Artificial Life Journal, Volume 2, Number 1, pages 1-35, 1995. Copyright The MIT Press 1995.

Studying Artificial Life Using a Simple, General
Cellular Model

Moshe Sipper
Department of Computer Science
Tel Aviv University
Tel Aviv 69978, Israel
e-mail: moshes@math.tau.ac.il

Abstract

Some of the major outstanding problems in biology are related to issues
of emergence and evolution. These include: (1) how do populations of or-
ganisms traverse their adaptive landscapes? (2) what is the relation between
adaptedness and fitness? (3) the formation of multi-cellular organisms from
basic units or cells. In this paper we study these issues using a model which
is both general and simple. The system, derived from the CA (cellular au-
tomata) model, consists of a two-dimensional grid of interacting organisms
which may evolve over time. We first present designed multi-cellular or-
ganisms which display several interesting behaviors including: reproduction,
growth, mobility. We then turn our attention to evolution in various environ-
ments, including: an environment in which competition for space occurs, an
IPD (Iterated Prisoner’s Dilemma) environment, an environment of spatial
niches, and an environment of temporal niches. One of the advantages of
AL models is the opportunities they offer in performing in-depth studies of
the evolutionary process. This is accomplished in our case by observing not
only phenotypic effects but also such measures as: fitness, operability, en-
ergy and the genescape. Our work sheds light on the problems raised above,
and offers a possible path towards the long term two-fold goal of ALife re-
search: (1) increasing our understanding of biology and (2) enhancing our
understanding of artificial models, thereby providing us with the ability to
improve their performance.

1 Introduction

A major theme in the field of Artificial Life is the emergence of complex behavior from
the interaction of simple elements. Natural life emerges out of the organized interactions
of a great number of non-living molecules, with no global controller responsible for the
behavior of every part [Langton, 1989]. Closely related to the concept of emergence is that
of evolution, in natural settings as well as in artificial ones.



Several major outstanding problems in biology are related to these two themes, emer-
gence and evolution, among them [Taylor and Jefferson, 1994]: (1) how do populations of
organisms traverse their adaptive landscapes- through gradual fine-tuning by natural selec-
tion on large populations, or alternatively in fits and starts with a good bit of chance to
“jump” adaptive valleys in order to find more favorable epistatic combinations? (2) what
is the relation between adaptedness and fitness, that is, between adaptation and what is
selected for? It is now understood that natural selection does not necessarily maximize
adaptedness, even in theory [Mueller and Feldman, 1988]. Chance, structural necessity,
pleiotropy, historical accident and more detract from the ‘optimization in nature’ argument
[Gould and Lewontin, 1979]. Another major theme is the formation of multi-cellular organ-
isms from basic units or cells. Other related problems include: the origin of life, cultural
evolution, origin and maintenance of sex, structure of ecosystems [Taylor and Jefferson,
1994].

This is just a partial list of open problems amenable to study by AL modeling. AL
research into such issues holds a potential two-fold benefit: (1) increasing our understanding
of biology and (2) enhancing our understanding of artificial models, thereby providing us
with the ability to improve their performance (e.g. robotics, evolving software).

Our main interest in this paper lies in studying evolution, adaptation and multi-cellularity
in a model which is both general and simple. Generality implies two things: (1) the model
supports universal computation and (2) the basic units encode a general form of interaction
rather than some specialized action (e.g. an IPD strategy, see Section 4.3). Simplicity
implies that the basic units of interaction are modest in comparison to Turing machines.
If we imagine a scale of complexity with Turing machines occupying the high end then
simple machines are those that occupy the low end, e.g. finite state automatons. These two
guidelines (generality and simplicity) allow us to evolve complex behavior with the ability
to explore, in-depth, the inner workings of the evolutionary process (we shall come back to
this point in the discussion in Section 5).

The model presented is essentially derived from the cellular automata model. Cellular
automata (CA) are dynamical systems in which space and time are discrete. The states
of cells in a regular grid are updated synchronously according to a local interaction rule.
Each cell obeys the same rule and has a finite (usually small) number of states [Toffoli and
Margolus, 1987]. The model was originally conceived by John von Neumann in the 1950’s
[von Neumann, 1966].

The CA model is perhaps the simplest, general model available. It is simple in that
the basic units are small, local, finite state machines (rules). It is general since: (1) CA’s
support universal computation [Culik II et al., 1990, Codd, 1968, von Neumann, 1966], and
(2) the rules represent a general form of local interaction. The model has been applied
to the study of general phenomenological aspects of the world, including: communication,
computation, construction, growth, reproduction, competition and evolution [Burks, 1970,
Smith, 1969, Toffoli and Margolus, 1987].

The main difficulty with the CA approach seems to lie with the extreme low-level rep-
resentation of the interactions. CA’s are programmed at the level of the local physics of



the system and therefore higher-level cooperative structures are difficult to evolve in CA’s
[Rasmussen et al., 1992]. Hence our intent is to increase the “capacity” for evolution while
preserving the essential features of the CA model: (1) massive parallelism, (2) locality of
cellular interactions and (3) simplicity of cells (finite state machines).

The basic model is detailed in Section 2 and the evolutionary aspect is presented in
Section 4.1. We delineate below the three basic features by which it differs from the CA
model [Sipper, 1994]:

1. Whereas the CA model consists of uniform cells, each containing the same rule, we
consider the non-uniform case where different cells may contain different rules.

2. The rules are slightly more complex than CA rules.

3. Evolution takes place not only in state space as in the CA model, but also in rule
space, i.e. rules may change (evolve) over time.

Thus, we have a grid of interacting, simple organisms (rules) which may evolve over
time. The course of evolution is influenced by the nature of these organisms as well as by
their environment. In nature the role of the environment in generating complex behavior
is well known, e.g. as has been noted by [Simon, 1969] who described a scene in which the
observed complexity of an ant’s path is due to the complexity of the environment and not
necessarily a reflection of the complexity of the ant. In our model, each rule is considered
to have a certain fitness, depending upon the environment under consideration. As opposed
to models such as GA (genetic algorithms) where each entity is independent, interacting
only with the fitness function (and not the environment), in our case fitness depends on
interactions of evolving organisms operating in an environment.

Note that the term ‘environment’ can convey two meanings: in the strict sense it refers to
the surroundings, excluding the organisms themselves (e.g. in nature: sun, water, weather,
terrain, etc’) while the broad sense refers to the total system, i.e. surroundings + interacting
organisms (e.g. ecosystem). In what follows the term is used in the strict sense, however
we attain an environment in the broad sense, i.e. a total system of interacting organisms
(see also [Bonabeau and Theraulaz, 1994]).

We consider various environments, including: the ‘basic’ environment where rules com-
pete for space on the grid, an IPD (Iterated Prisoner’s Dilemma) environment, an environ-
ment of spatial niches, and an environment of temporal niches. One of the advantages of
AL models is the opportunities they offer in performing in-depth studies of the evolution-
ary process. This is accomplished in our case by observing not only phenotypic effects (i.e.
evolution of cell states as a function of time) but also fitness, operability, energy and the
genescape.

Our approach may be viewed as a non-uniform CA with enhanced rules [Sipper, 1994]
and as such it is related to other works. [Garzon, 1990] presents two generalizations of
cellular automata, namely discrete neural networks and automata networks. These are
compared to the original model from a computational point of view which considers the
classes of problems such models can solve.



In [Lee et al., 1990, Qian et al., 1990] adaptive stochastic cellular automata are consid-
ered which are essentially non-uniform automata whose rules are drawn from the same prob-
ability distribution function (PDF). Adaptation and learning are accomplished by evolving
the PDF using gradient descent. Their approach focuses on the learning aspect where an
automaton is trained to solve some problem (e.g. pole balancing). An important issue is the
coding of the problem onto the CA structure, which is non-trivial and may be complex. Fur-
thermore, the global state of the grid is considered, e.g. when generating a reward/penalty
signal (our model is local).

The work of [Vichniac et al., 1986] discusses a one-dimensional inhomogeneous CA in
which a cell probabilistically selects one of two rules, at each time step. They showed
that complex patterns appear characteristic of class IV behavior (see also [Hartman and
Vichniac, 1986]). We shall discuss other models, which are more closely linked with ours,
in the relevant sections ahead.

Our approach is different than the above works and is more in the spirit of Artificial
Life where cellular automata provide us with “logical universes” [Langton, 1986]. These
are: “synthetic universes defined by simple rules ... One can actually construct them, and
watch them evolve.” [Toffoli and Margolus, 1987].

