lengths d; that
coincide in most cases with minima points of the acd graph,
reflecting the strong correlation between performance and
acd. This, along with the high levels of performance at-
tained, demonstrates that evolution has succeeded in find-
ing non-uniform CAs with efficient architectures, as well
as rules. In fact, the performance attained is higher than
that of the fixed-architecture CAs of Section IV. Figure 8
demonstrates the operation of a co-evolved, C129(1,d;) CA
on the density task.

30 B

15 | —

acd , no. occurrences

10 B

N\

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64
di

Fig. 7. Evolving architectures. Result of a typical evolutionary run using
C129(1,d;). The figure depicts a histogram of the number of occurrences
of evolved d; values for all grid cells, overlaid on the acd graph. Perfor-
mance is 0.98.

VI. DISCUSSION

In this paper we have studied the relationship between
performance and connectivity in evolving, non-uniform
CAs. Our main findings are:

1. The performance of fixed-architecture CAs solving
global tasks depends strongly and linearly on their
average cellular distance. Compared with the stan-
dard Cy(1,2) architecture, considerably higher perfor-

Fig. 8. The density task: Operation of a co-evolved, non-uniform,
C129(1,d;) CA. Initial density of 1s is 0.504. Note that computation time
is shorter than that of the fixed-architecture CA and markedly shorter
than the standard-architecture CA.

mance can be attained at very low connectivity values,
by selecting a Cn(1,d) or Cn(a,b) architecture with
a low acd value, such that d,a,b < N.

2. High performance architectures can be co-evolved us-
ing the cellular programming algorithm, thus obviat-
ing the need to specify in advance the precise connec-
tivity scheme.

We observed that the average cellular distance landscape
is rugged and showed that the performance landscape is
qualitatively similar. This suggests an added benefit of
evolving, heterogeneous architectures over homogeneous,
fixed ones: While the latter may get stuck in a low perfor-
mance local minimum, the evolving architectures, where
each cell “selects” its own connectivity, result in a melange
of local minima, yielding in many cases higher performance.

In Section V we showed that high performance architec-
tures can be co-evolved; a possible extension is the evolu-
tion of such architectures, which also exhibit low connec-
tivity cost per cell, defined as d; for the Cn(1,d;) case and
a; + b; for Cn(a;,b;). This may be achieved, e.g., by em-
ploying the cellular programming algorithm of Section V
using a modified cellular fitness function, incorporating the
performance of a cell as well as its connectivity cost. The
study of low cost architectures is planned in the future.

We have provided empirical evidence as to the added effi-
ciency of Cn(1,v/N) architectures in solving global tasks,
suggesting that the density problem has a good embed-
ding in two dimensions. A theoretical result by [2] states
that the minimal diameter of Cy (a, b) circulants is achieved
with Cx(O(VN),O(v/N)). This suggests that the perfor-
mance landscape has a global maximum at a,b = O(v/N)
(but with a # b).

Using our algorithm to solve the density task offers a
promising approach for solving a general wiring problem
for a set of distributed processors: In this problem one

is given a set of processors that should be connected to
each other in a way that minimizes average processor dis-
tance (i.e., the number of processors a message must tra-
verse on its path between two given processors). Problem
constraints may include minimal and maximal connection
lengths, pre-specified neighbors for some or all cells, and
the (possibly distinct) number of impinging connections
per processor. Using our algorithm to solve the density
task, where each processor is identified with a cell and
connectivity constraints are applied by holding the corre-
sponding connections fixed, will enable the evolution of an
efficient wiring scheme for a given distributed computing
network, by maximizing the efficiency of global information
propagation.

Our simulations have shown that the cellular program-
ming algorithm may degenerate connections. For example,
some runs of the short-lines task with evolving Cn(1,d;)
architectures ended up with most cells having d; = 0. This
motivates the use of an algorithm starting with a large
number of connections per cell, that are reduced by evo-
lution, thus yielding increased performance and lower con-
nectivity cost. Ultimately, we wish to attain a system that
can adapt to the problem’s inherent “landscape”.

Evolving, non-uniform CAs hold potential for studying
phenomena of interest in areas such as complex systems,
artificial life and parallel computation. This work has shed
light on the importance of selecting efficient CA architec-
tures, and demonstrated the feasibility of their evolution.

