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Abstract. The problem of Minimum Broadcast Time (MBT) seeks to
find the minimal number of times steps required to broadcast a message
through a communication network. We describe a novel ant algorithm
for solving this NP-Complete problem and compare it to three other
known algorithms, one of which is genetic. Through experimentation on
randomly generated graphs we show that our algorithm finds the best
solutions.

1 Introduction

Communication in networks—in its many guises and forms—is one of the prime
areas of research and application today. The performance of a network is influ-
enced by many parameters, one of the most important being the time required
to send a message between two communication sites: the message delay. In this
paper, we describe a technique to reduce the delay when sending an identical
message from one computer (or set of computers) to all other computers in the
network—a process known as broadcasting. Broadcasting can be used to send
control messages throughout a network, or for cable television.

A communication network can be modeled as a connected, undirected graph,
wherein the nodes represent computers and the edges represent the communi-
cation lines between them. A node communicates with another by transmitting
a message, or making a call. Theoretically, there is no limitation on the amount
of information that can be exchanged during a given call. A round is a series of
calls carried out simultaneously, each round assumed to require one unit of time.
The efficiency of a broadcast scheme is measured by the number of time units it
takes to complete the broadcast.

The problem of Minimum Broadcast Time (MBT)—our focus in this paper—
is defined as follows: Given a connected, undirected graph G = {V,E} and a
subset of nodes, V, C V, which initially contain a given message; and given that
at each time step every node can transmit the message to one other node that has
not already received the message; then, find a transmission plan that minimizes
the number of steps needed to execute the broadcast operation, namely, transmit
the message to all nodes in the graph.

Formally, let V) C V be a distinguished vertex (or set of vertices) that holds
the message at step 0. A broadcast from V; is a sequence Vg, E1, Vi, Eo,. .., Eg, Vi
such that for 1 <4 < k the following constraints hold:



1. V;CV,E;CE,and V, = V.

2. Every edge in E; has exactly one end point in V;_;.
3. No two edges in E; have an endpoint in common.
4. V=V, U{v: (u,v) € E;}.

The MBT problem is to find the minimal k& needed to complete the broadcast.

In this paper we describe an ant algorithm for solving MBT. The next section
delineates previous work on solving MBT, followed by Section 3, which describes
ant algorithms. Section 4 presents our novel algorithm, and our results are de-
tailed in Section 5. Finally, we present concluding remarks and future work in
Section 6.

2 Previous Work

Since the MBT problem is NP-Complete [1], available solutions are heuristic in
nature. These are reviewed in this section.

Scheuermann and Wu [2] represented the broadcast operation as finding at
each step an optimal matching in a bipartite graph.

G = {V,E} is called a bipartite graph if V = X UY, X NY =0, and each
edge e € E has one endpoint in X and one in Y. A matching in a bipartite graph
is a subset E; C E such that no two edges in E; have an endpoint in common.
A mazimal matching in such a graph is the largest set E; C FE.

Scheuermann and Wu developed an algorithm based on dynamic program-
ming that builds a state tree, wherein each node represents different choices
of maximal matching. The algorithm searches for the shortest path in the tree
by applying backtracking with pruning techniques. Being exponential in the net-
work size, this algorithm becomes inefficient for large networks (over a few dozen
nodes).

Scheuermann and Wu [2] also developed a few heuristics based on greedy
techniques. Each node in the graph is assigned a d-value, which may either be
the node degree, the length of the shortest path to the farthest node from it,
or the maximum between these two values. The d-value can be calculated for
different variations of the graph:

e The original graph G.

e The subgraph G — S, where S denotes the subgraph formed by the nodes
that have the message.

e The subgraph (G — S) @ E,., where E, denotes the subgraph of G formed by
the edges with both ends in R (i.e., both ends are nodes without a message),
and @ is the xor operator.

At each time step, the algorithm searches for an optimal matching between
the group of nodes that have the message and the group of those that do not.
Scheuermann and Wu presented two types of search mechanisms:

1. LWMM (Least Weight Maximum Matching), which searches for a maximum
matching with minimum weight (the weight of an edge is the d-value of the
target node).