In the next section we detail the basic model (without evolution which is presented
in Section 4.1). In Section 3 we present designed multi-cellular organisms which display
several behaviors including: reproduction, growth, mobility. These are interesting in and
of themselves and also serve as motivation for the following section (Section 4) in which we
turn our attention from the human watchmaker to the blind one, focusing on evolution. A
discussion of our results is provided in Section 5.

2 The basic model

The two-dimensional CA model consists of a two-dimensional grid of cells, each containing
the same rule, according to which cell states are updated in a synchronous, local manner. In
our model the grid consists of cells which are either vacant, containing no rule, or operational
containing a finite state automaton (rule) which can, in one time step:

1. Access its own state and that of its immediate neighbors (grid is toroidal).

2. Change its state and the states of its immediate neighbors. Contention occurs when
more than one operational neighbor attempts to change the state of the same cell.
Such a situation is resolved randomly, i.e. one of the contending neighbors “wins”
and decides the cell’s state at the next time step. Note that the cell itself is also a
contender, provided it is operational.

3. Copy its rule into a neighoring vacant cell. Contention occurs if more than one
operational neighbor attempts to copy itself into the same cell. Such a situation is
resolved randomly, i.e. one of the contending neighbors “wins” and copies its rule
into the cell. Note that in this case the cell itself is not a contender since it must be
vacant in the first place for contention to occur.



At each time step every operational rule! simultaneously executes its appropriate rule
entry, i.e. the entry corresponding to its current neighborhood configuration. Thus, state
changes and rule copies are effected as explained above. Note that a vacant cell may be in
any grid state as it can be changed by operational neighboring cells.

Whereas a rule in the CA model accesses the states of its neighbors but may only
change its own state, our model allows state changes of neighboring cells and rule copying
into them. Thus, our rules may be regarded as being more “active” than those of the CA
model. Furthermore, different cells may contain different rules (non-uniformity). The third
feature of our model as presented in Section 1 is the evolution which takes place in rule
space, i.e. rules evolve as time progresses. This is detailed in Section 4.1. We first turn our
attention to multi-cellular organisms in the next section.

3 Multi-cellularity

In this section we present a number of multi-cellular organisms which are composed of
several cells, consisting of rules as described in Section 2. The organisms discussed below
are designed rather than evolved and our intent is to demonstrate that interesting behaviors
can arise using the dynamics described above. In the next section (Section 4) we shall focus
on evolution. At this point the term ‘multi-cellular’ is loosely defined so as to refer to
any structure composed of several cells, acting in unison. In Section 5 we examine more
carefully the meaning of the term ‘cell’ and expand upon the general issue of multi-cellular
organisms versus uni-cellular ones. The cellular space considered throughout this section is
3-state, 9-neighbor where states are denoted {0, 1, b}.

3.1 A self-reproducing loop

Our first example involves a simple self-reproducing loop motivated by Langton’s work
[Langton, 1984, Langton, 1986] who described such a structure in uniform cellular au-
tomata. His loop was later simplified by [Byl, 1989, Reggia et al., 1993]. Langton’s loop
(motivated by [Codd, 1968]) makes dual use of the information contained in a description
to reproduce itself. The structure consists of a looped pathway, containing instructions,
with a construction arm projecting out from it. Upon encountering the arm junction the
instruction is replicated, with one copy propagating back around the loop again and the
other copy propagating down the construction arm, where it is translated as an instruction
when it reaches the end of the arm.

The important issue to note is the two different uses of information, interpreted and
uninterpreted, which also occur in natural self-reproduction, the former being the process
of translation, and the latter transcription. In Langton’s loops translation is accomplished
when the instruction signals are “executed” as they reach the end of the construction arms,
and upon the collision of signals with other signals. Transcription is accomplished by the
duplication of signals at the arm junctions [Langton, 1984].

Throughout this paper we use the terms operational cell and operational rule interchangeably.



The loop considered in this section consists of five cells and reproduces within six time
steps . The initial configuration consists of a grid of vacant cells (i.e. with no rule) with a
single loop composed of five cells in state 1, each containing the loop rule (Figure 1a). The
arm extends itself by copying its rule into an adjoining cell, coupled with a state change
to that cell. The new configuration then acts as data to the arm, thereby providing the
description by which the loop form is replicated. When a loop finds itself blocked by other
loops it “dies” by retracting the construction arm. Figure 1b shows the configuration after
several time steps.

The loop rule is given in Figure 2. Note that most entries are identity transformations,
i.e. they transform a state to itself, thereby causing no change (only 40 entries of the 3°
are non-identity). In his paper [Langton, 1984] compares the self-reproducing loop with
the works of [von Neumann, 1966] and [Codd, 1968], drawing the conclusion that although
the capacity for universal construction, presented by both, is a sufficient condition for self-
reproduction it is not a necessary one. Furthermore, as Langton points out, naturally
self-reproducing systems are not capable of universal construction. His intent was therefore
to present a simpler system that exhibits non-trivial self-reproduction. This was accom-
plished by constructing a rule in an eight-state cellular space, in which the dual nature of
information, i.e. translation and transcription is utilized.

In the loop presented above simple transcription is accomplished as an integral part of
a cell’s operation, since a rule can be copied, i.e. treated as data. Once a rule is activated
it begins to function by changing states in accordance with the grid configuration, thereby
performing translation on the surrounding cells (data). Essentially, the loop operates by
transcribing itself onto a neighboring cell while simultaneously writing instructions (in the
form of grid states) that will be carried out at the next time step.

In Langton’s system each grid cell initially contains the rule that supports replication
whereas in our case the grid cells are initially vacant and the loop itself contains all the
information needed. In both cases reproduction is not coded entirely into the “transition
physics” but rather is “actively directed by the configuration itself” where “the structure
may take advantage of certain properties of the transition function physics of the cellular
space” [Langton, 1984]. Thus interest in such systems arises since they display an interplay
of active structures taking advantage of the characteristics of cellular space.

3.2 Reproduction of passive structures by copier cells

In the previous section we described a self-reproducing loop, which exhibited a two-fold
utilization of information, i.e. translation and transcription. In this section we examine a
system of reproduction consisting of passive structures copied by active (mobile) cells. The
motivation for our approach lies in the information flow in protein synthesis, where passive
mRNA structures are translated into amino acids by active tRNA cells. Each tRNA cell
matches one specific codon in the mRNA structure and synthesizes one amino acid. Note
that our system is extremely simple with regards to the workings of the living cell and
therefore the above analogy is (highly) abstracted.

Our system consists of stationary structures composed of vacant grid cells comprising
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Figure 1: Self reproducing loop.
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In all rule entries a state change from b to 0/1 also involves a rule copy (note that all cells
are initially vacant, i.e. with no rule, except the ones comprising the initial loop).

Each of the above entries consists of three further rotations (not shown). All other entries
preserve the configuration.

Figure 2: Self reproducing loop rule.
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Figure 3: Reproduction by copier cells.

the passive data to be copied. The copy (“synthesis”) process is accomplished by three
types of copier cells, denoted X, Y, and Z which are mobile units, “swimming” on the
grid, seeking an appropriate match (remember that cellular mobility is possible by using
rule copying, see Section 2). When such a match occurs the cell proceeds to create the
appropriate sub-structure, as in the case of a tRNA cell synthesizing the appropriate amino
acid. The final result is a copy of the original structure.

The process is demonstrated in Figure 3. The initial configuration consists of a passive
structure with X,Y and Z cells randomly distributed on the grid (Figure 3, time = 0). Each
time step the copier cells move to a neighboring vacant cell (shown as white squares) at
random, unless a match is found which triggers the synthesis process. Figure 3 (time = 435)
shows the process at an intermediate stage and at the final stage (time = 813) when the
copy has been produced.

The X cell rule is detailed in Figure 4 (actually the rule template is shown. Y and Z
cell rules may be analogously derived). The left rule is the match seeker, specifying the
“codon” of the X cell. Once a match is found the cell builds a copy by applying the other
two rules. After application of the right rule the copy has been constructed and the X cell
dies. Note that most entries in the rule table specify a move to a random vacant cell in
state b.

The copy created is not an exact duplicate but rather a “complementary” one. The
reason for this is that we wish to avoid endless copying which would occur had an exact
duplicate been created. Since our model is inherently local we cannot maintain a global
variable specifying that the synthesis process has been completed. The only way to avoid
an endless chain of duplicate sub-structures is by locally specifying that a copy has been
completed. This is accomplished by creating a complementary sub-structure, which does
not match any copier cell and is not duplicated further.
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Figure 5: A system consisting of a single worm.