ACKNOWLEDGMENTS

We are grateful to Yossi Azar, Jason Lohn, Melanie
Mitchell, and Hezy Yeshurun for helpful discussions.

REFERENCES

[1] F. T. Boesch and R. Tindell. Circulants and their
connectivities. Journal of Graph Theory, 8:487-499,
1984.

[2] F.T. Boesch and J. -F. Wang. Reliable circulant net-
works with minimum transmission delay. IEEE Trans-
actions on Circuits and Systems, CAS-32(12):1286
1291, December 1985.

[3] F. Buckley and F. Harary. Distance in Graphs.
Addison-Wesley, Redwood City, CA, 1990.

[4] J. P. Crutchfield and M. Mitchell. The evolution of
emergent computation. Proceedings of the National
Academy of Sciences USA, 92(23), 1995.

[5] R. Das, J. P. Crutchfield, M. Mitchell, and J. E.
Hanson. Evolving globally synchronized cellular au-
tomata. In L. J. Eshelman, editor, Proceedings of
the Sizth International Conference on Genetic Algo-
rithms, pages 336-343, San Francisco, CA, 1995. Mor-
gan Kaufmann.

[6] R. Das, M. Mitchell, and J. P. Crutchfield. A ge-
netic algorithm discovers particle-based computation
in cellular automata. In Y. Davidor, H. -P. Schwe-
fel, and R. Méanner, editors, Parallel Problem Solving
from Nature- PPSN III, volume 866 of Lecture Notes

[10]

[11]

[12]

[13]

[14]

[16]

[17]

in Computer Science, pages 344-353, Berlin, 1994.
Springer-Verlag.

P. Gacs, G. L. Kurdyumov, and L. A. Levin. One-
dimensional uniform arrays that wash out finite is-
lands. Problemy Peredachi Informatsii, 14:92-98,
1978.

P. Gonzaga de S4& and C. Maes. The Gacs-
Kurdyumov-Levin automaton revisited. Journal of
Statistical Physics, 67(3/4):507-522, 1992.

M. Land and R. K. Belew. No perfect two-state cellu-
lar automata for density classification exists. Physical
Review Letters, 74(25):5148-5150, June 1995.

M. Mitchell, J. P. Crutchfield, and P. T. Hraber. Dy-
namics, computation, and the “edge of chaos”: A re-
examination. In G. Cowan, D. Pines, and D. Melzner,
editors, Complezity: Metaphors, Models and Reality,
pages 491-513. Addison-Wesley, Reading, MA, 1994.

M. Mitchell, J. P. Crutchfield, and P. T. Hraber.
Evolving cellular automata to perform computations:
Mechanisms and impediments. Physica D, 75:361-391,
1994.

M. Mitchell, P. T. Hraber, and J. P. Crutchfield. Re-
visiting the edge of chaos: Evolving cellular automata
to perform computations. Complex Systems, 7:89-130,
1993.

N. H. Packard. Adaptation toward the edge of chaos.
InJ. A.S. Kelso, A. J. Mandell, and M. F. Shlesinger,
editors, Dynamic Patterns in Complex Systems, pages
293-301. World Scientific, Singapore, 1988.

M. Sipper. Non-uniform cellular automata: Evolution
in rule space and formation of complex structures. In
R. A. Brooks and P. Maes, editors, Artificial Life IV,
pages 394-399, Cambridge, Massachusetts, 1994. The
MIT Press.

M. Sipper. Quasi-uniform computation-universal cel-
lular automata. In F. Mordn, A. Moreno, J. J. Merelo,
and P. Chacon, editors, FCAL’95: Third Furopean
Conference on Artificial Life, volume 929 of Lecture
Notes in Computer Science, pages 544 554, Berlin,
1995. Springer-Verlag.

M. Sipper. Studying artificial life using a simple, gen-
eral cellular model. Artificial Life Journal, 2(1):1-35,
1995. The MIT Press, Cambridge, MA.

M. Sipper. Co-evolving non-uniform cellular automata
to perform computations. Physica D, 92:193-208,
1996.