2. AM (Approximate Matching), which attempts to find a matching between
the target node with the highest d-value and the source node with the lowest
vertex degree.

Hoelting, Schoenfeld, and Wainwright [3] developed a genetic algorithm-
based (GA) heuristic to the problem. The algorithm begins with a random
population of chromosomes, each one being a permutation of the graph nodes.

In order to calculate an individual’s fitness, the chromosome is reversed and
divided into two lists: the s-list, containing nodes with the message, and the
r-list, containing nodes without the message. The algorithm traverses the lists
from left to right, trying to match a node in the s-list with a node in the r-list
(if more than one match exists, only the first one found is taken into account).
The node that receives the message in the current step is added to the end of
the s-list in the same order as in the original chromosome. The fitness is the
number of steps needed to complete the broadcast.

The crossover operation takes two chromosomes and compares them accord-
ing to a global precedence vector (GPV), which contains the nodes in the graph
sorted according to their vertex degree in ascending order. The idea behind this
operation is to force lower-degree vertices toward the front of the chromosome
(left) and nodes with a higher degree toward the end of the chromosome (right).
To decode the chromosome (in order to evaluate the individual) it is reversed and
the message is transmitted to nodes with high degree first. The mutation opera-
tion switches between two alleles in the chromosome. The GA used in Section 5
is based on that of Hoelting, Schoenfeld, and Wainwright [3].

3 Ant Algorithms

Swarm Intelligence algorithms [4], which have received increased attention in
recent years, are inspired by swarms in nature, e.g., of bees, ants, wasps, and
birds. Such swarms give rise to intelligent behavior through the continual oper-
ation and interaction of thousands of autonomous, relatively simple members.
No central controller is involved in the process.

When the swarm members do not communicate directly but rather do so
indirectly—by using the environment as a “blackboard”—this is called stig-
mergy. Ants, for example, interact by depositing a chemical substance known
as a pheromone along their trails. This substance can be sensed by fellow nest
members, which tend to follow higher concentrations of pheromone, in turn in-
creasing said concentration yet further. This is a form of indirect communication
through the environment. Another example is nest building by wasps, which was
simulated beautifully by Theraulaz and Bonabeau [5].

The Ant Colony System (ACS) algorithm was developed by Dorigo, Maniezzo,
and Colorni [6], who applied it to the traveling salesman problem (TSP). Since
then, much research has been carried out on so-called ant algorithms.

Das et al. [7] applied an ant colony approach to the Minimum Power Broad-
cast problem in wireless networks, a problem that shares certain similarities with



MBT. In this problem we assume a fixed N-node network with a specified source
node, which must broadcast a message to all other nodes in the network. In a
wireless network (as opposed to a wired one), a node can transmit a message to
any other node in the network, and thus multiple nodes can be reached by a sin-
gle transmission. The power required to transmit a message between two nodes
depends on the Euclidean distance between them and a channel loss coefficient.

An ant under Das et al.’s scheme maintains a strategy for building a broadcast
tree. The ant decides according to its strategy to which node the message should
be sent. There are two types of ants (strategies):

1. Greedy “vision,” preferring to send the message to the closest node.
2. Wide vision, choosing the next node according to roulette-wheel selection.

The algorithm executes several ants of both types in parallel. For each ant a
broadcast tree is built, whereupon two functions are applied to improve its cost,
the cost of a tree being the number of steps needed to execute the broadcast. The
first function—multiple transmission removal (MTR)—removes multiple trans-
missions from a node, because the highest-powered transmission will also cover
nodes which are reached by lower-power transmissions from that node. The sec-
ond function—edge trimming (ET)—removes a transmission edge if no new node
is reached by it.

The algorithm stores the best tree built so far and updates the pheromone
on the tree edges after each ant’s traversal and after choosing the best tree. In
the end, the algorithm returns the tree with the best cost.

4 Solving MBT using Ants

Our algorithm employs nine types of ants, each of which dynamically builds
a broadcast tree. An ant decides to which node to send the message in the
broadcast tree, based on the node’s local environment—i.e., its neighbors.