3.3 Mobility

In this section we introduce a worm-like structure which has the capacity to move freely
on the grid. The system consists of worms which are active, mobile structures composed
of operational cells in state 1, and blocks which are vacant cells in state 0. When a worm
encounters a block it turns by 90 degrees and continues its movement (if there is a block

obstructing the turn then the worm destroys it)

Figure 5 presents a system with a single worm, behaving as described above. When
several worms are placed on the grid, interaction among them yields interesting phenomena
(Figure 6). The following behavioral patterns are observed when two worms meet: one of
them splits into two, both worms merge into one, a worm looses part of its body, both
emerge unscathed. In all cases the resulting worms behave in the same manner as their

ancestors.

The rule is detailed in Figure 7. Its simplicity is possible due to the power offered by
our model (see Section 5). The emergent behavior is complex and exhibits different forms
of interaction between the organisms inhabiting the grid. A worm acts as a single high
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(a) an initial configuration of the system.
(b), (c) system configurations after several time steps.

Figure 6: A system consisting of several worms.

order structure and upon encountering other worms it may split, merge, shrink or emerge
unscathed.

It is interesting to observe the formation of such a high order structure which operates
by applying local rules. The worm rule essentially specifies how the head and tail sections
operate independently. The overall effect is that of a single organism whose parts operate
in unison. Living creatures may also be viewed in this manner, i.e. as a collection of
independent cells operating in unison, thereby achieving the effect of a single “purposeful”
organism (see Section 5).

3.4 Growth and replication

In this section we examine an enhancement of our basic model in which the following feature
is added to the three presented in Section 2:

4. A cell may contain a small number of different rules. At a given moment only one
rule is active and determines the cell’s function. A non-active rule may be activated
or copied into a neighoring cell.

This feature could serve as a possible future enhancement in the evolutionary studies as
well (Section 4). At this point we present a system involving the growth and replication of
complex structures which are created from grid cells and behave as multi-cellular organisms
once formed. The system consists initially of two cell types, builders (A cells) and replicators
(B cells), floating around on the grid.

Figure 8 demonstrates the operation of the system. At time 0 A and B cells are dis-
tributed randomly on the grid and there are two vacant cells in state 1 acting as the core
of the building process. The A cells act as builders by attaching ones at both ends of the
growing structure. Once a B cell arrives at an end growth stops there by attaching a zero
(time 111).

11
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Figure 7: Worm rule.

When a B cell arrives at the upper end of a structure already possessing one zero a C
cell is spawned, which travels down the length of the structure to the other end. If that end
is as yet uncompleted the C' cell simply waits for its completion (time 172). The C cell then
moves up the structure, duplicating its right half which is also moved one cell to the right
(time 179). Once the C cell reaches the upper end it travels down the structure, spawns a
D cell at the bottom and begins traveling upward while duplicating and moving the right
half (time 187). Meanwhile the D cell travels upwards between two halves of the structure
and joins them together (time 190).

This process is then repeated. The C cell travels up and down the right side of the
structure, creating a duplicate half on its way up. As it reaches the bottom end a D cell is
spawned which travels upward between two disjoint halves and joins them together. Since
joining two halves occurs every second pass the D cell dies immediately every other pass
(e.g. time 195).

There are interesting features to be noted in the process presented. Replication should
begin only after the organism is completely formed, i.e. there are two distinct phases of
development. However there can be no global indicator that such a situation has occurred
(see also Section 3.2). Our solution is therefore local: a B cell upon encountering an upper
end which already has one zero completes the formation of that end and releases a C' cell
which travels down the length of the structure. This cell will seek the bottom end or wait
for its completion. Only at such time when the structure is complete will the C' cell begin
the replication process.

12



B B S B B A a B a S
» » 5 s a » 5 » s oa )
» FO » P 5 » 5 an A »
s ap B A 5 aa » P
B B A A A A B A B kY A
aa on a 5 B » PR 5
s 5 5 oA s ¥ 5 PO 5 s » 5
NI 5 oa » » 55 B A 5 oa » » »
A A4 B BB B A B B B B B A B
3 I 5 3 ITH » 5
» 5 Bas A s 5 5
5 » » » 5 B 5 » a 5
B B B ES A A BB ES A B A B
A B A A BA F:Y o A BE B B B A 000 B
A kY E B 11 B 111 kS B
11 B B B A B A B 11 A Al 1lC A B
B A B 11 A A B kY Ah B A 1Dp1 11 AB ]
B B B A 11 B B 11 11 A B A
B E A kY B kY E 00 00 B E
A A A AR A A BB A B A B
BB kY A A ES BE BA B B A
5 b w b » » A A 5 s a
» B8 a 5 " oam 5 5
B AB B B A B a B A a AB A
BA E B AB kY kY B
» 5 oA h 5 b P » » 5
a 5a 5 s 5 5 s
A A a
ES B B BB B kY A B A B EE B
5 aa » 5 P 5
a a BA BB B a A A B A
» 5 om 5 5 H 5 5 A a 5
» 3 3 » a 5 » i 5
a 5 T W b 5 A 5 s H » 5 s
A B B B AA BB kY A kY A A B B
5 m » 5 oa A B 5 5 am A
5 5 5 " 5 as 5 an BB 5 5B
5 » y » s 5 ha » b a
B AB BB A B A A B A A EBE
b a » » » 5 5 5s 5 oan 8 T a
» 5 5 a » 5
» 5 5 A » 5 s 5 5
B B B [8:] A B ES A
A B B B 00 00 00 00 00 000 B BOO 00 00 00 00 00 00 B
B B A A 11 11 11 A11 11 111 11 11 11 a11 11 11 11
EE 11 11 11 11 Ell 11L B A BB 11 11 11 11 11 11 11 B
11 11 11 B11 11 111 B A A B 11 1 1 11 11 11 B A
11Aall 11 11 11a 111 B B 11 11 11 118 11 11 1ic B B A
B kY A A 00 00 00 00O 00 O 00 E A ES 00 00 oo 0 EBOI oo B B
B
A B kY ] A B A B
» e » » 5 p 5 & »
A a » 5 s oa s Ao 55
B A A B A A S B a B A
A kY A A
» oA s 5" s 5 an b
55 5 ' Ban A oB 5 h h
B B A B B B A A AF AB A
B B A BAA BB kY
» m 5 » s nos PR
oo @ 0 oo 0 on
i 11 0 0o 111 111
11 B 11 111 1711 al 1le
11 11 11 111 a1 11 A 1+l 11
B 11 11 111 111 1111
11 oo 1B11 0 ooe 00 00
® 0 oo +0

time = 0 time = 111

time = 172 time = 179

(b) Zoom of intermediate stages. C cells are represented by @, D cells by .

Figure 8: Growth and replication.
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Replication involves two cells operating in unison where the C' cell duplicates half of the
structure while the D cell “glues” two halves together. Again it is crucial that the whole
process be local in nature since no global indicators can be used.

The rules involved in the system are given in Appendix A. The spawning of C and D
cells are provided for by the added feature above which specifies that a cell may contain a
small number of different rules, where only one is active at a given moment. Therefore, the
initial B cells can contain all three rules: B,C,D.

The design of our system is even more efficient than that however, requiring only two
rule tables, one for A cells and one for B/C/D cells. Each entry of the B/C/D rule table
is only used by one of the cells (i.e. the entries are mutually exclusive). At a given moment
the cell has one active rule (which determines its type). If the table entry to be accessed
belongs to the active rule- it is used, otherwise a default state change occurs. The default
transformation is a move to a random vacant cell for B cells and no change for C' and D
cells.

4 Evolution

4.1 Evolution in rule space

The previous section presented a number of designed multi-cellular organisms using the
model delineated in Section 2. These organisms demonstrate the capability of our model
in creating systems of interest. This comes about by increasing the level of operation with
respect to the ‘physics’ level of CA (Section 1). In this section we study evolution as it occurs
in our model. Though at this point we have not yet evolved organisms as complex as those
of the previous section we have nonetheless encountered several interesting phenomena. We
shall also present various tools with which the evolutionary process can be investigated.
The cellular space considered in this section is 2 state, 5-neighbor (Figure 9) where states
are denoted {0,1}. We chose this space due to practical considerations as well as the desire
to study the simplest possible two-dimensional space. Evolution in rule space is achieved
by constructing the genome of each cell specifying its rule table as depicted in Figure 10.
There are 32 genes corresponding to all possible neighborhood configurations. Each gene
consists of 10 bits encoding the state change to be effected on neighboring cells (including
itself) and whether the rule should be copied to neighboring cells or not (including itself).
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g; -gene icorresponds to neighborhood configuration i, where iis equal to the binary
representation of the neighboring cell states in the order: CNESW.

Sy - state change to cell in direction x (0/1).

Cy - copy rule to cell in direction x (0-don’t copy, 1-copy).

Figure 10: Rule genome.