An ant maintains the following information:

o s-list: nodes with message.

e t-list: nodes without message.

e mutation: an ant has a small probability of being “olfaction-less,” i.e., its
decisions are not influenced by the trail left by other ants.

Tree-building by an ant is an iterative process, which starts with the s-list
containing only the source node, and ends when the s-list contains all nodes in
the graph. In each step, the ant builds an edge-list, with all the edges connecting
nodes in the s-list (source nodes) with nodes in the t-list (target nodes). The
ant chooses the next edge from the edge-list according to three parameters: 1)
source value, 2) target value, and 3) trail. The chosen edge is added to the tree
and any other edge in the edge-list that connects the corresponding source or
target is removed from the list. The process of choosing edges from the edge-list
continues until the edge-list is empty. Then all nodes that have reached this
step are added to the s-list and removed from the ¢-list—and the step counter



is increased by one. The number of steps needed to build the tree is the tree’s
cost.

The value of an edge is evaluated according to its source and target nodes.
In order to do so, each node ¢ maintains information about its neighbors:

e nm-list;: neighbors of node 7 with message.

e nwm-list;: neighbors of node ¢ without message.

e nwms-list;: neighbors of node 7 without message that cannot receive message
at this step (because they have no edge to a node currently holding message).

The source is assigned a higher value (S), the smaller the number of neighbors
that can receive the message from it (nwm-list). Moreover, the value of the target
(T) can be calculated by three different methods (depending on the ant type):

1. Number of neighbors that have a message and can send it to the target node

at this step (nm-list). The target value is higher, the smaller the size of the

nm-list.

Number of neighbors without a message (nwm-list).

3. Number of neighbors without a message that cannot receive the message at
this step (nwms-list).

o

For methods 2 and 3, the target value is higher the larger the list size. An ant
can choose an edge whose sum of source and target values is maximal, or it can
choose first the source that has maximum value and then the target connected to
that source with the highest target value—and vice versa. We thus have 9 types
of ants, one ant for each version (Table 1): as can be seen, our use of nine types
of ants arises from the nine heuristics attained by the various ways of combining
source and target costs into an edge score. The use of nine ant types increases
diversity, thus boosting the search process.

Table 1. The ants differ in the way they choose the next edge from edge-list. S and T
are the respective source and target values for edge (¢, j). The ant can choose an edge
with max S+T, or first choose the source with max S and then the edge with max T
connected to that source—and vice versa. In case more than one edge has the same
value, selection is random. The precise formulas for calculating S and T are specified
in Figure 1.

Antl1 -S4+ T1|Ant2-S 4+ T |Ant 3 - S + T3
Ant4-S - T1|Ant 5 -S = T2|Ant 6 - S — T3
Ant 7- Ty — S|Ant 8 - Ty — S|Ant 9 - T3 — S

The algorithm stores the best tree built so far and updates the trail on the tree
edges after running all ants for one cycle, according to the number of ants that
choose the edge and the step at which they chose it. In the end, the algorithm
returns the tree with the best cost. Figures 3 and 4 describe the pseudocode of
our algorithm (the nomenclature is given in Figure 2).
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Fig. 1. Computing S and T values for edge (i, j). 7i; is the pheromone amount on this
edge; p is set to 0 when ant’s mutation is false, otherwise it is set to 1; s and ¢ were

both set empirically to 1.

Tx(t) — tree built by ant k at iteration ¢ Y% (t) — cost of said tree
T-LIST®*!(t) — list of best trees at iteration t  Y°°**(¢) — cost of best tree at ¢
Tbest — best tree found so far YPest — cost of best tree

P;(e) — e’s node which is in s-list P;(e) — e’s node which is in ¢-list

E,;(step) — list at broadcast step containing all edges with source node
in s-list and target node in ¢-list

E(step) — list containing all edges chosen at step

Fig. 2. Nomenclature for pseudocodes in Figures 3 and 4.