When discussing specific genes we will use the following symbolism:
CNESW = Z.ZypZeZsZy,

where CN ESW represents a neighborhood configuration, Z.Z, Z.ZZ,, represents the
respective S; and C, bits using the following notation for Z,:

Co=0] Cp=1
S0 =0 Zo =0 | Zy ==
So=1|2,=1 | Z, =+

At each time step every operational rule simultaneously executes its appropriate rule
entry by referring to the gene corresponding to its current neighborhood states, i.e. state
changes and rule copies are effected as delineated in Section 2. This is followed by application
of two genetic operators: crossover (re-combination) and mutation. These operators are
well known in the context of Genetic Algorithms [Holland, 1975, Goldberg, 1989] in which
genomes are also represented as strings (usually binary).

Crossover is performed in the following manner: at each time step every operational
cell selects an operational neighbor at random. Let (4,7) denote the grid position of an
operational cell and (i, j,) the grid position of the randomly selected operational neighbor.
Crossover is performed between the genomes of the rules in cell (7,j) and cell (iy,j,),
with probability peress- The (single) crossover site is selected with uniform probability
over the entire string and the resulting genome is placed in cell (7,7). If the cell has no
operational neighbors then no crossover is effected. Note that the crossover operator is
somewhat different than the one used in Genetic Algorithms due to its ‘asymmetry’: cell
(i,7) selects cell (i, 7,) while cell (iy,J,) may select a different cell, i.e. cell (¢, j') such
that (i',7') # (i,7). It is felt that this slightly decreases the coupling between cells, thus
enhancing locality and generality.
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Mutation is applied to the genome of each operational rule, after the crossover stage,
by inverting each bit with probability pm,.:. Note that both operations are insensitive to
gene boundaries which is also the case in biological settings. In summary, at each time step
every operational rule performs its appropriate action, after which crossover and mutation
are applied.

It is important to note the difference between our approach and Genetic Algorithms.
Though we apply genetic operators in a similar fashion there is no selection mechanism
operating on a global level using the total fitness of the entire population. As we shall see
(Section 4.3) fitness will be introduced, albeit in a local manner consistent with our model
(see also [Collins and Jefferson, 1992]). Note also that in the standard GA model each entity
is an independent coding of a problem solution interacting only with the fitness function,
never “seeing” the other entities in the population nor the general environment that exists
(see also [Ray, 1994a)). In contrast, in our case fitness depends on interactions of evolving
organisms operating in an environment.

Taking a ‘hardware’ point of view, we note that the resources required by our model
only slightly exceed those of CA. Since both models are local in nature each cell must retain
a copy of the rule in its own memory?. Furthermore, the size of our genome is 320 bits as
compared to the CA rule which requires 32 bits. Note that in this context rule copying is
straightforward requiring only a simple memory transfer. We maintain that on the scale of
complexity (Section 1) our enhanced rule is very close to the low end alongside with the
CA rule.

4.2 Initial results

Our first experiments were performed by running the model described above using an initial
random population of rules. The parameters used are detailed in Table 1.

In this setup the only limitation imposed by the environment is due to the finite size of
the grid, i.e. there is competition between rules for occupation of cells. The final grid ob-
tained is one in which most cells are operational (approximately 96%). The rule population
consists of different rules with some notable commonalities among them. The average value
of the number of C. = 1 bits in the rule genomes is approximately 31. This bit indicates
whether the rule should be copied to the cell it occupies in the next time step (C. = 1) or
not (C. = 0) and it is observed that almost all such bits in the genomes equal 1. Thus,
a simple strategy has emerged which specifies that a rule, upon occupation of a certain
cell, remains there, thereby preventing occupation by another rule (which can only enter a
vacant cell).

Another commonality observed, among runs, was the average distribution of C,, bits in
the genomes of the rules present on the final grid. The percent of C,, bits equaling 1 is 63%
and those equaling 0 is 37%. These ratios are approximately 1 — 1/e and 1/e, respectively,
and appeared regularly in all simulations. Since the C, bits in the genome indicate how

2 Although simulations of CA on serial computers may optimize memory requirements by retaining a
single copy of the rule this in no way impairs our ‘hardware’ argument.
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General parameters time steps | 3000 — 30000
grid size 40x50
DPcross 0.9
Pmut 0.001
Initialization parameters | poperationat | 0.5
p(Sz=1) | 0.5
p(Cy=1) | 0.5

Peross: probability of crossover.

Pmut: probability of mutation.

Doperational: Probability of cell being operational in initial grid.

p(Sy = 1): probability of S, bits of genome equaling 1 (state change bits, see Figure 10).
p(Cy = 1): probability of C, bits of genome equaling 1 (copy rule bits, see Figure 10).

Table 1: Simulation parameters

“active” a rule is it is evident that activity is essential for survival, in the context of the
simple scenario described. The average percentage of S, bits in the genomes was equal, i.e.
approximately 50% for each bit, indicating no preference for a specific state.

The results described were essentially the same for different values of the parameters
in Table 1. One case did, however, prove slightly different, namely py,,: = 0, i.e. using
crossover alone. Here all cells in the final grid were operational with the C, bits of all
genomes equaling 1 (i.e. 32 C. = 1 bits). Thus it is evident that the initial population
consists of sufficient genetic material such that perfect survivors can emerge. Mutation in
this case hinders survival, however we must bear in mind that the environment is simple
and thus there appear to be no local minima which can only be avoided by using mutation.
As we shall see ahead this is not the case for more complex environments.

Another interesting phenomena was observed by looking at the S; = 1 and C; =1
grids. The S; = 1 grid is constructed by computing for each cell the total number of S, bits
which equal 1 for the rule genome in that cell. The C,, =1 grid is constructed analogously
for C,, bits. A typical run is presented in Figure 11. It is evident that clusters are formed
according to state preference (S; = 1 grid) and according to activity (Cy = 1 grid).

A final experiment performed in the context of the scenario described so far was the
removal of the constraint that a rule may only copy itself into a vacant cell. When run with
Pmut = 0, i.e. no mutations, one rule remained on the grid occupying all cells (i.e. all cells
were operational). This rule is the perfect survivor with all C,, bits in its genome set to 1.

4.3 Fitness in an IPD environment

In this section we enhance our model by adding a measure of a rule’s fitness, specifying
how well it performs in a certain environment. The environment explored is defined by the
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Cr =1, time = 30000

Figure 11: S, =1 and C, =1 grids (see text).
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Iterated Prisoner’s Dilemma (IPD), a simple game which has been investigated extensively
as a model of the evolution of cooperation. IPD provides a useful framework for studying
how cooperation can become established in a situation where short-range maximization
of individual utility leads to a collective utility minimum. The game was first explored
by [Flood, 1952] (see also [Poundstone, 1992]) and became ubiquitous due to Axelrod’s
work [Axelrod and Hamilton, 1981, Axelrod, 1984, Axelrod, 1987, Axelrod and Dion, 1988].
These studies involve competition between several strategies, which are either fixed at the
outset or evolve over time. An evolutionary approach was also taken by [Lindgren, 1992,
Lindgren and Nordahl, 1994a] where genomes represent finite memory game strategies with
an initial population containing only memory 1 strategies. The memory length is allowed to
change through neutral gene duplications and split mutations, after which point mutations
are applied which can then give rise to new strategies. Simulations of this model revealed
interesting phenomena of evolving strategies in a punctuated equilibria manner [Eldredge
and Gould, 1972].

The fact that the physical world has spatial dimensions has also come into play in the
investigation of IPD models. A CA approach was applied by [Axelrod, 1984] in which each
cell contains a single strategy and simultaneously plays IPD against its neighbors. The cell’s
score is then compared to its neighbors and the highest scoring strategy is adopted by the
cell at the next time step. In this case evolution was carried out with a fixed set of strategies,
i.e. without application of genetic operators. In [Nowak and May, 1992] the dynamics of two
interacting memoryless strategies were considered: cooperators and defectors (also known in
the IPD literature as AllC and AlID). Spatiotemporal chaos was observed when interactions
occured on a two-dimensional grid. A spatial evolutionary model was also considered in
[Lindgren and Nordahl, 1994b] where the representation of strategies and adaptive moves
were identical to those of [Lindgren, 1992].

It is important to note the difference of the above approaches from ours. The models
discussed above were explicitly intended to study various aspects of the evolution of cooper-
ation using the IPD model. Thus, strategies are the basic units of interaction, whether fixed
or evolving over time (e.g. by coding them as genomes and performing genetic operators).
In contrast we use IPD to model an environment and our basic unit of interaction is the
rule discussed in Section 4.1. Our genome does not represent an IPD strategy, but rather
a general form of local interaction pertinent to our model. Our intention is to study such
interacting cells in various environments, one of which is defined in this section by IPD.
Thus, rather than using IPD explicitly in the form of strategies, it is applied implicitly
through the environment.

At each time step every operational cell plays IPD with its neighbors where a value of 1
represents cooperation and a value of 0 represents defection. The payoff matrix is as follows
(presented for row player):

Cooperation (1) | Defection (0)
Cooperation (1) 3 0
Defection (0) 5 1
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The cell’s fitness is computed as the sum of the (four) payoffs, after which the following
takes place: each (operational) cell which has an operational neighbor with a higher fitness
than its own “dies”, i.e. becomes vacant. Crossover and mutation are then carried out as
described above with one small difference: the crossover probability peress is not fixed, but
is equal to (f(7,7) + f(in,Jn))/40, where f(i,7) is the fitness of the cell at position (3, j),
f(in, jn) is the fitness of the selected operational neighbor for crossover (see Section 4.1).
In summary the (augmented) computational process is as follows: at each time step the
grid is updated by rule application, then fitness is evaluated according to IPD after which
operational cells with fitter operational neighbors become vacant. Finally, crossover and
mutation are applied as explained above.

Simulations revealed the following evolutionary phenomenon which is depicted in Fig-
ure 12 (parameters used are those of Table 1, except for peross computed as discussed above).
The figure presents a typical run starting from a random grid (time = 0). At time = 1050
we observe that approximately half the cells are operational ones in state 0, surrounded
by vacant cells in state 1. This configuration, which we term alternate defection, is one in
which the operational cells attain the maximal fitness (payoff) of 20. However, this is not a
stable configuration. At some point in time a small cluster of cooperating operational cells
emerges (time = 1500) which spreads rapidly throughout the grid (¢time = 1650). The final
configuration is one in which most cells are cooperating operational ones with a fitness of
12 (time = 2400).

The notion of a cluster of cooperation in a spatial IPD model was discussed in [Axelrod,
1984] (albeit without rule evolution, see above). He used the term “invasion by a cluster”,
emphasizing that a single cooperating cell does not stand a chance against a world of
defectors. As noted above our model is more complex, involving evolutionary mechanisms
and a general genome which does not specifically code for IPD strategies. Nonetheless we see
that the IPD environment induces cooperation, with a noteworthy transition phenomenon
in which widespread defection prevails.

Cooperation is achieved by a multitude of different rules, i.e. with different genotypic
makeup. Upon inspection of these rules we detected a significant commonality among them
found in gene g31 which is usually:

11111 = +++++

or, in some cases a C, bit may be 0, where z # ¢ (i.e. not the central copy rule bit),
e.g.:
11111 = + + +1+

Thus, we see how cooperation is maintained, by having this gene activated once stability
is attained, essentially assuring that the cell remains operational and in state 1 (cooperate)
with operational cooperating neighbors. Occasional “cheaters” have been observed, i.e.
rules with gene g3; such as:

11111 = —++ ++

These are rules which remain operational at the next time step but in a state of defection.
However, they are unsuccessful in invading the grid, and we have not observed a return to
defection after cooperation has been attained.
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Figure 12: Iterated Prisoner’s Dilemma.

21

Operational cell in state 0.
Vacant cell in state 0.
Vacant cell in state 1.

Operational cell in state 1.



It is noteworthy that the final grid consists of rules which essentially employ only one
gene of the 32 present in the genome. This may be compared to biological settings where
only part of the genome is expressed, while other parts are of no use. Thus, one of the
aforementioned features of our model is demonstrated, namely the general coding of cellular
rules, as opposed, e.g. to explicit coding of IPD strategies. Evolution take its course,
converging to a stable “strategy” consisting of a multitude of different rules (genomes),
whose commonality lies in a specific part of the genome, the part which is expressed, i.e.
responsible for the phenotype. Our rules can be viewed as simple organisms specified by
the genome of Figure 10 where evolution determines which genes are expressed and their
exact allelic form. We can view this setup as the formation of a sub-species of cooperating
organisms, where members are defined by their phenotypic effects, rather than their exact
genetic makeup. Whereas the genomes differ greatly (in terms of the precise alleles present),
their phenotypes are similar (cooperation) due to a critical gene, g31, which is the one
expressed.

When ppe is set to 0, two patterns have been observed to emerge: cooperation or
absolute alternate defection (Figure 13). While cooperation is as before, among different
rules, absolute alternate defection is achieved with only one surviving rule. Each such run
produced a different survivor with an important commonality found in gene g5 which is
one of the following;:

011l =+ —-—-——

or

01111 =1— — — —

Thus, when the grid configuration is such that all operational rules are in state 0 sur-
rounded by vacant cells in state 1, g15 is activated causing the current cell’s state to become
1 and the rule to be copied into all neighboring cells, with their state changed to 03. This is
an interesting strategy in that an operational cell insures cooperation of the cell it occupies
and then defects to a neighboring cell. The case of p,,,+ = 0 demonstrates the importance
of mutation which causes small perturbations that are necessary to invoke cooperation, as
opposed to less complex environments where mutation was less useful (Section 4.2).

We next explore the following modification: fitness is allowed to accumulate over a small
period of time (3 — 5 steps). The death of operational cells still occurs at each time step as
before (i.e. when a fitter operational neighbor exists), however, they stand a better chance
of survival since their recent fitness histories are taken into account. It was observed that
cooperation did not emerge, rather the state attained was that of alternate defection. Thus
in a harsher environment, inflicting immediate penalty on unfit cells, cooperation emerges
while in a more forgiving environment defection wins.

Cooperation also emerges when the grid is run with a different initial rule population
involving only two types of rules: cooperators and defectors. The S, bits of cooperators are
set to 1 while those of defectors are set to 0. The C, bits are initialized randomly and all

3Note that though every vacant cell is contended by four operational neighbors they are all identical and
so there is no importance as to who wins. Also note that when the center cell remains operational (as in the
first g15 gene) it immediately dies since its fitness is 0.
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time = 10000

Figure 13: Iterated Prisoner’s Dilemma, p,,,; = 0: absolute alternate defection.

cells are operational at time = 0 (crossover and mutation are effected as above, ppu: > 0).

Let peoop denote the probability of a cell being a cooperator in the initial grid. When
Peoop = 0.9 we observe that at first there is a “battle” raging on between cooperators and
defectors (Figure 14). However, the grid then shifts to alternate defection and finally to
cooperation as in Figure 12. When pp is set to 0.5, i.e. an equal proportion (on average) of
cooperators and defectors in the initial population, there is at first an outbreak of defection
(Figure 14). Again, however, the grid shifts to alternate defection and then to cooperation.
This evolutionary pattern is also observed for pco,p = 0.1. Thus even when there is a
majority of defectors at time = 0 cooperation prevails.

4.4 Energy in an environment of niches

In this section we introduce the concept of energy, which serves as a measure of an organism’s
activity, with the intent of enhancing our understanding of phenomena occurring in our
model. Fach cell is considered to have a finite value of energy units. At each time step
energy units are transferred between cells in the following manner: when an operational cell
attempts to copy its rule into an adjoining vacant cell an energy unit is transferred to that
cell. Thus, an operational cell loses a energy units where a equals the number of C; = 1
bits with x representing a vacant neighbor, i.e. the number of copies the cell attempts to
perform (not necessarily successfully since contention may occur, see Section 2). Note that
the total amount of energy is conserved since an operational cell’s loss is a vacant cell’s
gain. All cells hold the same amount of energy at the outset and no bounds are set on the
possible energy values throughout the run.
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Peoop = 0.9, time = 150 Peoop = 0.5, time = 150
Figure 14: Cooperators and Defectors.

To study the idea of energy we explore an environment consisting of spatial niches where
each cell (7, j) possesses a niche id equal to:

na(i,j) = [i/10+ /10| mod 5

The ng value indicates the desired number of neighbors in state 1. A cell’s fitness, at time
t, is defined as:
ft(ivj) =4- | nd(iaj) - TLZ(Z,]) |

where nt(i, j) is the number of adjoining cells in state 1, at time ¢. As in Section 4.3, peross
is not fixed, but is equal to (f(%,7)+ f(in, jn))/8, where f(in, jn) is the fitness of the selected
operational neighbor. Also, an operational cell with a fitter operational neighbor “dies”,
i.e. becomes vacant (Section 4.3).