1. t«+0 // iteration index
2. T¢ <10, Ye € E // pheromone amount on edge e
3. while (t < tmaz)
Ybest (t) “— 0o
for k = 1 to NUMANTS // run ant k
type = k mod ANT-TYPES // ant’s type, where ANT-TYPES=9
Tk (t) < buildTree By Ant(type) // pseudocode given in Figure 4
if Yi(t) = Y'(t) then T-LIST*®*!(t) « T-LIST**'(t) U Tx(t)
if Yi(t) < Y®5*(t) then
T-LIST**!(t) + { Tk(t) }
Yot () «— Yi(t)
endfor
for i = 1 to num elements in T-LIST®®**(¢)
foreach e € T-LIST?***(¢) do // edge in tree i of T-LIST'**!(t)
sumSteps < sumSteps + 1/step // step when edge reached
numVisitors < numVisitors + 1 // num ants visiting edge
endforeach
endfor
if (t=0) OR (Y(t) < Ybest)
Tt ¢ T-LISTY®*(t)
Ybest — Ybest(t)
endif
foreach e € E do // update pheromone on edge

n(t+ D) (0 + (RS + )
numVisitors < 0
sumSteps < 0
endforeach
t+— t+1
4. endwhile

5. return T and Y?°°*

Fig. 3. ANT-MBT-algorithm: main. The following values were set empirically: o = 20,
B =20,p=0.1,and 7o =1.



1. initialize ant:
has-mutation < true with probability MUTATION-RATIO
T {)
foreach node i€V do
nm-list;<—{} // neighbors of node i with message
nwm-list;<{ Neighbors{i} } // neighbors of i without message
nwms-list;«—{ Neighbors{i} } // neighbors of 7 in nwm-list that
// can’t receive message at this step
endforeach
2. execute in step O:
step < O // broadcast step
s-1list < { sourceNode } // nodes with message
t-list < { V - sourceNode } // nodes without message
nums-1istsourceNode < { }
foreach neighbor i of sourceNode
move sourceNode from nwm-list; to nm-list;
remove sourceNode from nwms-list;
endforeach
3. while t-list is not empty
step < step + 1
build Es(step)
foreach e € E,(step)
foreach neighbor i of P;(e)
remove Pi(e) from nwms-list;
endforeach
endforeach
have-msg-list < { ¢ | ¢ € s-list and nwm-list; != { } }
while have-msg-list is not empty
//choose the next edge in the broadcast tree according to
//ant’s type and has-mutation value
foreach e € E,(step)
compute S ant T values // see Figure 1
endforeach
chosenEdge ¢ choose the next edge // see Table 1
E(step) < E(step) U chosenEdge
remove P;(chosenEdge) from have-msg-list
remove every e € FEs(step) with one endpoint
equal to either P,(chosenEdge) or P;(chosenEdge)
nms_liStPt(chosenEdge) <~ { }
foreach neighbor i of Pi(chosenEdge)
move Pi(chosenEdge) from nwm-list; to nm-list;
if nwm-list; is empty and i € have-msg-list
remove i from have-msg-list
endforeach
endwhile
T < T U E(step)
update s-list and {-list
4. endwhile
5. return T

Fig. 4. ANT-MBT-algorithm: buildTreeByAnt(¢ype). This function returns the broad-
cast tree built by the ant. MUTATION-RATIO was set empirically to 0.05.



5 Results

Given a connected undirected graph G = {V,E}, with V = {u} and |V| = n,
we can conclude a number of things about the broadcast:

1. A broadcast from a vertex u defines a spanning tree rooted at u.

2. In each step the set of nodes that have received the message increases by at
least one. Therefore, the time needed to execute a broadcast in G is a value
in the set {[logo{n}],...,n —1}.

We tested the algorithms on graphs containing 15 to 250 nodes with low edge
connectivity probabilities, running 10 randomly generated networks for each
variation. Note that a low connectivity probability entails a harder problem,
since in highly connected graphs the broadcast is easily achieved.

Both GA and Ant are population algorithms, each member in the population
representing a candidate solution. We compared both algorithms using the same
parameter values (population size, number of cycles, mutation rate), and under
the same assumptions:

1. If an optimal solution (treeCost = log|V]) is found, execution of the algo-
rithm is stopped and the solution is returned.