Figure 15 shows the grid at various times and Figure 16 shows the energy map where
a darker shade corresponds to lower energy. Observing the grid it is difficult to discern
the precise patterns that emerge, however the energy map provides a clear picture of what
transpires. At time = 1000 we note that boundaries begin to form, evident by the higher
energy borders (lighter shades). These correspond to cells positioned in between niches
which remain vacant, thus becoming highly energetic. At time = 5000 and time = 10000
we see that the borders have become more pronounced. Furthermore, regions of low (dark)
energy appear corresponding to niches with ng = 0,4. This indicates that there is a lower
degree of activity in these areas, presumably since these niches represent an “easier” en-
vironment. At tiéme = 200000 the energy map is very smooth indicating uniform activity,
with clear borders between niches.

A different environment considered is one of temporal niches, where ng is a function
of time rather than space, i.e. ng(t) = |t/1000] mod 5. We generated energy maps at
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time = 10000 time = 200000

Figure 15: Spatial niches: grid.
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time = 10000 time = 200000

Figure 16: Spatial niches: energy.
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time = 16000 time = 17000 time = 18000

Gray squares represent energy values within 2 standard deviations of the average, white
squares represent extreme high values (outside the range), black squares represent extreme
low values.

Figure 17: Temporal niches: energy.

points in time where niche shifts occur, i.e. [t/1000] — 1, and observed an interesting
phenomenon. After a few thousand steps the energy pattern stabilizes and the correlation
between successive intervals is close to unity. Figure 17 depicts a typical case (for clarity
we show a map of deviations from average, though the correlation was computed for the
original maps). Thus, there are regions of extensive activity and regions of low activity,
which persist through time.

A different aspect of the evolutionary process is considered in Figure 18 which shows the
number of operational cells and their average fitness as a function of time. Highest fitness
is obtained at temporal niches corresponding to ng = 4 (time = 5000, 10000, 15000, 20000).
At these points in time there is a drastic change in the environment (n4 shifts from 4 to 0)
and we observe that fitness does not usually climb to its maximal value (which is possible
for ng = 0). A further observation is the correlation between fitness and operability. We
see that fitness rises in exact correlation with the number of operational cells. Thus, the
environment is such that more cells can become active (operational) while maintaining high
fitness.

Such a situation is not always the case. Consider, for example, the IPD environment of
Section 4.3 whose fitness and operability graphs are presented in Figure 19. Here we see
that at a certain point in time fitness begins to decline, however the number of operational
cells starts rising. This is the shift from alternate defection to cooperation discussed in
Section 4.3. We note that in the IPD environment cells cannot all be active, yet maintain
the highest fitness. In this case lower fitness is opted for, attaining a higher number of
operational cells.

A different version of temporal niches was also studied in which ng shifts between the
values 0 and 4 every 1000 time steps. In some cases we obtained results as depicted in Fig-
ure 20, noting that after several thousand time steps adaptation to environmental changes
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Figure 18: Temporal niches: n;j=0—+1—-+2—-3—-4—0...
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Figure 19: Iterated Prisoner’s Dilemma: fitness, operability.
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Figure 20: Temporal niches: ng=0—4 —0...

becomes “easier”. This could be evidence of Preadaptation, a concept which is used to
describe the process by which an organ, behavior, neural structure, etc., which evolved to
solve one set of tasks is later utilized to solve a different set of tasks. Though the concept
is rooted in the work of [Darwin, 1866] it has recently been elaborated by [Gould, 1982,
Gould and Vrba, 1982, Mayr, 1976).

An artificial life approach to preadaptation was taken by [Stork et al., 1992] who investi-
gated an apparent “useless” synapse in the current tailflip circuit of the crayfish, which can
be understood as being a vestige from a previous evolutionary epoch in which the circuit
was used for swimming instead of flipping (as it is used today). They performed simulations
in which the task of the simulated organism is switched from swimming to flipping, and then
back to swimming again, observing that adaptation is much more rapid the second time
swimming is selected for. This was explained in terms of evolutionary memory in which
“junk” genetic information is used [Stork et al., 1992]. Here, “junk”, stored for possible
future use is contrasted with “trash” which is discarded. Thus, apparent useless information
can help regain fitness quickly at some future time when environmental changes occur. In
Section 4.5 we examine the genescape, which allows us to directly observe the interplay of
genes. Indeed, we note that evolutionary memory can be of use since different genes are
responsible for the two niches discussed above (ng = 0,4).

4.5 The genescape

In their paper [Bedau and Packard, 1992] discuss how to discern whether or not evolution
is taking place in an observed system, defining evolutionary activity as the rate at which
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useful genetic innovations are absorbed into the population. They point out that the rate at
which new genes are introduced does not reflect genuine evolutionary activity, for the new
genes may be useless. Rather, persistent usage of new genes, is the defining characteristic
of genuine evolutionary activity.

The model studied by [Bedau and Packard, 1992] is that of strategic bugs in which
a bug’s genome consists of a look-up table, with an entry for every possible combination
of states. They attach to each gene (i.e. each table entry) a “usage counter”, which is
initialized to zero. Every time a particular table entry is used the corresponding usage
counter is incremented. Mutation sets the counter to zero, while during crossover genes
are exchanged along with their counters. By keeping track of how many times each gene
is invoked, waves of evolutionary activity are observed through a global histogram of gene
usage plotted as a function of time. As long as activity waves continue to occur, the
population is continually incorporating new genetic material, i.e. evolution is occuring
[Bedau and Packard, 1992]. While this measure is extremely difficult to obtain in biological
settings, it is easy to do so in artificial ones, providing insight into the evolutionary process.

We have applied the idea of usage counters to our model. Each gene in our genome
corresponds to a certain neighborhood configuration (input), specifying the appropriate
actions to be performed (output). In this respect it is similar to the strategic bugs model
of [Bedau and Packard, 1992] and usage counters are attached to each gene and updated as
described above?. In [Bedau and Packard, 1992] the usage distribution function is defined,
which is then used to derive the A(t) measure of evolutionary activity. Since our genome
is small (32 genes) we have opted for a more direct approach in which we study the total
usage of each gene throughout the grid as a function of time. This measure is computed
by summing the usage counters of all operational cells at a given time. Our measurements
can then be presented in a three dimensional plot denoted the genescape, meaning the
evolutionary genetic landscape.

The genescape of the environment studied in Section 4.2 is shown in Figure 21. Recall
that in this case no explicit environmental constraints are placed and the only (implicit)
one is therefore due to the finite size of the grid, i.e. there is competition between rules
for occupation of cells. The genescape shows that usage is approximately constant (after
an initial rise due to an increase in the number of operational cells) and uniform. No
gene is preferred since the environment is such that all contribute equally to fitness. The
constant usage count is consistent with our parameters (peross and pmut). This situation
may be considered as a “flat” genescape serving as a baseline for comparison with other
environments®.

Figure 22 shows the genescape of the IPD environment (Section 4.3). We observe that
gene g15 initially comes to dominate, later to be overtaken by gs31, representing the shift from

4There is one small difference: In the model of [Bedau and Packard, 1992] crossover does not occur across
gene boundaries and therefore does not set the respective counter to zero, whereas in our model crossover
can occur anywhere along the genome. Thus, a counter is reset whenever crossover occurs within its gene
(as well as when the gene mutates).

5Note that other parameters did reveal interesting phenomena even for this simple environment, as noted
in Section 4.2.
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Figure 21: Genescape: no environmental constraints.

alternate defection to cooperation. Smaller peaks are also apparent, coexisting alongside
g15. These occur for genes, g; such that ¢ < 15, i.e. those genes representing a central cell
state of defection (0). Thus the dominance of g5 is not totalistic as is later the case with
gs1- This gene, gs31, shows a small usage peak from the start, essentially biding its time
until the “right” moment comes, when cooperation breaks through. This is reminiscent of
punctuated equilibria results, where phenotypic effects are not observed for long periods of
time, while evolution runs its course in the (unobserved) genotype.

The genescapes of the temporal niches environments of Section 4.4 are presented in
Figures 23 and 24. Observing Figure 23a, we note how usage peaks shift from gy (for
niche id ngy = 0) to g31 (for ng = 4) as time progresses. Closer inspection provides us with
more insight into the evolutionary process (Figure 23b). It is noted that gene g1 competes
with gg when ng = 0 and g15 competes with g3; when ng = 4, with gg and g3; predominating
eventually. This competition is explained by the fact that ng specifies the desired number
of neighbors in state 1, without placing any restriction on the central cell, thus promoting
competition between two genes where one eventually emerges as the “winner”.

When intermediate ng values are in effect (ng = 1,2,3) we observe multiple peaks
corresponding to those genes representing the appropriate number of neighbors (Figure 23b).
As the environment changes (through ng) different epistatic effects are introduced. The
lowest degree of epistasis occurs when ng = 0,4 and the highest when ng = 2. It is
interesting to compare these results with those obtained by [Kauffman and Weinberger,
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1989, Kauffman and Johnsen, 1992] in which the NK model is employed. The NK model
describes genotype fitness landscapes engendered by arbitrarily complex epistatic couplings.
An organism’s genotype consists of N genes, each with A alleles. The fitness contribution of
each gene depends upon itself and epistatically on K other genes. The central idea used in
the NK model is that the epistatic effects of the AX different combinations of A alternative
states of the other K genes on the functional contribution of the Ath state of each gene are
so complex that their statistical features can be captured by assigning fitness contributions
at random from a specified distribution. Tuning K from low to high increases the epistatic
linkages thus providing a tunable rugged family of model fitness landscapes.

The main conclusions offered by [Kauffman and Weinberger, 1989, Kauffman and Johnsen,
1992] are that as K increases relative to N (i.e. as epistatic linkages increase) the rugged-
ness of the fitness landscapes increases by a rise in the number of fitness peaks, while the
typical heights of these peaks decrease. The decrease reflects the conflicting constraints
which arise when epistatic linkages increase. In the N K model epistatic linkages are made
explicit using the K parameter with fitness contributions assigned randomly. We have
presented an environment in which the ng (niche) value changes, thereby causing implicit
changes in the degree of epistasis. Essentially, K =1 for ng = 0,4, K =7 for ng = 1,3 and
K =11 for ng = 2. Our usage results of Figure 23 correspond with the conclusions offered
by [Kauffman and Weinberger, 1989, Kauffman and Johnsen, 1992]. As K increases the
number of usage peaks increase while their heights decrease. Note that we do not measure
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fitness as in the N K model but rather usage, which can be regarded as a more “raw” mea-
sure. Also, fitness contributions are not made explicit but rather are implicitly induced by
the environment. Although our viewpoint is different the results obtained are analogous,
enhancing our understanding of epistatic environmental effects.

4.6 Synchrony verses asynchrony

One of the prominent features of the CA model is its synchronous mode of operation meaning
that all cells are updated simultaneously at each time step. Recently, it has been observed
that when asynchronous updating is used (i.e. one cell is updated at each time step)
results may be different. For example, in [Huberman and Glance, 1993] it was shown that
when asynchrony is introduced in the model of [Nowak and May, 1992] (see Section 4.3)
a fixed state is arrived at rather than the chaotic spatiotemporal behavior induced by
the synchronous model. Asynchrony has also been shown to “freeze” the game of life,
i.e. convergence to a fixed point occurs, rather than complex, class IV phenomena of the
synchronous model [Bersini and Detour, 1994] .

The issue raised by these investigations (see also [Lumer and Nicolis, 1994]) is the
relevance of results obtained by CA models to biological phenomena. Indeed [Huberman
and Glance, 1993] have argued that patterns and regularities observed in nature require
asynchronous updating since natural systems posses no global clock. It may be argued that
from a physical point of view synchrony is justified: since we model a continuous spatial
and temporal world we must examine each spatial location at every time step, no matter
how small we choose these (discrete) steps to be. However, as we move up the scale of
complexity of the basic units, synchrony seems to be less justified. For example, IPD is
usually aimed at investigating social cooperation where the basic units of interaction are
complex organisms (e.g. humans, societies).

The simulations described in the previous sections were conducted using synchronous
updating. Due to the arguments raised above we were motivated to investigate the issue of
asynchrony by repeating some of our simulations using asynchronous updating. Results ob-
tained were different than for synchronous updating, e.g. the asynchronous runs of the IPD
environment (Section 4.3) produced no “interesting” configurations as for the synchronous
case.

We then experimented with two forms of partial asynchrony: (1) sparse updating: at
each time step a cell is updated with probability psperse, and (2) regional updating: at
each time step a fixed size, square region of the grid is updated. Sparse updating produced
“uninteresting” results, i.e. as in the asynchronous case. However, with regional updating
we observed that the synchronous updating results were repeated, provided the region size
exceeded a certain value, which is about 100 cells (i.e. a 10x10 square).

It is noteworthy that sparse updating did not “work” even for high values of pparse (€.8.
0.2) while regional updating produced results identical to the synchronous caseS. We also

SNote that a region size of 10x10 is equivalent (on average) in terms of the number of cells updated per
time step to psparse = 0.05 for a 40x50 grid.
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experimented with larger grids and obtained the same results without increasing the region
size (i.e. about 10x10). While it cannot be ascertained that this size is constant, it seems
safe to conjecture that it grows sub-linearly with grid size.

The regional updating method, though not completely asynchronous is nonetheless in-
teresting, especially since the region size seems to grow sub-linearly with grid size. From a
‘hardware’ point of view this is encouraging since implementations can be made easier by
using local (regional) synchronization rather than global, thereby facilitating scaling. We
noted that a minimal amount of activity must simultaneously take place in order for “inter-
esting” patterns to emerge, i.e. there is certain threshold of interaction. The crucial factor
here is not the total number of cells updated per time step, but rather the simultaneous
activity of a (small) area. This is evident by the failure of the sparse updating method
verses the success of regional updating. The importance of “regions” of evolution has also
been noted in biological settings [Mayr, 1976, Eldredge and Gould, 1972].

The issue of synchrony verses asynchrony in spatially distributed systems is still an
open question. For example, in a recent paper asynchronous simulations were carried out
revealing chaotic spatial organization [Lindgren and Nordahl, 1994b], results which were
contrasted with those of [Huberman and Glance, 1993]. Our model may yet reveal interest-
ing phenomena for the case of complete asynchrony when other types of environments are
employed. At present we have a strong case for partial asynchrony in the form of regional
updating, which, due to the small region size, is close to complete asynchrony.
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5 Discussion

In this paper we presented a system of simple organisms interacting in a two-dimensional
environment, which have the capacity to evolve. We first turned our attention to designed
multi-cellular organisms displaying several interesting behaviors. These included: a self-
reproducing loop, replication of passive structures by copier cells, mobile organisms, two-
phased growth and replication. These organisms offered motivation as to the power of our
model in creating systems of interest. This comes about by increasing the level of operation
with respect to the ‘physics’ level of CA (Section 1).

A related work is that of embryonics, standing for embryological electronics [Mange and
Stauffer, 1994, Marchal et al., 1994, Durand et al., 1994]. This is a CA based approach
in which three principles of natural organization are employed: multi-cellular organization,
cellular differentiation and cellular division. Their intent is to create an architecture which
is complex enough for (quasi) universal computation yet simple enough for physical imple-
mentation. The approach represents another attempt at confronting the aforementioned
problem of CA, namely the low level of operation.

An important distinction made by the embryonics group is the difference between uni-
cellular and multi-cellular organisms. In biological terms a cell can be defined as the smallest
part of a living being which carries the complete plan of the being, that is its genome [Mange
and Stauffer, 1994]. In this respect the self-reproducing automata of [von Neumann, 1966]
and [Langton, 1984| are uni-cellular organisms: the genome is contained within the entire
configuration. An important common point between both the embryonics approach and
ours is that true multi-cellular organisms are formed: our cell is equivalent to a biological
cell in the sense that it contains the complete genome (rule table). A creature in our
model consists of several cells operating in unison, thereby achieving the effect of a single
“purposeful” organism. It is interesting to compare Langton’s self-reproducing loop which
is uni-cellular with ours (Section 3.1) which is multi-cellular. This illustrates our concept
of raising the level of operation: Langton’s loop demonstrates how uni-cellular replication
can be attained whereas our loop starts from there and goes on to achieve multi-cellular
replication. In this strict sense our model may be viewed as a kind of ‘macro’ CA consisting
of higher level basic operations. We also observe in our model that each cell acts according
to a specific gene (entry), which is a simple form of locally-based cellular differentiation.
Such approaches offer us new paths in the development of complex machines as collections
of simpler cells. Such machines can be made to display an array of biological phenomena,
including: self-repair, self-reproduction, growth and evolution [Mange and Stauffer, 1994].

After our initial investigation of multi-cellularity we turned our attention to evolution
in rule space which occurs through changes in the genotypes representing the rules by
which the organisms operate. At first we placed no explicit environmental constraints,
thereby retaining only the implicit constraint due to the finite size of the grid. We observed
that a simple strategy emerged in which an organism (as defined by its rule) “sits tight”
upon occupation of a certain cell. We can view this as the formation of simple replicators
which replicate within their own cell (at each time step) as well as into (possibly) vacant
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cells. It was also noted that rules tend to self-organize (spatially) in accordance with their
levels of activity (Cy bits) and state preferences (S; bits). These results are interesting,
demonstrating that even a very simple environment, with but one constraining factor, is
sufficient in order to guide the evolutionary process through regular spatiotemporal patterns.