2. The best solution in a cycle moves on to the next generation.

3. The algorithm is said to have converged to a solution if 85% of the population
have held the same solution for the past 10 generations, and there is no better
solution.

Table 2 shows our results. As can be seen our algorithm emerges as the
winner. Though some results may seem only slightly better than the other algo-
rithms, one should bear in mind that every decrease of even a single broadcast
step is significant and hard to attain.

Table 2. A comparison of algorithm performance rates. For GA and ANT, population
size = 2|V| (where |V| is the network size), number of generations/cycles = 50, and
mutation rate = 0.05. We ran the variants of LWMM and AM that were reported in
[2] to produce the best results: 1) LWMM: d-value is the vertex degree, calculated in
the subgraph G — S; 2) AM: d-value is the vertex degree, calculated in the subgraph
(G—S)®E,. Results for AM and LWMM are per one run (algorithms are deterministic),
and for ANT and GA averaged over 10 runs.

Network size|Edge Probability| AM|LWMM |GA|ANT
15 0.1 69| 69 |6.3] 6.3
30 0.1 65 64 |6.3|5.9
60 0.05 84| 83 |7.8|7.7
60 0.075 74| 75 |7.1]6.6
60 0.1 70| 7.0 |6.7]| 6.4
120 0.05 80 79 |8.0|7.3
120 0.075 80| 73 |74|7.0
120 0.1 80| 7.0 |7.0|7.0
250 0.05 9.0 82 |9.0| 8.0
250 0.075 9.0/ 8.0 (8.2 8.0
250 0.1 9.0 8.0 |8.0| 8.0




Figure 5 shows the effects of population size on performance of the GA and
ANT algorithms. For the GA, increasing the number of the chromosomes im-
proves performance, while for ANT the effect of increasing the ant population
is less significant—the ANT algorithm finds better solutions even with a small
number of ants.

graphs with 120 nodes and 5% density graphs with 120 nodes and 7.5% density
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Fig. 5. Effect of population size on performance (shown for the hard problem range,
i.e., low density—for higher densities the problem becomes easier).

Given G={V, E}, the time complexity of the four algorithms discussed herein
is a function of several parameters: |V'| — number of nodes, |E| — number of edges,
| N| — maximal degree of a node, | K| — number of broadcast steps needed to reach
a solution, |C| — number of cycles/generations, and [CH|/|ANTS| — number of
chromosomes/ants. The time complexities are:

AM: O(|K||V|?). This algorithm has proved to be the fastest of the four.
LWMM: O(|K||V|?|E|).t

GA: O(|C||CH||K]|V]?).

ANT: O(|C||ANTS||K||V||E)).

As an example, if |V|=60, |N|= 5, and |CH|/|ANTS|=2|V|, then AM and
LWMM take about a second to complete, the GA takes 0.2 seconds per gen-
eration, and ANT takes a second per cycle.

! This algorithm finds a least weight maximum matching in a bipartite graph according
to the Ford-Fulkerson algorithm [8], i.e., it finds a least weight augmenting path and
defines the symmetric difference of the path with the old matching to be the new
matching. In the implementation we find an augmenting path with minimal last edge
because the weights of the intermediate edges cancel each other out [2].
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6 Concluding Remarks and Future Work

We presented a novel ant algorithm for solving the hard problem of Minimum
Broadcast Time, and showed that for hard graph instances (namely, with low
edge density), it surpasses three other state-of-the-art algorithms.

Our algorithm can be extended to other problems: each ant finds a solution
based on some form of problem-specific knowledge implemented as a heuristic;
it improves its solution by interacting with (the solutions found by) other ants.

Two variations of the MBT problem we intend to explore in the future are:

e The Gossip Problem. In this variation of MBT every node holds a message,
which needs to be sent to all other nodes. A node can transmit to its neighbor
all the messages it has received so far. The objective is to minimize the time
for every node to receive all messages [9,10].

e The Multicast Routing Problem, wherein the message is to be sent to a
subset of nodes in the graph. Additional constraints can be added to the
problem, e.g., minimizing the delay of sending a message from the source
to a target, and minimizing the cost of sending the message to all target
nodes [11].
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