The IPD environment revealed several interesting phenomena. The evolutionary path
taken passes through a state of alternate defection, in which approximately half of the cells
are operational, attaining a maximal fitness. However, this is not a stable configuration,
since a small cluster of cooperation eventually emerges, taking over most of the grid.

One of our observations concerns the importance of mutation in complex environments.
In the simple environment of Section 4.2 mutation proved to be a hindrance, preventing
the evolution of perfect survivors. However, as environments grew more complex, mutation
became a crucial factor. For example, in the IPD environment defection can prevail when
the mutation rate is set to zero, however cooperation always emerges when this rate is
small, yet non-zero. It seems that mutation is necessary to help the evolutionary process
from getting stuck in local minima (see also [Goldberg, 1989]).

The emergence of cooperation depends not only on the mutation operator but also on
the harshness of the environment. When the environment is more forgiving cooperation
does not necessarily emerge and defection may prevail, whereas in a harsher environment
defection always “steps down” in favor of cooperation. This may have implications to
real-life situations in which survival in a harsher environment requires more cooperation.

As discussed above (Section 4.3) our IPD environment is different than other IPD mod-
els in that our genome is general and does not code for specific actions, e.g. strategies.
Cooperation emerges between a multitude of different organisms, whose commonality lies
in the expression of a specific gene, a situation which may be regarded as the formation of
a sub-species.

One of the advantages of AL models is the opportunities they offer in performing in-
depth studies of the evolutionary process. This was accomplished in our case by observing
not only phenotypic effects (i.e. evolution of cell states as a function of time) but also
fitness, operability, energy and the genescape. The energy concept was introduced as a
measure of an organism’s activity, where each rule copy costs one unit of energy. We
applied this measure in environments consisting of spatial and temporal niches. For the
case of spatial niches we observed the difficulty in discerning phenotypic effects (the grid),
whereas the energy map provided us with a clear picture of the evolutionary process: regions
of higher and lower activity, with high energy boundaries between them. The environment
of temporal niches presented us with an interesting phenomenon in which adaptation takes
place (as evident by taking note of the fitness graph), with small clusters of extreme energetic
activity forming regularly.

An additional measure introduced is the genescape, which depicts the incorporation of
new genetic material into the population. The epistatic interplay of genes is highlighted by
studying such plots. In the IPD case we noted that the transition from alternate defection to
cooperation occurs through a shift from one gene (g15) to another (g31). It was observed that
while the phenotypic effect of g31 occurs only after several hundred time steps it is constantly
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evolving, albeit at a low (dormant) rate of activity. This provides us with insight on
punctuated equilibria phenomena, which may be partly explained by the difference between
observed effects (phenotypes, e.g. fossil record), and unobserved effects (genotypes).

As the environment changes through time (temporal niches) organisms adapt by travers-
ing their adaptive landscapes. By studying the genescape we were able to observe the subtle
interplay of epistatic couplings, noting shifts from single-peaked to multi-peaked, rugged
terrains. Thus we gain a deeper understanding than is possible by observing only the grid,
i.e. phenotypic effects.

A tentative analogy may be put forward, between our organism and the hypothetical,
now extinct, RNA organism [Joyce, 1989]. These were presumably simple RNA molecules
capable of catalyzing their own replication. What both types of organisms have in common
is that a single molecule constitutes the body plus the genetic information, and effects the
replication. The inherent locality and parallelism of our model add credence to such an
analogy by offering closer adherence to nature. However, we must bear in mind that only
a superficial comparison may be drawn at this stage since our model is highly abstracted
in relation to nature and has been implemented only for an extremely small number of
“molecules”. Further investigations along this line using artificial life models may enhance
our understanding of the RNA world theory. The analogy between RNA organisms and
other types of digital organisms has been noted in [Ray, 1994a).

In Section 1 we delineated two basic guidelines, generality and simplicity, which served
us in the definition of our model. In their paper [Jefferson et al., 1992] present a number of
important properties a programming paradigm must have to be suitable as a representation
for organisms in biologically motivated studies. We discuss these below in light of our
model:

1. Computational completeness., i.e. Turing machine equivalence. Since our model is
an enhancement of the CA model this property holds. We also noted that from a
‘hardware’ point of view the resources required by our model only slightly exceed
those of CA (Section 4.1).

2. A simple, uniform model of computation. This is essentially what we referred to as
simplicity (of basic units) and generality (the second meaning, i.e. general encoding,
see Section 1). This property is intended to prevent the system from being biased
towards a particular environment.

3. Syntactical closure of genetic operators. In our case all genomes represent a legal rule
table encoding. This property also enables us to start with a random population,
thereby avoiding bias.

4. The paradigm should be well conditioned under genetic operators. This requirement
is less formal meaning that evolution between successive time steps is usually “well
behaved”, i.e. discontinuities occur only occasionally. This property can be assessed
using the genescape.
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5. One time unit of an organism’s life must be specified. In our case time is discrete,
with an organism accepting input (neighborhood states) and taking action (output)
in a single time step.

6. Scalability. This property must be examined with some care. If we wish to add sensory
apparatus (in our case increase the neighborhood and/or the number of states) then
the genome grows exponentially since it encodes a finite state automaton table. How-
ever, complexity can increase through the interaction of several organisms. Indeed,
a central goal of AL research is the evolution of multi-cellular creatures. As noted
above such organisms are parallel devices, composed of simple basic units and may
therefore scale very well. At this point we have demonstrated that multi-cellularity
can be attained, albeit by design (Section 3). Scalability is also related to the issue of
asynchrony which was discussed in Section 4.6.

The model presented in this paper provides insight into issues involving adaptation
and evolution. There are still, however, many limitations that should be addressed. We
have modeled an environment in the strict sense, i.e. excluding the organisms themselves
(Section 1). Although we achieved an environment in the broad sense, i.e. a total system
of interacting organisms, the dichotomy between organisms and their environment is still
a major obstacle to overcome [Jefferson et al., 1992] (see also [Bonabeau and Theraulaz,
1994]). Another central issue discussed above is the formation (evolution) of multi-cellular
organisms. It is clear that much more research is needed in this direction.

The evolutionary studies we performed were carried out in rather small grids (consisting
of only a few thousand cells). It seems reasonable to assume that in order to evolve “inter-
esting” creatures a larger number of units is required. Models such as ours which consist
of simple, locally connected units lend themselves to scaling through the use of parallel or
distributed implementations. For example, Ray has recently suggested creating a network-
wide reserve for the digital Tierra creatures [Ray, 1994b]. He hopes that by increasing the
scale of the system by several orders of magnitude, new phenomena may arise that have
not been observed in the smaller scale systems.

It is hoped that the development of such AL models will serve the two-fold goal of: (1)
increasing our understanding of biology and (2) enhancing our understanding of artificial
models, thereby providing us with the ability to improve their performance. AL research
opens new doors providing us with novel opportunities to explore issues such as adaptation,
evolution and emergence which are central both in natural environments as well as man-
made ones.
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A Growth and replication: specification of rule

A-cell

Formation of ones:

1|1 1]1 1 1
A — 1 All]| — 111
1A — | 111
1 1
B-cell

Formation of zeros:

1)1 1)1

B — 0 B — 0

0B - 1010
1 1| C
C-cell

Downward movement:

00 010 111 1|1
1| C - |1 1|C - |1
C C

Beginning of upward replication movement and spawning of D-cell:

0] 0 0[0]|C
C - | DJ|O
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Upward replication movement and transfer of one position to the right:

1 1 1(1]|C 1 1 1(1|C 1 1 1
0|C — 0|0 1]C — 111 1|C —

0 0|0 00 111 1
00 0[0|C 00 0(0]|C

1| C — 1|1 1|C — 1)1 0| C —

1 1 1|1 010 010 1 1 1

End of upward replication movement:

C —
00 0| B
D-cell

Move to bottom left-hand side of structure (start position):

010 D|O0]|O 0 D|O 01]0 D
D|0]| — 0 D — D —
Imediate death in case two half structures do not exist:
1 1
D|O0]| — 0 DI|[O0]| — 0
Upward replication movement:
1 1D 1 1D 1
O|D|O|—=]01|0O0 1|D|1]|—>1]1]1 1| D|1]|— 11
0 1 1
0 0D 0 0D
1|1 D|1]|—=1]1]1 1/ D|1]|—=1]1]1 O|DJ|O| =10
1 1 0 1 1

Death after completion of upward movement:

Note that an A cell dies after attaching a one to the structure, a B cell either dies or
spawns a C' cell after attachment of zero. All other entries of A and B cell rules specify a
move to a random vacant cell while those for C' and D rules specify no change.
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